Общая информация
Название Complete 2020 Data Science and Machine Learning Bootcamp [UdemyLibrary.com]
Тип
Размер 17.17Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 642б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 SpamData.zip 22.83Мб
1.2 Course Resources.html 122б
1.2 SpamData.zip 22.32Мб
1. Defining the Problem.mp4 39.91Мб
1. Defining the Problem.srt 6.46Кб
1. How to Translate a Business Problem into a Machine Learning Problem.mp4 42.26Мб
1. How to Translate a Business Problem into a Machine Learning Problem.srt 9.69Кб
1. Introduction to Linear Regression & Specifying the Problem.mp4 30.32Мб
1. Introduction to Linear Regression & Specifying the Problem.srt 8.74Кб
1. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 72.50Мб
1. Setting up the Notebook and Understanding Delimiters in a Dataset.srt 11.17Кб
1. Set up the Testing Notebook.mp4 26.45Мб
1. Set up the Testing Notebook.srt 3.82Кб
1. Solving a Business Problem with Image Classification.mp4 30.53Мб
1. Solving a Business Problem with Image Classification.srt 4.97Кб
1. The Human Brain and the Inspiration for Artificial Neural Networks.mp4 51.81Мб
1. The Human Brain and the Inspiration for Artificial Neural Networks.srt 10.88Кб
1. What's coming up.mp4 7.10Мб
1. What's Coming Up.mp4 20.92Мб
1. What's coming up.srt 2.49Кб
1. What's Coming Up.srt 3.83Кб
1. What is Machine Learning.mp4 45.29Мб
1. What is Machine Learning.srt 6.91Кб
1. What you'll make.mp4 38.44Мб
1. What you'll make.srt 9.76Кб
1. Where next.html 3.93Кб
1. Windows Users - Install Anaconda.mp4 49.60Мб
1. Windows Users - Install Anaconda.srt 8.78Кб
10. [Python] - Module Imports.mp4 232.07Мб
10. [Python] - Module Imports.srt 36.12Кб
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 111.43Мб
10. Calculating Correlations and the Problem posed by Multicollinearity.srt 17.83Кб
10. Drawing on an HTML Canvas.mp4 171.97Мб
10. Drawing on an HTML Canvas.srt 37.83Кб
10. Extracting the Text in the Email Body.mp4 47.43Мб
10. Extracting the Text in the Email Body.srt 6.00Кб
10. The F-score or F1 Metric.mp4 24.71Мб
10. The F-score or F1 Metric.srt 4.48Кб
10. Understanding the Learning Rate.mp4 236.60Мб
10. Understanding the Learning Rate.srt 37.72Кб
10. Understanding the Tensorflow Graph Nodes and Edges.mp4 115.75Мб
10. Understanding the Tensorflow Graph Nodes and Edges.srt 21.25Кб
10. Use the Model to Make Predictions.mp4 218.25Мб
10. Use the Model to Make Predictions.srt 32.97Кб
11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4 41.61Мб
11. [Python] - Functions - Part 1 Defining and Calling Functions.srt 10.49Кб
11. [Python] - Generator Functions & the yield Keyword.mp4 133.16Мб
11. [Python] - Generator Functions & the yield Keyword.srt 22.32Кб
11. A Naive Bayes Implementation using SciKit Learn.mp4 195.10Мб
11. A Naive Bayes Implementation using SciKit Learn.srt 33.68Кб
11. Data Pre-Processing for Tensorflow.js.mp4 61.89Мб
11. Data Pre-Processing for Tensorflow.js.srt 11.92Кб
11. How to Create 3-Dimensional Charts.mp4 193.48Мб
11. How to Create 3-Dimensional Charts.srt 26.10Кб
11. Model Evaluation and the Confusion Matrix.mp4 62.76Мб
11. Model Evaluation and the Confusion Matrix.srt 10.80Кб
11. Name Scoping and Image Visualisation in Tensorboard.mp4 155.37Мб
11. Name Scoping and Image Visualisation in Tensorboard.srt 26.26Кб
11. Visualising Correlations with a Heatmap.mp4 168.65Мб
11. Visualising Correlations with a Heatmap.srt 24.37Кб
12.1 08 Naive Bayes with scikit-learn.ipynb.zip 13.26Кб
