Общая информация
Название The Complete Ensemble Learning Course 2021 With Python
Тип
Размер 6.75Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 414б
001 Course structure.en.srt 1.61Кб
001 Course structure.mp4 9.99Мб
001 Introduction to Bagging.en.srt 1.17Кб
001 Introduction to Bagging.mp4 7.79Мб
001 Introduction to Boosting.en.srt 1.51Кб
001 Introduction to Boosting.mp4 9.94Мб
001 Introduction to Stacking Method.en.srt 1.06Кб
001 Introduction to Stacking Method.mp4 6.07Мб
001 Introduction to the clustering.en.srt 1.18Кб
001 Introduction to the clustering.mp4 7.64Мб
001 Introduction to the project.en.srt 1.46Кб
001 Introduction to the project.en.srt 1.30Кб
001 Introduction to the project.mp4 8.86Мб
001 Introduction to the project.mp4 8.64Мб
001 Introduction to the Random Forest.en.srt 1.46Кб
001 Introduction to the Random Forest.mp4 8.36Мб
001 Thank you.en.srt 1.69Кб
001 Thank you.mp4 23.29Мб
001 What is ensemble learning.en.srt 1.78Кб
001 What is ensemble learning.mp4 12.49Мб
001 What is hard and soft voting.en.srt 7.16Кб
001 What is hard and soft voting.mp4 40.10Мб
001 What is machine learning.en.srt 1.43Кб
001 What is machine learning.mp4 10.13Мб
002 Bootstrapping Introduction.en.srt 2.18Кб
002 Bootstrapping Introduction.mp4 27.98Мб
002 Custom hard voting implementation Part 1.en.srt 11.67Кб
002 Custom hard voting implementation Part 1.mp4 158.59Мб
002 Demystifying recommendation systems.en.srt 6.77Кб
002 Demystifying recommendation systems.mp4 48.19Мб
002 Hierarchical and K-means clustering and strengths and weaknesses of K-means.en.srt 6.56Кб
002 Hierarchical and K-means clustering and strengths and weaknesses of K-means.mp4 48.72Мб
002 How To Make The Most Out Of This Course.en.srt 2.54Кб
002 How To Make The Most Out Of This Course.mp4 8.20Мб
002 Introduction to AdaBoost.en.srt 6.72Кб
002 Introduction to AdaBoost.mp4 40.26Мб
002 Introduction to learning from data.en.srt 7.20Кб
002 Introduction to learning from data.mp4 52.50Мб
002 Introduction to Meta-Learning.en.srt 5.72Кб
002 Introduction to Meta-Learning.mp4 39.54Мб
002 Introduction to the time series.en.srt 4.53Кб
002 Introduction to the time series.mp4 29.05Мб
002 Understanding random forest trees.en.srt 8.80Кб
002 Understanding random forest trees.mp4 54.21Мб
002 What is bias_.en.srt 2.76Кб
002 What is bias_.mp4 19.62Мб
003 AdaBoost Implementation Method 1.en.srt 15.37Кб
003 AdaBoost Implementation Method 1.mp4 192.66Мб
003 Bitcoin data analysis Implementation Part 1.en.srt 7.61Кб
003 Bitcoin data analysis Implementation Part 1.mp4 69.86Мб
003 Bootstrapping Implementation.en.srt 7.92Кб
003 Bootstrapping Implementation.mp4 97.37Мб
003 Creating and analysing forests and strengths and weaknesses of Random Forest.en.srt 7.22Кб
003 Creating and analysing forests and strengths and weaknesses of Random Forest.mp4 49.37Мб
003 Custom hard voting implementation Part 2.en.srt 3.73Кб
003 Custom hard voting implementation Part 2.mp4 55.18Мб
003 K-means Implementation Part 1.en.srt 7.51Кб
003 K-means Implementation Part 1.mp4 97.90Мб
003 Neural recommendation systems.en.srt 4.26Кб
003 Neural recommendation systems.mp4 24.83Мб
003 Selecting base learners and meta-learner.en.srt 5.54Кб
003 Selecting base learners and meta-learner.mp4 42.33Мб
003 Some popular machine learning dataset.en.srt 4.87Кб
003 Some popular machine learning dataset.mp4 31.66Мб
003 What is variance and Trade-off_.en.srt 6.14Кб
003 What is variance and Trade-off_.mp4 39.11Мб
003 Who is this course for____.en.srt 1.79Кб
003 Who is this course for____.mp4 10.72Мб
