Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
463.91Кб |
1 |
229.21Кб |
1. Approximation Methods Section Introduction.mp4 |
22.08Мб |
1. Approximation Methods Section Introduction-en_US.srt |
5.60Кб |
1. Beginners, halt! Stop here if you skipped ahead.mp4 |
83.78Мб |
1. Beginners, halt! Stop here if you skipped ahead-en_US.srt |
19.90Кб |
1. Dynamic Programming Section Introduction.mp4 |
34.67Мб |
1. Dynamic Programming Section Introduction-en_US.srt |
11.91Кб |
1. How to Code by Yourself (part 1).mp4 |
24.53Мб |
1. How to Code by Yourself (part 1)-en_US.srt |
25.95Кб |
1. How to Succeed in this Course (Long Version).mp4 |
18.31Мб |
1. How to Succeed in this Course (Long Version)-en_US.srt |
14.00Кб |
1. Introduction.mp4 |
34.24Мб |
1. Introduction-en_US.srt |
4.03Кб |
1. MDP Section Introduction.mp4 |
37.20Мб |
1. MDP Section Introduction-en_US.srt |
8.02Кб |
1. Monte Carlo Intro.mp4 |
47.59Мб |
1. Monte Carlo Intro-en_US.srt |
12.12Кб |
1. Section Introduction The Explore-Exploit Dilemma.mp4 |
51.99Мб |
1. Section Introduction The Explore-Exploit Dilemma-en_US.srt |
12.99Кб |
1. Temporal Difference Introduction.mp4 |
14.44Мб |
1. Temporal Difference Introduction-en_US.srt |
5.04Кб |
1. This Course vs. RL Book What's the Difference.mp4 |
38.21Мб |
1. This Course vs. RL Book What's the Difference-en_US.srt |
9.89Кб |
1. What is Reinforcement Learning.mp4 |
54.62Мб |
1. What is Reinforcement Learning-en_US.srt |
10.51Кб |
1. What is the Appendix.mp4 |
5.45Мб |
1. What is the Appendix-en_US.srt |
3.58Кб |
1. Windows-Focused Environment Setup 2018.mp4 |
186.38Мб |
1. Windows-Focused Environment Setup 2018-en_US.srt |
19.29Кб |
10 |
280.95Кб |
10. Approximation Methods Exercise.mp4 |
17.53Мб |
10. Approximation Methods Exercise-en_US.srt |
5.13Кб |
10. Optimistic Initial Values Beginner's Exercise Prompt.mp4 |
13.77Мб |
10. Optimistic Initial Values Beginner's Exercise Prompt-en_US.srt |
2.82Кб |
10. Policy Iteration in Code.mp4 |
56.38Мб |
10. Policy Iteration in Code-en_US.srt |
10.39Кб |
10. Stock Trading Project Discussion.mp4 |
15.78Мб |
10. Stock Trading Project Discussion-en_US.srt |
4.19Кб |
10. The Bellman Equation (pt 3).mp4 |
24.67Мб |
10. The Bellman Equation (pt 3)-en_US.srt |
7.39Кб |
100 |
201.06Кб |
101 |
572.25Кб |
102 |
741.53Кб |
103 |
230.58Кб |
104 |
268.75Кб |
105 |
616.93Кб |
106 |
987.43Кб |
107 |
173.08Кб |
11 |
180.48Кб |
11. Approximation Methods Section Summary.mp4 |
21.75Мб |
11. Approximation Methods Section Summary-en_US.srt |
3.85Кб |
11. Bellman Examples.mp4 |
87.12Мб |
11. Bellman Examples-en_US.srt |
26.62Кб |
11. Optimistic Initial Values Code.mp4 |
24.57Мб |
11. Optimistic Initial Values Code-en_US.srt |
4.99Кб |
11. Policy Iteration in Windy Gridworld.mp4 |
51.41Мб |
11. Policy Iteration in Windy Gridworld-en_US.srt |
10.57Кб |
12 |
637.71Кб |
12. Optimal Policy and Optimal Value Function (pt 1).mp4 |
56.06Мб |
12. Optimal Policy and Optimal Value Function (pt 1)-en_US.srt |
11.04Кб |
12. UCB1 Theory.mp4 |
55.53Мб |
12. UCB1 Theory-en_US.srt |
19.19Кб |
12. Value Iteration.mp4 |
35.27Мб |
12. Value Iteration-en_US.srt |
9.31Кб |
13 |
959.40Кб |
13. Optimal Policy and Optimal Value Function (pt 2).mp4 |
15.72Мб |
13. Optimal Policy and Optimal Value Function (pt 2)-en_US.srt |
4.91Кб |
13. UCB1 Beginner's Exercise Prompt.mp4 |
12.74Мб |
13. UCB1 Beginner's Exercise Prompt-en_US.srt |
2.65Кб |
13. Value Iteration in Code.mp4 |
45.67Мб |
13. Value Iteration in Code-en_US.srt |
8.51Кб |
14 |
97.75Кб |
14. Dynamic Programming Summary.mp4 |
25.11Мб |
14. Dynamic Programming Summary-en_US.srt |
6.28Кб |
14. MDP Summary.mp4 |
14.28Мб |
14. MDP Summary-en_US.srt |
3.46Кб |
14. UCB1 Code.mp4 |
20.66Мб |
14. UCB1 Code-en_US.srt |
3.59Кб |
15 |
485.31Кб |
15. Bayesian Bandits Thompson Sampling Theory (pt 1).mp4 |
55.90Мб |
15. Bayesian Bandits Thompson Sampling Theory (pt 1)-en_US.srt |
16.13Кб |
16 |
387.90Кб |
16. Bayesian Bandits Thompson Sampling Theory (pt 2).mp4 |
74.50Мб |
16. Bayesian Bandits Thompson Sampling Theory (pt 2)-en_US.srt |
22.71Кб |
17 |
10.86Кб |
17. Thompson Sampling Beginner's Exercise Prompt.mp4 |
17.89Мб |
17. Thompson Sampling Beginner's Exercise Prompt-en_US.srt |
3.26Кб |
18 |
64.50Кб |
18. Thompson Sampling Code.mp4 |
32.83Мб |
18. Thompson Sampling Code-en_US.srt |
5.43Кб |
19 |
1015.38Кб |
19. Thompson Sampling With Gaussian Reward Theory.mp4 |
48.51Мб |
19. Thompson Sampling With Gaussian Reward Theory-en_US.srt |
14.41Кб |
2 |
697.20Кб |
2. Applications of the Explore-Exploit Dilemma.mp4 |
51.18Мб |
2. Applications of the Explore-Exploit Dilemma-en_US.srt |
10.50Кб |
2. BONUS Where to get discount coupons and FREE deep learning material.mp4 |
37.83Мб |
2. BONUS Where to get discount coupons and FREE deep learning material-en_US.srt |
7.57Кб |
2. Course Outline and Big Picture.mp4 |
39.68Мб |
2. Course Outline and Big Picture-en_US.srt |
10.04Кб |
2. From Bandits to Full Reinforcement Learning.mp4 |
41.19Мб |
2. From Bandits to Full Reinforcement Learning-en_US.srt |
11.59Кб |
2. Gridworld.mp4 |
53.99Мб |
2. Gridworld-en_US.srt |
16.65Кб |
2. How to Code by Yourself (part 2).mp4 |
14.80Мб |
2. How to Code by Yourself (part 2)-en_US.srt |
15.79Кб |
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 |
43.92Мб |
2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow-en_US.srt |
15.71Кб |
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 |
38.95Мб |
2. Iterative Policy Evaluation.mp4 |
60.82Мб |
2. Iterative Policy Evaluation-en_US.srt |
20.37Кб |
2. Linear Models for Reinforcement Learning.mp4 |
31.08Мб |
2. Linear Models for Reinforcement Learning-en_US.srt |
10.97Кб |
2. Monte Carlo Policy Evaluation.mp4 |
47.15Мб |
2. Monte Carlo Policy Evaluation-en_US.srt |
14.07Кб |
2. Stock Trading Project Section Introduction.mp4 |
26.76Мб |
2. Stock Trading Project Section Introduction-en_US.srt |
6.58Кб |
2. TD(0) Prediction.mp4 |
15.79Мб |
2. TD(0) Prediction-en_US.srt |
6.64Кб |
20 |
5.42Кб |
20. Thompson Sampling With Gaussian Reward Code.mp4 |
43.43Мб |
20. Thompson Sampling With Gaussian Reward Code-en_US.srt |
6.97Кб |
21 |
361.41Кб |
21. Why don't we just use a library.mp4 |
27.40Мб |
21. Why don't we just use a library-en_US.srt |
7.32Кб |
22 |
606.45Кб |
22. Nonstationary Bandits.mp4 |
30.98Мб |
22. Nonstationary Bandits-en_US.srt |
9.21Кб |
23 |
840.72Кб |
23. Bandit Summary, Real Data, and Online Learning.mp4 |
34.61Мб |
23. Bandit Summary, Real Data, and Online Learning-en_US.srt |
8.76Кб |
24 |
677.26Кб |
24. (Optional) Alternative Bandit Designs.mp4 |
50.34Мб |
24. (Optional) Alternative Bandit Designs-en_US.srt |
13.93Кб |
25 |
282.56Кб |
25. Suggestion Box.mp4 |
16.13Мб |
25. Suggestion Box-en_US.srt |
4.50Кб |
26 |
505.47Кб |
27 |
419.86Кб |
28 |
871.86Кб |
29 |
71.52Кб |
3 |
316.54Кб |
3. Choosing Rewards.mp4 |
32.49Мб |
3. Choosing Rewards-en_US.srt |
5.23Кб |
3. Data and Environment.mp4 |
52.01Мб |
3. Data and Environment-en_US.srt |
15.11Кб |
3. Designing Your RL Program.mp4 |
22.34Мб |
3. Designing Your RL Program-en_US.srt |
6.39Кб |
3. Epsilon-Greedy Theory.mp4 |
28.30Мб |
3. Epsilon-Greedy Theory-en_US.srt |
9.05Кб |
3. External URLs.txt |
75б |
3. Feature Engineering.mp4 |
45.88Мб |
3. Feature Engineering-en_US.srt |
13.90Кб |
3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 |
29.32Мб |
3. Machine Learning and AI Prerequisite Roadmap (pt 1)-en_US.srt |
15.45Кб |
3. Monte Carlo Policy Evaluation in Code.mp4 |
51.65Мб |
3. Monte Carlo Policy Evaluation in Code-en_US.srt |
10.17Кб |
3. Proof that using Jupyter Notebook is the same as not using it.mp4 |
78.32Мб |
3. Proof that using Jupyter Notebook is the same as not using it-en_US.srt |
13.54Кб |
3. TD(0) Prediction in Code.mp4 |
32.43Мб |
3. TD(0) Prediction in Code-en_US.srt |
5.80Кб |
3. Where to get the Code.mp4 |
22.72Мб |
3. Where to get the Code-en_US.srt |
6.05Кб |
30 |
178.11Кб |
31 |
213.87Кб |
32 |
127.63Кб |
33 |
337.29Кб |
34 |
98.73Кб |
35 |
116.89Кб |
36 |
14.30Кб |
37 |
86.88Кб |
38 |
181.04Кб |
39 |
355.22Кб |
4 |
511.05Кб |
4. Approximation Methods for Prediction.mp4 |
34.34Мб |
4. Approximation Methods for Prediction-en_US.srt |
12.06Кб |
4. Calculating a Sample Mean (pt 1).mp4 |
23.13Мб |
4. Calculating a Sample Mean (pt 1)-en_US.srt |
7.22Кб |
4. Gridworld in Code.mp4 |
46.79Мб |
4. Gridworld in Code-en_US.srt |
15.72Кб |
4. How to Model Q for Q-Learning.mp4 |
44.89Мб |
4. How to Model Q for Q-Learning-en_US.srt |
11.58Кб |
4. How to Succeed in this Course.mp4 |
43.82Мб |
4. How to Succeed in this Course-en_US.srt |
7.94Кб |
4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 |
37.62Мб |
4. Machine Learning and AI Prerequisite Roadmap (pt 2)-en_US.srt |
22.21Кб |
4. Monte Carlo Control.mp4 |
35.61Мб |
4. Monte Carlo Control-en_US.srt |
11.16Кб |
4. Python 2 vs Python 3.mp4 |
7.83Мб |
4. Python 2 vs Python 3-en_US.srt |
5.86Кб |
4. SARSA.mp4 |
16.22Мб |
4. SARSA-en_US.srt |
5.77Кб |
4. The Markov Property.mp4 |
21.76Мб |
4. The Markov Property-en_US.srt |
7.70Кб |
40 |
588.54Кб |
41 |
558.95Кб |
42 |
579.25Кб |
43 |
830.00Кб |
44 |
320.22Кб |
45 |
323.00Кб |
46 |
512.09Кб |
47 |
49.29Кб |
48 |
465.42Кб |
49 |
812.71Кб |
5 |
583.75Кб |
5. Approximation Methods for Prediction Code.mp4 |
62.29Мб |
5. Approximation Methods for Prediction Code-en_US.srt |
10.20Кб |
5. Design of the Program.mp4 |
23.31Мб |
5. Design of the Program-en_US.srt |
8.19Кб |
5. Epsilon-Greedy Beginner's Exercise Prompt.mp4 |
28.66Мб |
5. Epsilon-Greedy Beginner's Exercise Prompt-en_US.srt |
6.15Кб |
5. Iterative Policy Evaluation in Code.mp4 |
68.43Мб |
5. Iterative Policy Evaluation in Code-en_US.srt |
15.64Кб |
5. Markov Decision Processes (MDPs).mp4 |
61.73Мб |
5. Markov Decision Processes (MDPs)-en_US.srt |
18.85Кб |
5. Monte Carlo Control in Code.mp4 |
64.41Мб |
5. Monte Carlo Control in Code-en_US.srt |
10.74Кб |
5. SARSA in Code.mp4 |
44.90Мб |
5. SARSA in Code-en_US.srt |
7.40Кб |
5. Warmup.mp4 |
62.60Мб |
5. Warmup-en_US.srt |
18.14Кб |
50 |
174.93Кб |
51 |
393.10Кб |
52 |
818.86Кб |
53 |
399.73Кб |
54 |
743.91Кб |
55 |
340.87Кб |
56 |
403.54Кб |
57 |
678.06Кб |
58 |
780.18Кб |
59 |
866.79Кб |
6 |
731.94Кб |
6. Approximation Methods for Control.mp4 |
17.59Мб |
6. Approximation Methods for Control-en_US.srt |
5.49Кб |
6. Code pt 1.mp4 |
49.72Мб |
6. Code pt 1-en_US.srt |
9.28Кб |
6. Designing Your Bandit Program.mp4 |
24.51Мб |
6. Designing Your Bandit Program-en_US.srt |
5.41Кб |
6. Future Rewards.mp4 |
39.50Мб |
6. Future Rewards-en_US.srt |
12.19Кб |
6. Monte Carlo Control without Exploring Starts.mp4 |
23.40Мб |
6. Monte Carlo Control without Exploring Starts-en_US.srt |
5.60Кб |
6. Q Learning.mp4 |
19.82Мб |
6. Q Learning-en_US.srt |
6.09Кб |
6. Windy Gridworld in Code.mp4 |
41.45Мб |
6. Windy Gridworld in Code-en_US.srt |
10.04Кб |
60 |
285.86Кб |
61 |
170.22Кб |
62 |
522.20Кб |
63 |
588.63Кб |
64 |
943.83Кб |
65 |
19.90Кб |
66 |
697.20Кб |
67 |
346.97Кб |
68 |
712.95Кб |
69 |
227.89Кб |
7 |
602.76Кб |
7. Approximation Methods for Control Code.mp4 |
77.69Мб |
7. Approximation Methods for Control Code-en_US.srt |
10.55Кб |
7. Code pt 2.mp4 |
65.29Мб |
7. Code pt 2-en_US.srt |
11.31Кб |
7. Epsilon-Greedy in Code.mp4 |
41.43Мб |
7. Epsilon-Greedy in Code-en_US.srt |
8.30Кб |
7. Iterative Policy Evaluation for Windy Gridworld in Code.mp4 |
46.93Мб |
7. Iterative Policy Evaluation for Windy Gridworld in Code-en_US.srt |
9.34Кб |
7. Monte Carlo Control without Exploring Starts in Code.mp4 |
40.69Мб |
7. Monte Carlo Control without Exploring Starts in Code-en_US.srt |
6.91Кб |
7. Q Learning in Code.mp4 |
38.55Мб |
7. Q Learning in Code-en_US.srt |
5.83Кб |
7. Value Functions.mp4 |
18.55Мб |
7. Value Functions-en_US.srt |
6.38Кб |
70 |
616.93Кб |
71 |
98.39Кб |
72 |
243.24Кб |
73 |
318.56Кб |
74 |
909.64Кб |
75 |
333.58Кб |
76 |
436.88Кб |
77 |
479.06Кб |
78 |
501.02Кб |
79 |
489.15Кб |
8 |
410.56Кб |
8. CartPole.mp4 |
26.90Мб |
8. CartPole-en_US.srt |
6.99Кб |
8. Code pt 3.mp4 |
33.72Мб |
8. Code pt 3-en_US.srt |
5.20Кб |
8. Comparing Different Epsilons.mp4 |
43.65Мб |
8. Comparing Different Epsilons-en_US.srt |
6.51Кб |
8. Monte Carlo Summary.mp4 |
11.40Мб |
8. Monte Carlo Summary-en_US.srt |
2.08Кб |
8. Policy Improvement.mp4 |
43.99Мб |
8. Policy Improvement-en_US.srt |
14.18Кб |
8. TD Learning Section Summary.mp4 |
10.04Мб |
8. TD Learning Section Summary-en_US.srt |
2.85Кб |
8. The Bellman Equation (pt 1).mp4 |
27.78Мб |
8. The Bellman Equation (pt 1)-en_US.srt |
10.68Кб |
80 |
618.47Кб |
81 |
705.04Кб |
82 |
893.42Кб |
83 |
287.10Кб |
84 |
680.54Кб |
85 |
946.98Кб |
86 |
241.59Кб |
87 |
253.06Кб |
88 |
347.26Кб |
89 |
184.74Кб |
9 |
727.63Кб |
9. CartPole Code.mp4 |
46.83Мб |
9. CartPole Code-en_US.srt |
6.52Кб |
9. Code pt 4.mp4 |
52.94Мб |
9. Code pt 4-en_US.srt |
7.94Кб |
9. Optimistic Initial Values Theory.mp4 |
23.52Мб |
9. Optimistic Initial Values Theory-en_US.srt |
6.87Кб |
9. Policy Iteration.mp4 |
34.15Мб |
9. Policy Iteration-en_US.srt |
9.99Кб |
9. The Bellman Equation (pt 2).mp4 |
26.69Мб |
9. The Bellman Equation (pt 2)-en_US.srt |
8.24Кб |
90 |
461.17Кб |
91 |
709.11Кб |
92 |
110.23Кб |
93 |
422.77Кб |
94 |
477.43Кб |
95 |
799.89Кб |
96 |
894.89Кб |
97 |
216.54Кб |
98 |
224.82Кб |
99 |
291.18Кб |
TutsNode.com.txt |
63б |