12.1 math_garden_stub 12.12 checkpoint.zip 4.09Мб
12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip 243.05Кб
12. Create a Pandas DataFrame of Email Bodies.mp4 48.66Мб
12. Create a Pandas DataFrame of Email Bodies.srt 7.23Кб
12. Different Model Architectures Experimenting with Dropout.mp4 213.67Мб
12. Different Model Architectures Experimenting with Dropout.srt 30.11Кб
12. Download the Complete Notebook Here.html 242б
12. Introduction to OpenCV.mp4 235.33Мб
12. Introduction to OpenCV.srt 38.37Кб
12. Model Evaluation and the Confusion Matrix.mp4 251.83Мб
12. Model Evaluation and the Confusion Matrix.srt 40.50Кб
12. Python Functions Coding Exercise - Part 1.html 156б
12. Techniques to Style Scatter Plots.mp4 128.53Мб
12. Techniques to Style Scatter Plots.srt 20.56Кб
12. Understanding Partial Derivatives and How to use SymPy.mp4 132.81Мб
12. Understanding Partial Derivatives and How to use SymPy.srt 20.23Кб
13. [Python] - Functions - Part 2 Arguments & Parameters.mp4 128.20Мб
13. [Python] - Functions - Part 2 Arguments & Parameters.srt 20.76Кб
13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip 120.11Кб
13. A Note for the Next Lesson.html 476б
13. Any Feedback on this Section.html 509б
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 121.94Мб
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.srt 17.96Кб
13. Download the Complete Notebook Here.html 242б
13. Implementing Batch Gradient Descent with SymPy.mp4 86.82Мб
13. Implementing Batch Gradient Descent with SymPy.srt 12.93Кб
13. Prediction and Model Evaluation.mp4 110.72Мб
13. Prediction and Model Evaluation.srt 18.90Кб
13. Resizing and Adding Padding to Images.mp4 157.50Мб
13. Resizing and Adding Padding to Images.srt 26.86Кб
14. [Python] - Loops and Performance Considerations.mp4 131.07Мб
14. [Python] - Loops and Performance Considerations.srt 18.07Кб
14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip 6.60Кб
14. Any Feedback on this Section.html 521б
14. Calculating the Centre of Mass and Shifting the Image.mp4 223.26Мб
14. Calculating the Centre of Mass and Shifting the Image.srt 35.49Кб
14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4 61.83Мб
14. Cleaning Data (Part 2) Working with a DataFrame Index.srt 9.23Кб
14. Download the Complete Notebook Here.html 242б
14. Python Functions Coding Exercise - Part 2.html 156б
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 214.40Мб
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.srt 28.70Кб
15. [Python] - Functions - Part 3 Results & Return Values.mp4 82.63Мб
15. [Python] - Functions - Part 3 Results & Return Values.srt 16.55Кб
15. Any Feedback on this Section.html 499б
15. Making a Prediction from a Digit drawn on the HTML Canvas.mp4 104.41Мб
15. Making a Prediction from a Digit drawn on the HTML Canvas.srt 17.04Кб
15. Reshaping and Slicing N-Dimensional Arrays.mp4 140.81Мб
15. Reshaping and Slicing N-Dimensional Arrays.srt 22.96Кб
15. Saving a JSON File with Pandas.mp4 56.35Мб
15. Saving a JSON File with Pandas.srt 6.92Кб
15. Understanding Multivariable Regression.mp4 48.80Мб
15. Understanding Multivariable Regression.srt 7.52Кб
16.1 math_garden_stub complete.zip 4.09Мб
16. Adding the Game Logic.mp4 172.83Мб
16. Adding the Game Logic.srt 38.09Кб
16. Concatenating Numpy Arrays.mp4 71.33Мб
16. Concatenating Numpy Arrays.srt 8.91Кб
16. Data Visualisation (Part 1) Pie Charts.mp4 90.68Мб
16. Data Visualisation (Part 1) Pie Charts.srt 16.19Кб