004 AdaBoost Implementation Method 2 for classification.en.srt 9.43Кб
004 AdaBoost Implementation Method 2 for classification.mp4 110.00Мб
004 Analysing our results.en.srt 9.16Кб
004 Analysing our results.mp4 120.60Мб
004 Bitcoin data analysis Implementation Part 2.en.srt 7.40Кб
004 Bitcoin data analysis Implementation Part 2.mp4 41.41Мб
004 Creating base learners for bagging.en.srt 2.51Кб
004 Creating base learners for bagging.mp4 15.49Мб
004 Exploratory analysis.en.srt 5.29Кб
004 Exploratory analysis.mp4 55.65Мб
004 IMPORTANT term.en.srt 11.82Кб
004 IMPORTANT term.mp4 105.89Мб
004 K-means Implementation Part 2.en.srt 8.03Кб
004 K-means Implementation Part 2.mp4 129.81Мб
004 Random forests Implementation for classification.en.srt 6.35Кб
004 Random forests Implementation for classification.mp4 74.76Мб
004 Stacking for regression Implementation.en.srt 22.12Кб
004 Stacking for regression Implementation.mp4 276.32Мб
004 What is Motivation_.en.srt 5.13Кб
004 What is Motivation_.mp4 32.75Мб
004 What is Supervised learning_.en.srt 5.25Кб
004 What is Supervised learning_.mp4 36.41Мб
005 AdaBoost Implementation Method 2 for Regression Solution.en.srt 4.19Кб
005 AdaBoost Implementation Method 2 for Regression Solution.mp4 41.03Мб
005 Creating the dot model.en.srt 16.82Кб
005 Creating the dot model.mp4 197.64Мб
005 Hard voting implementation by Using scikit-learn.en.srt 8.74Кб
005 Hard voting implementation by Using scikit-learn.mp4 105.25Мб
005 IMPORTANT NOTE on tools.en.srt 2.27Кб
005 IMPORTANT NOTE on tools.mp4 5.27Мб
005 K-Means Implementation by using Voting.en.srt 8.84Кб
005 K-Means Implementation by using Voting.mp4 93.00Мб
005 Random forests Implementation for regression.en.srt 6.21Кб
005 Random forests Implementation for regression.mp4 83.08Мб
005 Simple Bitcoin Prediction.en.srt 14.31Кб
005 Simple Bitcoin Prediction.mp4 179.20Мб
005 Stacking for classification Implementation.en.srt 18.75Кб
005 Stacking for classification Implementation.mp4 226.37Мб
005 Strengths and weaknesses of bagging.en.srt 2.51Кб
005 Strengths and weaknesses of bagging.mp4 15.51Мб
005 Validation Curves Implementation.en.srt 15.28Кб
005 Validation Curves Implementation.mp4 197.43Мб
005 What is Unsupervised learning and Dimensionality reduction_.en.srt 5.15Кб
005 What is Unsupervised learning and Dimensionality reduction_.mp4 35.22Мб
006 Bagging Implementation Method 1.en.srt 12.72Кб
006 Bagging Implementation Method 1.mp4 134.70Мб
006 Creating the dense model.en.srt 7.36Кб
006 Creating the dense model.mp4 104.95Мб
006 Extra trees Implementation for classification.en.srt 2.30Кб
006 Extra trees Implementation for classification.mp4 30.30Мб
006 How to measure performance.en.srt 15.07Кб
006 How to measure performance.mp4 101.56Мб
006 Learning Curves Implementation.en.srt 14.31Кб
006 Learning Curves Implementation.mp4 194.03Мб
006 Simulator Implementation.en.srt 11.23Кб
006 Simulator Implementation.mp4 146.55Мб
006 Soft voting implementation by Using scikit-learn.en.srt 11.89Кб
006 Soft voting implementation by Using scikit-learn.mp4 145.82Мб
006 Strengths and weaknesses of AdaBoost.en.srt 2.21Кб
006 Strengths and weaknesses of AdaBoost.mp4 14.93Мб
006 Summary of the section.en.srt 2.70Кб
006 Summary of the section.en.srt 1.46Кб
006 Summary of the section.mp4 18.83Мб
006 Summary of the section.mp4 9.25Мб
007 Analysing our results.en.srt 14.27Кб
007 Analysing our results.mp4 208.29Мб
007 Bagging Implementation Method 2 for classification.en.srt 7.87Кб
007 Bagging Implementation Method 2 for classification.mp4 95.10Мб
007 Creating a stacking ensemble.en.srt 10.37Кб
007 Creating a stacking ensemble.mp4 149.97Мб
007 Extra trees Implementation for regression.en.srt 4.72Кб
007 Extra trees Implementation for regression.mp4 52.40Мб
007 Introduction to Gradient boosting.en.srt 6.61Кб
007 Introduction to Gradient boosting.mp4 115.88Мб
007 Linear Regression Implementation.en.srt 9.35Кб
007 Linear Regression Implementation.mp4 109.20Мб
007 Methods of Ensemble Learning.en.srt 3.76Кб
007 Methods of Ensemble Learning.mp4 28.49Мб
007 Voting Implementation.en.srt 11.64Кб
007 Voting Implementation.mp4 131.92Мб
008 Bagging Implementation Method 2 for regression.en.srt 9.38Кб
008 Bagging Implementation Method 2 for regression.mp4 113.94Мб
008 Challenges in Ensemble Learning.en.srt 8.60Кб
008 Challenges in Ensemble Learning.mp4 52.63Мб
008 Gradient boosting Implementation Method 1.en.srt 12.59Кб
008 Gradient boosting Implementation Method 1.mp4 160.30Мб
008 Logistic Regression Implementation.en.srt 7.98Кб
008 Logistic Regression Implementation.mp4 79.13Мб
008 Stacking Implementation.en.srt 15.08Кб
008 Stacking Implementation.mp4 198.23Мб
008 Summary.en.srt 2.67Кб
008 Summary.en.srt 3.06Кб
008 Summary.mp4 19.54Мб
008 Summary.mp4 19.37Мб
008 Summary of the section.en.srt 3.48Кб
008 Summary of the section.mp4 25.09Мб
009 Bagging Implementation.en.srt 5.60Кб
009 Bagging Implementation.mp4 63.75Мб
009 Gradient boosting Implementation Method 2 For Regression Problem.en.srt 7.42Кб
009 Gradient boosting Implementation Method 2 For Regression Problem.mp4 76.34Мб
009 Summary of the section.en.srt 3.75Кб
009 Summary of the section.en.srt 3.18Кб
009 Summary of the section.mp4 31.94Мб
009 Summary of the section.mp4 21.95Мб
009 Support vector machines.en.srt 3.49Кб
009 Support vector machines.mp4 25.35Мб
010 Boosting Implementation.en.srt 5.94Кб
010 Boosting Implementation.mp4 78.59Мб
010 Gradient boosting Implementation Method 2 For Classification Problem.en.srt 4.52Кб
010 Gradient boosting Implementation Method 2 For Classification Problem.mp4 29.64Мб
010 What is Neural networks.en.srt 5.92Кб
010 What is Neural networks.mp4 43.31Мб
011 Random Forest Implementation.en.srt 6.37Кб
011 Random Forest Implementation.mp4 66.66Мб
011 What is Decision trees.en.srt 6.00Кб
011 What is Decision trees.mp4 36.27Мб
011 XGBoost Introduction and Implementation for Regression.en.srt 9.17Кб
011 XGBoost Introduction and Implementation for Regression.mp4 112.42Мб
012 Summary of the project.en.srt 2.12Кб
012 Summary of the project.mp4 14.03Мб
012 Udemy_Linear_Regression_Model_Implementation.ipynb 4.19Кб
012 What is K-Nearest Neighbors.en.srt 1.80Кб
012 What is K-Nearest Neighbors.mp4 12.54Мб
012 XGBoost Introduction and Implementation for Classification.en.srt 4.28Кб
012 XGBoost Introduction and Implementation for Classification.mp4 46.48Мб
013 K-means Implementation.en.srt 12.13Кб
013 K-means Implementation.mp4 149.29Мб
013 Summary.en.srt 3.61Кб
013 Summary.mp4 23.28Мб
013 Udemy_Logistic_Regression_Implementation.ipynb 5.46Кб
014 Summary of the section.en.srt 1.21Кб
014 Summary of the section.mp4 5.10Мб
018 Udemy_K_Means_Implementation.ipynb 29.98Кб
024 Validation_Curves_Implementation.ipynb 104.25Кб
025 Udemy_Learning_Curves_Implementation.ipynb 34.10Кб
030 Udemy_Hard_Voting_Implementation.ipynb 7.09Кб
031 Udemy_Hard_Voting_Implementation (1).ipynb 9.04Кб
032 Udemy_Hard_Voting_Implementation (2).ipynb 28.88Кб
033 Udemy_Hard_voting_implementation_by_Using_scikit_learn.ipynb 6.87Кб
034 Udemy_Soft_voting_implementation_by_Using_scikit_learn.ipynb 6.66Кб
035 Udemy_Soft_voting_implementation_by_Using_scikit_learn.ipynb 27.59Кб
040 Udemy_Stacking_for_regression_Implementation.ipynb 9.38Кб
041 Udemy_Stacking_for_classification_Implementation.ipynb 8.65Кб
045 Udemy_Bootstrapping_Implementation.ipynb 16.98Кб
048 Udemy_Bagging_implementatio_Method_1.ipynb 7.33Кб
049 Udemy_Bagging_implementation_Method_2_for_classification.ipynb 4.64Кб
050 Udemy_Bagging_implementation_Method_2_for_regression.ipynb 4.87Кб
054 Udemy_AdaBoosting_Implementation.ipynb 7.51Кб
055 Udemy_AdaBoost_Method_2_Implementation_for_classification.ipynb 6.22Кб
056 Udemy_AdaBoost_Method_2_Implementation_for_Regression.ipynb 3.48Кб
058 Udemy_Gradient_Boosting_Introduction_and_implementation.ipynb 3.56Кб
059 Udemy_Gradient_Boosting_Introduction_and_implementation (1).ipynb 9.76Кб
061 Udemy_Gradient_Boosting_implementation_Method_2_for_Classification.ipynb 3.20Кб
062 Udemy_XGBoost_Implementation_for_Regression.ipynb 4.57Кб
063 Udemy_XGBoost_Implementation_for_Classification.ipynb 3.96Кб
068 Udemy_Random_forests_Implementation_for_classification.ipynb 5.14Кб
069 Udemy_Random_forests_Implementation_for_Regression.ipynb 5.54Кб
070 Udemy_Extra_Trees_Implementation_for_classification.ipynb 4.72Кб
071 Udemy_Extra_Trees_Implementation_for_Regression.ipynb 4.66Кб
076 Udemy_K_Means_Clustering_Implementation_with_Scikit_Learn.ipynb 60.91Кб
077 Udemy_Voting_Example_Implementation.ipynb 23.74Кб
081 Bitcoin_data_analysis.ipynb 79.55Кб
081 BTC-USD.csv 30.92Кб
083 Udemy_Simple_Bitcoin_Prediction_Implementation.ipynb 29.07Кб
084 Udemy_Simulator_Implemetation.ipynb 4.86Кб
085 Udemy_Voting_Implementation_for_bitcoin_price_Prediction.ipynb 28.87Кб
086 Udemy_Stacking_Implementation_for_bitcoin_price_Prediction.ipynb 30.14Кб
087 Udemy_Bagging_Implementation_for_bitcoin_price_Prediction.ipynb 25.17Кб
088 Udemy_Boosting_Implementation_for_bitcoin_price_Prediction.ipynb 55.39Кб
089 Udemy_Random_Forest_Implementation_for_bitcoin_price_Prediction.ipynb 25.30Кб
094 Udemy_Exploratory_data_for_Movie_Recommendation_system.ipynb 13.52Кб
095 Creating_a_dot_model_for_Movie_Recommendation_system.ipynb 13.69Кб
096 Creating_a_dense_model_for_Movie_Recommendation_system.ipynb 14.04Кб
097 Creating_a_stacking_ensemble_for_Movie_Recommendation_system.ipynb 14.95Кб
1 1.11Кб
10 419.15Кб
11 28.23Кб
12 724.29Кб
13 460.17Кб
14 186.07Кб
15 303.76Кб
16 82.62Кб
17 199.50Кб
18 414.65Кб
19 127.84Кб
2 588.54Кб
20 59.81Кб
21 591.52Кб
22 2.86Кб
23 814.54Кб
24 111.72Кб
25 769.08Кб
26 48.96Кб
27 452.17Кб
28 104.85Кб
29 645.82Кб
3 786.98Кб
30 925.43Кб
31 460б
32 939.50Кб
33 886.27Кб
34 421.22Кб
35 673.45Кб
36 243.70Кб
37 143.77Кб
38 349.11Кб
39 252.79Кб
4 366.52Кб
40 355.08Кб
41 840.58Кб
42 809.75Кб
43 377.55Кб
44 509.02Кб
45 617.14Кб
46 642.32Кб
47 289.30Кб
48 827.12Кб
49 535.90Кб
5 582.92Кб
50 706.16Кб
51 681.76Кб
52 604.63Кб
53 993.09Кб
54 757.60Кб
55 919.09Кб
56 473.38Кб
57 908.55Кб
58 602.99Кб
59 747.64Кб
6 994.73Кб
60 798.12Кб
61 258.08Кб
62 65.02Кб
63 352.17Кб
64 720.88Кб
65 370.67Кб
66 975.92Кб
67 518.06Кб
68 17.80Кб
69 665.13Кб
7 346.69Кб
70 927.36Кб
71 176.51Кб
72 726.03Кб
73 741.53Кб
74 52.10Кб
75 387.51Кб
76 466.10Кб
77 647.31Кб
78 173.18Кб
79 497.17Кб
8 823.92Кб
80 518.41Кб
81 70.15Кб
82 991.12Кб
83 466.92Кб
84 526.95Кб
85 281.94Кб
86 889.31Кб
87 14.94Кб
88 56.36Кб
89 773.01Кб
9 717.57Кб
90 139.28Кб
91 373.49Кб
92 656.03Кб
93 816.29Кб
94 216.35Кб
95 368.01Кб
96 952.38Кб
97 742.75Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Бразилия (BR) 1
Всего 1
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент