Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
414б |
001 Course structure.en.srt |
1.61Кб |
001 Course structure.mp4 |
9.99Мб |
001 Introduction to Bagging.en.srt |
1.17Кб |
001 Introduction to Bagging.mp4 |
7.79Мб |
001 Introduction to Boosting.en.srt |
1.51Кб |
001 Introduction to Boosting.mp4 |
9.94Мб |
001 Introduction to Stacking Method.en.srt |
1.06Кб |
001 Introduction to Stacking Method.mp4 |
6.07Мб |
001 Introduction to the clustering.en.srt |
1.18Кб |
001 Introduction to the clustering.mp4 |
7.64Мб |
001 Introduction to the project.en.srt |
1.46Кб |
001 Introduction to the project.en.srt |
1.30Кб |
001 Introduction to the project.mp4 |
8.86Мб |
001 Introduction to the project.mp4 |
8.64Мб |
001 Introduction to the Random Forest.en.srt |
1.46Кб |
001 Introduction to the Random Forest.mp4 |
8.36Мб |
001 Thank you.en.srt |
1.69Кб |
001 Thank you.mp4 |
23.29Мб |
001 What is ensemble learning.en.srt |
1.78Кб |
001 What is ensemble learning.mp4 |
12.49Мб |
001 What is hard and soft voting.en.srt |
7.16Кб |
001 What is hard and soft voting.mp4 |
40.10Мб |
001 What is machine learning.en.srt |
1.43Кб |
001 What is machine learning.mp4 |
10.13Мб |
002 Bootstrapping Introduction.en.srt |
2.18Кб |
002 Bootstrapping Introduction.mp4 |
27.98Мб |
002 Custom hard voting implementation Part 1.en.srt |
11.67Кб |
002 Custom hard voting implementation Part 1.mp4 |
158.59Мб |
002 Demystifying recommendation systems.en.srt |
6.77Кб |
002 Demystifying recommendation systems.mp4 |
48.19Мб |
002 Hierarchical and K-means clustering and strengths and weaknesses of K-means.en.srt |
6.56Кб |
002 Hierarchical and K-means clustering and strengths and weaknesses of K-means.mp4 |
48.72Мб |
002 How To Make The Most Out Of This Course.en.srt |
2.54Кб |
002 How To Make The Most Out Of This Course.mp4 |
8.20Мб |
002 Introduction to AdaBoost.en.srt |
6.72Кб |
002 Introduction to AdaBoost.mp4 |
40.26Мб |
002 Introduction to learning from data.en.srt |
7.20Кб |
002 Introduction to learning from data.mp4 |
52.50Мб |
002 Introduction to Meta-Learning.en.srt |
5.72Кб |
002 Introduction to Meta-Learning.mp4 |
39.54Мб |
002 Introduction to the time series.en.srt |
4.53Кб |
002 Introduction to the time series.mp4 |
29.05Мб |
002 Understanding random forest trees.en.srt |
8.80Кб |
002 Understanding random forest trees.mp4 |
54.21Мб |
002 What is bias_.en.srt |
2.76Кб |
002 What is bias_.mp4 |
19.62Мб |
003 AdaBoost Implementation Method 1.en.srt |
15.37Кб |
003 AdaBoost Implementation Method 1.mp4 |
192.66Мб |
003 Bitcoin data analysis Implementation Part 1.en.srt |
7.61Кб |
003 Bitcoin data analysis Implementation Part 1.mp4 |
69.86Мб |
003 Bootstrapping Implementation.en.srt |
7.92Кб |
003 Bootstrapping Implementation.mp4 |
97.37Мб |
003 Creating and analysing forests and strengths and weaknesses of Random Forest.en.srt |
7.22Кб |
003 Creating and analysing forests and strengths and weaknesses of Random Forest.mp4 |
49.37Мб |
003 Custom hard voting implementation Part 2.en.srt |
3.73Кб |
003 Custom hard voting implementation Part 2.mp4 |
55.18Мб |
003 K-means Implementation Part 1.en.srt |
7.51Кб |
003 K-means Implementation Part 1.mp4 |
97.90Мб |
003 Neural recommendation systems.en.srt |
4.26Кб |
003 Neural recommendation systems.mp4 |
24.83Мб |
003 Selecting base learners and meta-learner.en.srt |
5.54Кб |
003 Selecting base learners and meta-learner.mp4 |
42.33Мб |
003 Some popular machine learning dataset.en.srt |
4.87Кб |
003 Some popular machine learning dataset.mp4 |
31.66Мб |
003 What is variance and Trade-off_.en.srt |
6.14Кб |
003 What is variance and Trade-off_.mp4 |
39.11Мб |
003 Who is this course for____.en.srt |
1.79Кб |
003 Who is this course for____.mp4 |
10.72Мб |
004 AdaBoost Implementation Method 2 for classification.en.srt |
9.43Кб |
004 AdaBoost Implementation Method 2 for classification.mp4 |
110.00Мб |
004 Analysing our results.en.srt |
9.16Кб |
004 Analysing our results.mp4 |
120.60Мб |
004 Bitcoin data analysis Implementation Part 2.en.srt |
7.40Кб |
004 Bitcoin data analysis Implementation Part 2.mp4 |
41.41Мб |
004 Creating base learners for bagging.en.srt |
2.51Кб |
004 Creating base learners for bagging.mp4 |
15.49Мб |
004 Exploratory analysis.en.srt |
5.29Кб |
004 Exploratory analysis.mp4 |
55.65Мб |
004 IMPORTANT term.en.srt |
11.82Кб |
004 IMPORTANT term.mp4 |
105.89Мб |
004 K-means Implementation Part 2.en.srt |
8.03Кб |
004 K-means Implementation Part 2.mp4 |
129.81Мб |
004 Random forests Implementation for classification.en.srt |
6.35Кб |
004 Random forests Implementation for classification.mp4 |
74.76Мб |
004 Stacking for regression Implementation.en.srt |
22.12Кб |
004 Stacking for regression Implementation.mp4 |
276.32Мб |
004 What is Motivation_.en.srt |
5.13Кб |
004 What is Motivation_.mp4 |
32.75Мб |
004 What is Supervised learning_.en.srt |
5.25Кб |
004 What is Supervised learning_.mp4 |
36.41Мб |
005 AdaBoost Implementation Method 2 for Regression Solution.en.srt |
4.19Кб |
005 AdaBoost Implementation Method 2 for Regression Solution.mp4 |
41.03Мб |
005 Creating the dot model.en.srt |
16.82Кб |
005 Creating the dot model.mp4 |
197.64Мб |
005 Hard voting implementation by Using scikit-learn.en.srt |
8.74Кб |
005 Hard voting implementation by Using scikit-learn.mp4 |
105.25Мб |
005 IMPORTANT NOTE on tools.en.srt |
2.27Кб |
005 IMPORTANT NOTE on tools.mp4 |
5.27Мб |
005 K-Means Implementation by using Voting.en.srt |
8.84Кб |
005 K-Means Implementation by using Voting.mp4 |
93.00Мб |
005 Random forests Implementation for regression.en.srt |
6.21Кб |
005 Random forests Implementation for regression.mp4 |
83.08Мб |
005 Simple Bitcoin Prediction.en.srt |
14.31Кб |
005 Simple Bitcoin Prediction.mp4 |
179.20Мб |
005 Stacking for classification Implementation.en.srt |
18.75Кб |
005 Stacking for classification Implementation.mp4 |
226.37Мб |
005 Strengths and weaknesses of bagging.en.srt |
2.51Кб |
005 Strengths and weaknesses of bagging.mp4 |
15.51Мб |
005 Validation Curves Implementation.en.srt |
15.28Кб |
005 Validation Curves Implementation.mp4 |
197.43Мб |
005 What is Unsupervised learning and Dimensionality reduction_.en.srt |
5.15Кб |
005 What is Unsupervised learning and Dimensionality reduction_.mp4 |
35.22Мб |
006 Bagging Implementation Method 1.en.srt |
12.72Кб |
006 Bagging Implementation Method 1.mp4 |
134.70Мб |
006 Creating the dense model.en.srt |
7.36Кб |
006 Creating the dense model.mp4 |
104.95Мб |
006 Extra trees Implementation for classification.en.srt |
2.30Кб |
006 Extra trees Implementation for classification.mp4 |
30.30Мб |
006 How to measure performance.en.srt |
15.07Кб |
006 How to measure performance.mp4 |
101.56Мб |
006 Learning Curves Implementation.en.srt |
14.31Кб |
006 Learning Curves Implementation.mp4 |
194.03Мб |
006 Simulator Implementation.en.srt |
11.23Кб |
006 Simulator Implementation.mp4 |
146.55Мб |
006 Soft voting implementation by Using scikit-learn.en.srt |
11.89Кб |
006 Soft voting implementation by Using scikit-learn.mp4 |
145.82Мб |
006 Strengths and weaknesses of AdaBoost.en.srt |
2.21Кб |
006 Strengths and weaknesses of AdaBoost.mp4 |
14.93Мб |
006 Summary of the section.en.srt |
2.70Кб |
006 Summary of the section.en.srt |
1.46Кб |
006 Summary of the section.mp4 |
18.83Мб |
006 Summary of the section.mp4 |
9.25Мб |
007 Analysing our results.en.srt |
14.27Кб |
007 Analysing our results.mp4 |
208.29Мб |
007 Bagging Implementation Method 2 for classification.en.srt |
7.87Кб |
007 Bagging Implementation Method 2 for classification.mp4 |
95.10Мб |
007 Creating a stacking ensemble.en.srt |
10.37Кб |
007 Creating a stacking ensemble.mp4 |
149.97Мб |
007 Extra trees Implementation for regression.en.srt |
4.72Кб |
007 Extra trees Implementation for regression.mp4 |
52.40Мб |
007 Introduction to Gradient boosting.en.srt |
6.61Кб |
007 Introduction to Gradient boosting.mp4 |
115.88Мб |
007 Linear Regression Implementation.en.srt |
9.35Кб |
007 Linear Regression Implementation.mp4 |
109.20Мб |
007 Methods of Ensemble Learning.en.srt |
3.76Кб |
007 Methods of Ensemble Learning.mp4 |
28.49Мб |
007 Voting Implementation.en.srt |
11.64Кб |
007 Voting Implementation.mp4 |
131.92Мб |
008 Bagging Implementation Method 2 for regression.en.srt |
9.38Кб |
008 Bagging Implementation Method 2 for regression.mp4 |
113.94Мб |
008 Challenges in Ensemble Learning.en.srt |
8.60Кб |
008 Challenges in Ensemble Learning.mp4 |
52.63Мб |
008 Gradient boosting Implementation Method 1.en.srt |
12.59Кб |
008 Gradient boosting Implementation Method 1.mp4 |
160.30Мб |
008 Logistic Regression Implementation.en.srt |
7.98Кб |
008 Logistic Regression Implementation.mp4 |
79.13Мб |
008 Stacking Implementation.en.srt |
15.08Кб |
008 Stacking Implementation.mp4 |
198.23Мб |
008 Summary.en.srt |
2.67Кб |
008 Summary.en.srt |
3.06Кб |
008 Summary.mp4 |
19.54Мб |
008 Summary.mp4 |
19.37Мб |
008 Summary of the section.en.srt |
3.48Кб |
008 Summary of the section.mp4 |
25.09Мб |
009 Bagging Implementation.en.srt |
5.60Кб |
009 Bagging Implementation.mp4 |
63.75Мб |
009 Gradient boosting Implementation Method 2 For Regression Problem.en.srt |
7.42Кб |
009 Gradient boosting Implementation Method 2 For Regression Problem.mp4 |
76.34Мб |
009 Summary of the section.en.srt |
3.75Кб |
009 Summary of the section.en.srt |
3.18Кб |
009 Summary of the section.mp4 |
31.94Мб |
009 Summary of the section.mp4 |
21.95Мб |
009 Support vector machines.en.srt |
3.49Кб |
009 Support vector machines.mp4 |
25.35Мб |
010 Boosting Implementation.en.srt |
5.94Кб |
010 Boosting Implementation.mp4 |
78.59Мб |
010 Gradient boosting Implementation Method 2 For Classification Problem.en.srt |
4.52Кб |
010 Gradient boosting Implementation Method 2 For Classification Problem.mp4 |
29.64Мб |
010 What is Neural networks.en.srt |
5.92Кб |
010 What is Neural networks.mp4 |
43.31Мб |
011 Random Forest Implementation.en.srt |
6.37Кб |
011 Random Forest Implementation.mp4 |
66.66Мб |
011 What is Decision trees.en.srt |
6.00Кб |
011 What is Decision trees.mp4 |
36.27Мб |
011 XGBoost Introduction and Implementation for Regression.en.srt |
9.17Кб |
011 XGBoost Introduction and Implementation for Regression.mp4 |
112.42Мб |
012 Summary of the project.en.srt |
2.12Кб |
012 Summary of the project.mp4 |
14.03Мб |
012 Udemy_Linear_Regression_Model_Implementation.ipynb |
4.19Кб |
012 What is K-Nearest Neighbors.en.srt |
1.80Кб |
012 What is K-Nearest Neighbors.mp4 |
12.54Мб |
012 XGBoost Introduction and Implementation for Classification.en.srt |
4.28Кб |
012 XGBoost Introduction and Implementation for Classification.mp4 |
46.48Мб |
013 K-means Implementation.en.srt |
12.13Кб |
013 K-means Implementation.mp4 |
149.29Мб |
013 Summary.en.srt |
3.61Кб |
013 Summary.mp4 |
23.28Мб |
013 Udemy_Logistic_Regression_Implementation.ipynb |
5.46Кб |
014 Summary of the section.en.srt |
1.21Кб |
014 Summary of the section.mp4 |
5.10Мб |
018 Udemy_K_Means_Implementation.ipynb |
29.98Кб |
024 Validation_Curves_Implementation.ipynb |
104.25Кб |
025 Udemy_Learning_Curves_Implementation.ipynb |
34.10Кб |
030 Udemy_Hard_Voting_Implementation.ipynb |
7.09Кб |
031 Udemy_Hard_Voting_Implementation (1).ipynb |
9.04Кб |
032 Udemy_Hard_Voting_Implementation (2).ipynb |
28.88Кб |
033 Udemy_Hard_voting_implementation_by_Using_scikit_learn.ipynb |
6.87Кб |
034 Udemy_Soft_voting_implementation_by_Using_scikit_learn.ipynb |
6.66Кб |
035 Udemy_Soft_voting_implementation_by_Using_scikit_learn.ipynb |
27.59Кб |
040 Udemy_Stacking_for_regression_Implementation.ipynb |
9.38Кб |
041 Udemy_Stacking_for_classification_Implementation.ipynb |
8.65Кб |
045 Udemy_Bootstrapping_Implementation.ipynb |
16.98Кб |
048 Udemy_Bagging_implementatio_Method_1.ipynb |
7.33Кб |
049 Udemy_Bagging_implementation_Method_2_for_classification.ipynb |
4.64Кб |
050 Udemy_Bagging_implementation_Method_2_for_regression.ipynb |
4.87Кб |
054 Udemy_AdaBoosting_Implementation.ipynb |
7.51Кб |
055 Udemy_AdaBoost_Method_2_Implementation_for_classification.ipynb |
6.22Кб |
056 Udemy_AdaBoost_Method_2_Implementation_for_Regression.ipynb |
3.48Кб |
058 Udemy_Gradient_Boosting_Introduction_and_implementation.ipynb |
3.56Кб |
059 Udemy_Gradient_Boosting_Introduction_and_implementation (1).ipynb |
9.76Кб |
061 Udemy_Gradient_Boosting_implementation_Method_2_for_Classification.ipynb |
3.20Кб |
062 Udemy_XGBoost_Implementation_for_Regression.ipynb |
4.57Кб |
063 Udemy_XGBoost_Implementation_for_Classification.ipynb |
3.96Кб |
068 Udemy_Random_forests_Implementation_for_classification.ipynb |
5.14Кб |
069 Udemy_Random_forests_Implementation_for_Regression.ipynb |
5.54Кб |
070 Udemy_Extra_Trees_Implementation_for_classification.ipynb |
4.72Кб |
071 Udemy_Extra_Trees_Implementation_for_Regression.ipynb |
4.66Кб |
076 Udemy_K_Means_Clustering_Implementation_with_Scikit_Learn.ipynb |
60.91Кб |
077 Udemy_Voting_Example_Implementation.ipynb |
23.74Кб |
081 Bitcoin_data_analysis.ipynb |
79.55Кб |
081 BTC-USD.csv |
30.92Кб |
083 Udemy_Simple_Bitcoin_Prediction_Implementation.ipynb |
29.07Кб |
084 Udemy_Simulator_Implemetation.ipynb |
4.86Кб |
085 Udemy_Voting_Implementation_for_bitcoin_price_Prediction.ipynb |
28.87Кб |
086 Udemy_Stacking_Implementation_for_bitcoin_price_Prediction.ipynb |
30.14Кб |
087 Udemy_Bagging_Implementation_for_bitcoin_price_Prediction.ipynb |
25.17Кб |
088 Udemy_Boosting_Implementation_for_bitcoin_price_Prediction.ipynb |
55.39Кб |
089 Udemy_Random_Forest_Implementation_for_bitcoin_price_Prediction.ipynb |
25.30Кб |
094 Udemy_Exploratory_data_for_Movie_Recommendation_system.ipynb |
13.52Кб |
095 Creating_a_dot_model_for_Movie_Recommendation_system.ipynb |
13.69Кб |
096 Creating_a_dense_model_for_Movie_Recommendation_system.ipynb |
14.04Кб |
097 Creating_a_stacking_ensemble_for_Movie_Recommendation_system.ipynb |
14.95Кб |
1 |
1.11Кб |
10 |
419.15Кб |
11 |
28.23Кб |
12 |
724.29Кб |
13 |
460.17Кб |
14 |
186.07Кб |
15 |
303.76Кб |
16 |
82.62Кб |
17 |
199.50Кб |
18 |
414.65Кб |
19 |
127.84Кб |
2 |
588.54Кб |
20 |
59.81Кб |
21 |
591.52Кб |
22 |
2.86Кб |
23 |
814.54Кб |
24 |
111.72Кб |
25 |
769.08Кб |
26 |
48.96Кб |
27 |
452.17Кб |
28 |
104.85Кб |
29 |
645.82Кб |
3 |
786.98Кб |
30 |
925.43Кб |
31 |
460б |
32 |
939.50Кб |
33 |
886.27Кб |
34 |
421.22Кб |
35 |
673.45Кб |
36 |
243.70Кб |
37 |
143.77Кб |
38 |
349.11Кб |
39 |
252.79Кб |
4 |
366.52Кб |
40 |
355.08Кб |
41 |
840.58Кб |
42 |
809.75Кб |
43 |
377.55Кб |
44 |
509.02Кб |
45 |
617.14Кб |
46 |
642.32Кб |
47 |
289.30Кб |
48 |
827.12Кб |
49 |
535.90Кб |
5 |
582.92Кб |
50 |
706.16Кб |
51 |
681.76Кб |
52 |
604.63Кб |
53 |
993.09Кб |
54 |
757.60Кб |
55 |
919.09Кб |
56 |
473.38Кб |
57 |
908.55Кб |
58 |
602.99Кб |
59 |
747.64Кб |
6 |
994.73Кб |
60 |
798.12Кб |
61 |
258.08Кб |
62 |
65.02Кб |
63 |
352.17Кб |
64 |
720.88Кб |
65 |
370.67Кб |
66 |
975.92Кб |
67 |
518.06Кб |
68 |
17.80Кб |
69 |
665.13Кб |
7 |
346.69Кб |
70 |
927.36Кб |
71 |
176.51Кб |
72 |
726.03Кб |
73 |
741.53Кб |
74 |
52.10Кб |
75 |
387.51Кб |
76 |
466.10Кб |
77 |
647.31Кб |
78 |
173.18Кб |
79 |
497.17Кб |
8 |
823.92Кб |
80 |
518.41Кб |
81 |
70.15Кб |
82 |
991.12Кб |
83 |
466.92Кб |
84 |
526.95Кб |
85 |
281.94Кб |
86 |
889.31Кб |
87 |
14.94Кб |
88 |
56.36Кб |
89 |
773.01Кб |
9 |
717.57Кб |
90 |
139.28Кб |
91 |
373.49Кб |
92 |
656.03Кб |
93 |
816.29Кб |
94 |
216.35Кб |
95 |
368.01Кб |
96 |
952.38Кб |
97 |
742.75Кб |
TutsNode.com.txt |
63б |