16. How to Shuffle and Split Training & Testing Data.mp4 64.34Мб
16. How to Shuffle and Split Training & Testing Data.srt 11.55Кб
16. Python Functions Coding Exercise - Part 3.html 156б
17. [Python] - Objects - Understanding Attributes and Methods.mp4 156.77Мб
17. [Python] - Objects - Understanding Attributes and Methods.srt 29.86Кб
17. Data Visualisation (Part 2) Donut Charts.mp4 61.78Мб
17. Data Visualisation (Part 2) Donut Charts.srt 9.56Кб
17. Introduction to the Mean Squared Error (MSE).mp4 64.56Мб
17. Introduction to the Mean Squared Error (MSE).srt 12.61Кб
17. Publish and Share your Website!.mp4 38.75Мб
17. Publish and Share your Website!.srt 9.51Кб
17. Running a Multivariable Regression.mp4 55.56Мб
17. Running a Multivariable Regression.srt 9.77Кб
18. Any Feedback on this Section.html 500б
18. How to Calculate the Model Fit with R-Squared.mp4 32.40Мб
18. How to Calculate the Model Fit with R-Squared.srt 4.42Кб
18. How to Make Sense of Python Documentation for Data Visualisation.mp4 171.46Мб
18. How to Make Sense of Python Documentation for Data Visualisation.srt 26.51Кб
18. Introduction to Natural Language Processing (NLP).mp4 50.81Мб
18. Introduction to Natural Language Processing (NLP).srt 8.19Кб
18. Transposing and Reshaping Arrays.mp4 86.90Мб
18. Transposing and Reshaping Arrays.srt 13.52Кб
19. Implementing a MSE Cost Function.mp4 81.11Мб
19. Implementing a MSE Cost Function.srt 13.56Кб
19. Introduction to Model Evaluation.mp4 15.99Мб
19. Introduction to Model Evaluation.srt 3.81Кб
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 117.75Мб
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.srt 19.07Кб
19. Working with Python Objects to Analyse Data.mp4 169.98Мб
19. Working with Python Objects to Analyse Data.srt 27.29Кб
2.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip 6.39Кб
2.1 Course Resources.html 122б
2.1 MNIST.zip 14.77Мб
2.1 SpamData.zip 21.29Мб
2.1 The-Numbers Movie Budgets.html 102б
2.2 cost_revenue_dirty.csv 374.68Кб
2. Create a Full Matrix.mp4 132.24Мб
2. Create a Full Matrix.srt 21.72Кб
2. Gather & Clean the Data.mp4 97.02Мб
2. Gather & Clean the Data.srt 13.93Кб
2. Gathering Email Data and Working with Archives & Text Editors.mp4 112.05Мб
2. Gathering Email Data and Working with Archives & Text Editors.srt 14.13Кб
2. Gathering the Boston House Price Data.mp4 56.24Мб
2. Gathering the Boston House Price Data.srt 8.66Кб
2. Getting the Data and Loading it into Numpy Arrays.mp4 52.82Мб
2. Getting the Data and Loading it into Numpy Arrays.srt 9.01Кб
2. How a Machine Learns.mp4 22.78Мб
2. How a Machine Learns.srt 7.22Кб
2. Installing Tensorflow and Keras for Jupyter.mp4 42.10Мб
2. Installing Tensorflow and Keras for Jupyter.srt 6.42Кб
2. Joint Conditional Probability (Part 1) Dot Product.mp4 66.40Мб
2. Joint Conditional Probability (Part 1) Dot Product.srt 12.72Кб
2. Layers, Feature Generation and Learning.mp4 146.70Мб
2. Layers, Feature Generation and Learning.srt 27.79Кб
2. Mac Users - Install Anaconda.mp4 52.41Мб
2. Mac Users - Install Anaconda.srt 8.05Кб
2. Saving Tensorflow Models.mp4 109.98Мб
2. Saving Tensorflow Models.srt 21.26Кб
2. What is Data Science.mp4 42.86Мб
2. What is Data Science.srt 5.72Кб
2. What Modules Do You Want to See.html 431б
20. [Python] - Tips, Code Style and Naming Conventions.mp4 81.53Мб
20. [Python] - Tips, Code Style and Naming Conventions.srt 16.72Кб
20. Improving the Model by Transforming the Data.mp4 126.87Мб
20. Improving the Model by Transforming the Data.srt 21.61Кб
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 73.16Мб
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).srt 13.94Кб
20. Word Stemming & Removing Punctuation.mp4 71.44Мб
20. Word Stemming & Removing Punctuation.srt 10.56Кб
21.1 02 Python Intro.ipynb.zip 36.44Кб
21. Download the Complete Notebook Here.html 242б
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4 65.41Мб
21. How to Interpret Coefficients using p-Values and Statistical Significance.srt 10.78Кб
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 124.88Мб
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).srt 17.45Кб
21. Removing HTML tags with BeautifulSoup.mp4 95.82Мб
21. Removing HTML tags with BeautifulSoup.srt 11.01Кб
22. Any Feedback on this Section.html 513б
22. Creating a Function for Text Processing.mp4 53.91Мб
22. Creating a Function for Text Processing.srt 8.41Кб
22. Running Gradient Descent with a MSE Cost Function.mp4 111.22Мб
22. Running Gradient Descent with a MSE Cost Function.srt 22.32Кб
22. Understanding VIF & Testing for Multicollinearity.mp4 143.82Мб
22. Understanding VIF & Testing for Multicollinearity.srt 25.62Кб
23. A Note for the Next Lesson.html 476б
23. Model Simplification & Baysian Information Criterion.mp4 150.15Мб
23. Model Simplification & Baysian Information Criterion.srt 23.14Кб
23. Visualising the Optimisation on a 3D Surface.mp4 74.81Мб
23. Visualising the Optimisation on a 3D Surface.srt 10.73Кб
24.1 03 Gradient Descent.ipynb.zip 1.14Мб
24. Advanced Subsetting on DataFrames the apply() Function.mp4 83.39Мб
24. Advanced Subsetting on DataFrames the apply() Function.srt 13.53Кб
24. Download the Complete Notebook Here.html 242б
24. How to Analyse and Plot Regression Residuals.mp4 64.18Мб
24. How to Analyse and Plot Regression Residuals.srt 14.76Кб
25. [Python] - Logical Operators to Create Subsets and Indices.mp4 86.41Мб
25. [Python] - Logical Operators to Create Subsets and Indices.srt 15.50Кб
25. Any Feedback on this Section.html 520б
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 124.42Мб
25. Residual Analysis (Part 1) Predicted vs Actual Values.srt 18.24Кб
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 153.01Мб
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.srt 22.76Кб
26. Word Clouds & How to install Additional Python Packages.mp4 79.48Мб
26. Word Clouds & How to install Additional Python Packages.srt 11.97Кб
27. Creating your First Word Cloud.mp4 98.44Мб
27. Creating your First Word Cloud.srt 13.67Кб
27. Making Predictions (Part 1) MSE & R-Squared.mp4 152.68Мб
27. Making Predictions (Part 1) MSE & R-Squared.srt 23.72Кб
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 84.85Мб
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.srt 14.76Кб
28. Styling the Word Cloud with a Mask.mp4 131.37Мб
28. Styling the Word Cloud with a Mask.srt 16.72Кб
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 131.31Мб
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.srt 20.82Кб
29. Solving the Hamlet Challenge.mp4 57.10Мб
29. Solving the Hamlet Challenge.srt 5.99Кб
3.1 ML Data Science Syllabus.pdf 103.97Кб
3.1 MNIST_Model_Load_Files.zip 2.84Мб
3.1 Try Jupyter in your Browser.html 85б
3.2 12 TF SavedModel Export Completed.ipynb.zip 6.13Кб
3.2 cost_revenue_clean.csv 90.82Кб
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 87.14Мб
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.srt 15.59Кб
3. Costs and Disadvantages of Neural Networks.mp4 91.98Мб
3. Costs and Disadvantages of Neural Networks.srt 19.24Кб
3. Count the Tokens to Train the Naive Bayes Model.mp4 96.18Мб
3. Count the Tokens to Train the Naive Bayes Model.srt 18.35Кб
3. Data Exploration and Understanding the Structure of the Input Data.mp4 32.41Мб
3. Data Exploration and Understanding the Structure of the Input Data.srt 6.49Кб
3. Does LSD Make You Better at Maths.mp4 42.25Мб
3. Does LSD Make You Better at Maths.srt 7.35Кб
3. Download the Syllabus.html 1.03Кб
3. Explore & Visualise the Data with Python.mp4 148.15Мб
3. Explore & Visualise the Data with Python.srt 31.02Кб
3. Gathering the CIFAR 10 Dataset.mp4 31.37Мб
3. Gathering the CIFAR 10 Dataset.srt 6.10Кб
3. How to Add the Lesson Resources to the Project.mp4 28.90Мб
3. How to Add the Lesson Resources to the Project.srt 4.96Кб
3. Introduction to Cost Functions.mp4 66.21Мб
3. Introduction to Cost Functions.srt 9.49Кб
3. Joint Conditional Probablity (Part 2) Priors.mp4 63.98Мб
3. Joint Conditional Probablity (Part 2) Priors.srt 10.54Кб
3. Loading a SavedModel.mp4 103.93Мб
3. Loading a SavedModel.srt 26.16Кб
3. Stay in Touch!.html 1.05Кб
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 134.38Мб
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).srt 21.40Кб
30. Styling Word Clouds with Custom Fonts.mp4 127.29Мб
30. Styling Word Clouds with Custom Fonts.srt 14.79Кб
31. Create the Vocabulary for the Spam Classifier.mp4 106.96Мб
31. Create the Vocabulary for the Spam Classifier.srt 17.79Кб
31. Python Conditional Statement Coding Exercise.html 156б
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 244.17Мб
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.srt 28.42Кб
32. Coding Challenge Check for Membership in a Collection.mp4 32.34Мб
32. Coding Challenge Check for Membership in a Collection.srt 6.08Кб
33.1 04 Multivariable Regression.ipynb.zip 3.54Мб
33.2 04 Valuation Tool.ipynb.zip 2.93Кб
33.3 boston_valuation.py 3.05Кб
33. Coding Challenge Find the Longest Email.mp4 54.47Мб
33. Coding Challenge Find the Longest Email.srt 7.54Кб
33. Download the Complete Notebook Here.html 242б
34. Any Feedback on this Section.html 512б
34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 87.62Мб
34. Sparse Matrix (Part 1) Split the Training and Testing Data.srt 15.26Кб
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 137.23Мб
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.srt 22.34Кб
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 80.50Мб
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.srt 12.18Кб
37. Coding Challenge Solution Preparing the Test Data.mp4 28.92Мб
37. Coding Challenge Solution Preparing the Test Data.srt 4.50Кб
38. Checkpoint Understanding the Data.mp4 96.37Мб
38. Checkpoint Understanding the Data.srt 13.65Кб
39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip 978.02Кб
39. Download the Complete Notebook Here.html 242б
4.1 01 Linear Regression (checkpoint).ipynb.zip 37.64Кб
4.1 12 Rules to Learn to Code.pdf 2.25Мб
4.1 App Brewery Cornell Notes Template.html 141б
4.1 TF_Keras_Classification_Images.zip 501.10Кб
4.1 TFJS.zip 1.54Мб
4. Clean and Explore the Data (Part 2) Find Missing Values.mp4 135.02Мб
4. Clean and Explore the Data (Part 2) Find Missing Values.srt 18.59Кб
4. Converting a Model to Tensorflow.js.mp4 132.49Мб
4. Converting a Model to Tensorflow.js.srt 21.13Кб
4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 70.19Мб
4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.srt 12.67Кб
4. Download the 12 Rules to Learn to Code.html 1.13Кб
4. Exploring the CIFAR Data.mp4 110.31Мб
4. Exploring the CIFAR Data.srt 18.23Кб
4. LaTeX Markdown and Generating Data with Numpy.mp4 90.52Мб
4. LaTeX Markdown and Generating Data with Numpy.srt 17.28Кб
4. Making Predictions Comparing Joint Probabilities.mp4 52.34Мб
4. Making Predictions Comparing Joint Probabilities.srt 9.67Кб
4. Preprocessing Image Data and How RGB Works.mp4 93.60Мб
4. Preprocessing Image Data and How RGB Works.srt 16.15Кб
4. Sum the Tokens across the Spam and Ham Subsets.mp4 46.71Мб
4. Sum the Tokens across the Spam and Ham Subsets.srt 7.76Кб
4. The Intuition behind the Linear Regression Model.mp4 29.63Мб
4. The Intuition behind the Linear Regression Model.srt 10.84Кб
4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 33.39Мб
4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.srt 6.08Кб
4. Top Tips for Succeeding on this Course.html 2.09Кб
40. Any Feedback on this Section.html 519б
5. [Python] - Variables and Types.mp4 71.36Мб
5. [Python] - Variables and Types.srt 16.55Кб
5.1 math_garden_stub.zip 44.03Кб
5. Analyse and Evaluate the Results.mp4 105.16Мб
5. Analyse and Evaluate the Results.srt 22.41Кб
5. Basic Probability.mp4 28.55Мб
5. Basic Probability.srt 5.26Кб
5. Calculate the Token Probabilities and Save the Trained Model.mp4 53.45Мб
5. Calculate the Token Probabilities and Save the Trained Model.srt 9.44Кб
5. Course Resources List.html 1.13Кб
5. Importing Keras Models and the Tensorflow Graph.mp4 65.47Мб
5. Importing Keras Models and the Tensorflow Graph.srt 11.44Кб
5. Introducing the Website Project and Tooling.mp4 78.04Мб
5. Introducing the Website Project and Tooling.srt 17.19Кб
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 93.16Мб
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.srt 19.92Кб
5. The Accuracy Metric.mp4 40.54Мб
5. The Accuracy Metric.srt 7.65Кб
5. Understanding the Power Rule & Creating Charts with Subplots.mp4 90.17Мб
5. Understanding the Power Rule & Creating Charts with Subplots.srt 18.10Кб
5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 64.55Мб
5. Visualising Data (Part 1) Historams, Distributions & Outliers.srt 14.24Кб
5. What is a Tensor.mp4 45.39Мб
5. What is a Tensor.srt 8.99Кб
6. [Python] - Loops and the Gradient Descent Algorithm.mp4 287.46Мб
6. [Python] - Loops and the Gradient Descent Algorithm.srt 44.03Кб
6.1 01 Linear Regression (complete).ipynb.zip 75.28Кб
6. Coding Challenge Prepare the Test Data.mp4 35.60Мб
6. Coding Challenge Prepare the Test Data.srt 5.14Кб
6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 103.60Мб
6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.srt 18.63Кб
6. Creating Tensors and Setting up the Neural Network Architecture.mp4 150.86Мб
6. Creating Tensors and Setting up the Neural Network Architecture.srt 29.05Кб
6. Download the Complete Notebook Here.html 242б
6. HTML and CSS Styling.mp4 150.23Мб
6. HTML and CSS Styling.srt 37.89Кб
6. Joint & Conditional Probability.mp4 141.82Мб
6. Joint & Conditional Probability.srt 19.86Кб
6. Making Predictions using InceptionResNet.mp4 134.58Мб
6. Making Predictions using InceptionResNet.srt 18.90Кб
6. Python Variable Coding Exercise.html 156б
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 57.32Мб
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.srt 8.98Кб
6. Visualising the Decision Boundary.mp4 205.31Мб
6. Visualising the Decision Boundary.srt 33.44Кб
7. [Python] - Lists and Arrays.mp4 53.47Мб
7. [Python] - Lists and Arrays.srt 12.15Кб
7.1 07 Bayes Classifier - Training.ipynb.zip 5.82Кб
7.1 x_test2_ylabel1.txt 4.59Кб
7.2 x_test0_ylabel7.txt 4.59Кб
7.3 x_test1_ylabel2.txt 4.59Кб
7. Bayes Theorem.mp4 83.60Мб
7. Bayes Theorem.srt 15.16Кб
7. Coding Challenge Solution Using other Keras Models.mp4 103.53Мб
7. Coding Challenge Solution Using other Keras Models.srt 12.94Кб
7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 75.11Мб
7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.srt 14.15Кб
7. Download the Complete Notebook Here.html 242б
7. False Positive vs False Negatives.mp4 63.25Мб
7. False Positive vs False Negatives.srt 12.81Кб
7. Interacting with the Operating System and the Python Try-Catch Block.mp4 133.41Мб
7. Interacting with the Operating System and the Python Try-Catch Block.srt 23.69Кб
7. Join the Student Community.html 730б
7. Loading a Tensorflow.js Model and Starting your own Server.mp4 188.04Мб
7. Loading a Tensorflow.js Model and Starting your own Server.srt 37.18Кб
7. Python Loops Coding Exercise.html 156б
7. Working with Index Data, Pandas Series, and Dummy Variables.mp4 140.76Мб
7. Working with Index Data, Pandas Series, and Dummy Variables.srt 20.72Кб
8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 291.33Мб
8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).srt 42.99Кб
8.1 09 Neural Nets Pretrained Image Classification.ipynb.zip 571.83Кб
8. Adding a Favicon.mp4 41.51Мб
8. Adding a Favicon.srt 7.39Кб
8. Any Feedback on this Section.html 512б
8. Any Feedback on this Section.html 527б
8. Download the Complete Notebook Here.html 264б
8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 100.42Мб
8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.srt 14.10Кб
8. Python Lists Coding Exercise.html 156б
8. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 60.90Мб
8. Reading Files (Part 1) Absolute Paths and Relative Paths.srt 11.71Кб
8. TensorFlow Sessions and Batching Data.mp4 100.32Мб
8. TensorFlow Sessions and Batching Data.srt 20.50Кб
8. The Recall Metric.mp4 28.15Мб
8. The Recall Metric.srt 6.54Кб
8. Understanding Descriptive Statistics the Mean vs the Median.mp4 62.18Мб
8. Understanding Descriptive Statistics the Mean vs the Median.srt 12.14Кб
9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 219.01Мб
9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).srt 33.54Кб
9. [Python & Pandas] - Dataframes and Series.mp4 153.20Мб
9. [Python & Pandas] - Dataframes and Series.srt 28.09Кб
9.1 lsd_math_score_data.csv 155б
9. Any Feedback on this Section.html 526б
9. Introduction to Correlation Understanding Strength & Direction.mp4 33.09Мб
9. Introduction to Correlation Understanding Strength & Direction.srt 8.40Кб
9. Reading Files (Part 2) Stream Objects and Email Structure.mp4 104.32Мб
9. Reading Files (Part 2) Stream Objects and Email Structure.srt 14.57Кб
9. Styling an HTML Canvas.mp4 187.37Мб
9. Styling an HTML Canvas.srt 39.42Кб
9. Tensorboard Summaries and the Filewriter.mp4 128.29Мб
9. Tensorboard Summaries and the Filewriter.srt 23.21Кб
9. The Precision Metric.mp4 53.33Мб
9. The Precision Metric.srt 9.50Кб
9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 191.54Мб
9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.srt 28.28Кб
Read me first!.txt 265б
Read me first!.txt 265б
Torrent downloaded from 1337x.to.txt 100б
Torrent downloaded from Demonoid.is.txt 112б
Torrent downloaded from ettvcentral.com.txt 110б
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент