Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
223б |
1 |
64.08Кб |
1.1 Data_Set.csv |
580б |
1.1 Python Source Codes.zip |
7.46Кб |
1. Course Content.mp4 |
17.07Мб |
1. Course Content.srt |
6.43Кб |
1. Introduction.mp4 |
38.11Мб |
1. Introduction.mp4 |
17.03Мб |
1. Introduction.srt |
8.33Кб |
1. Introduction.srt |
4.69Кб |
1. Learning Types.mp4 |
45.44Мб |
1. Learning Types.srt |
8.92Кб |
1. Python Source Codes.html |
368б |
1. Reading and Modifying a Dataset.mp4 |
154.55Мб |
1. Reading and Modifying a Dataset.srt |
22.19Кб |
1. Simple and Multiple Linear Regression Concepts.mp4 |
212.19Мб |
1. Simple and Multiple Linear Regression Concepts.srt |
31.21Кб |
1. Supervised Learning Models - Introduction and Understanding the Data.mp4 |
233.75Мб |
1. Supervised Learning Models - Introduction and Understanding the Data.srt |
33.14Кб |
10 |
131.15Кб |
10.1 Data_New.csv |
201б |
10. Concatenation.mp4 |
65.88Мб |
10. Concatenation.srt |
8.05Кб |
10. Hierarchical Clustering Model Development.mp4 |
145.89Мб |
10. Hierarchical Clustering Model Development.srt |
17.64Кб |
10. Logistic Regression Concepts.mp4 |
10.85Мб |
10. Logistic Regression Concepts.srt |
3.45Кб |
10. Pandas3.mp4 |
117.83Мб |
10. Pandas3.srt |
16.64Кб |
10. Support Vector Regression Model Development.mp4 |
121.01Мб |
10. Support Vector Regression Model Development.srt |
11.43Кб |
11 |
985.44Кб |
11.1 Data_Set.csv |
580б |
11. Chapter 6 Quiz.html |
160б |
11. Chapter 7 Quiz.html |
160б |
11. Dummy Variable.mp4 |
57.59Мб |
11. Dummy Variable.srt |
7.90Кб |
11. Logistic Regression Model Development.mp4 |
112.12Мб |
11. Logistic Regression Model Development.srt |
11.95Кб |
11. Pandas4.mp4 |
203.04Мб |
11. Pandas4.srt |
26.69Кб |
12 |
104.56Кб |
12. Model Evaluation Concepts.mp4 |
83.47Мб |
12. Model Evaluation Concepts.srt |
19.29Кб |
12. Normalization.mp4 |
186.87Мб |
12. Normalization.srt |
21.92Кб |
12. Visualization with Matplotlib1.mp4 |
99.45Мб |
12. Visualization with Matplotlib1.srt |
16.05Кб |
13 |
456.95Кб |
13. Chapter3 Quiz.html |
160б |
13. Model Evaluation - Calculating with Python.mp4 |
174.04Мб |
13. Model Evaluation - Calculating with Python.srt |
19.93Кб |
13. Visualization with Matplotlib2.mp4 |
205.24Мб |
13. Visualization with Matplotlib2.srt |
25.65Кб |
14 |
369.49Кб |
14. Chapter 5 Quiz.html |
160б |
14. Visualization with Matplotlib3.mp4 |
188.84Мб |
14. Visualization with Matplotlib3.srt |
19.60Кб |
15 |
117.64Кб |
15. Visualization with Matplotlib4.mp4 |
142.99Мб |
15. Visualization with Matplotlib4.srt |
17.28Кб |
16 |
14.96Кб |
16. Visualization with Matplotlib5.mp4 |
129.25Мб |
16. Visualization with Matplotlib5.srt |
14.44Кб |
17 |
354.56Кб |
17. Chapter 2 Quiz.html |
160б |
18 |
514.20Кб |
19 |
372.05Кб |
2 |
597.38Кб |
2. Chapter 4 Quiz.html |
160б |
2. K-means Concepts1.mp4 |
44.53Мб |
2. K-means Concepts1.srt |
11.27Кб |
2. k-NN Concepts.mp4 |
48.03Мб |
2. k-NN Concepts.srt |
11.54Кб |
2. Multiple Linear Regression - Model Development.mp4 |
75.59Мб |
2. Multiple Linear Regression - Model Development.srt |
8.72Кб |
2. NumPy1.mp4 |
37.49Мб |
2. NumPy1.srt |
8.21Кб |
2. Statistics1.mp4 |
34.04Мб |
2. Statistics1.srt |
10.14Кб |
2. Support Vector Regression - Model Tuning.mp4 |
125.61Мб |
2. Support Vector Regression - Model Tuning.srt |
13.57Кб |
2. What is Machine Learning Some Basic Terms.mp4 |
25.82Мб |
2. What is Machine Learning Some Basic Terms.srt |
7.11Кб |
20 |
335.04Кб |
21 |
364.95Кб |
22 |
771.31Кб |
23 |
395.45Кб |
24 |
1017.13Кб |
25 |
176.89Кб |
26 |
60.81Кб |
27 |
896.22Кб |
28 |
532.84Кб |
29 |
175.81Кб |
3 |
639.27Кб |
3. Evaluation Metrics - Concepts.mp4 |
49.47Мб |
3. Evaluation Metrics - Concepts.srt |
12.64Кб |
3. K-means Concepts2.mp4 |
21.28Мб |
3. K-means Concepts2.srt |
7.15Кб |
3. K-Means - Model Tuning.mp4 |
15.30Мб |
3. K-Means - Model Tuning.srt |
2.57Кб |
3. k-NN Model Development.mp4 |
140.65Мб |
3. k-NN Model Development.srt |
16.51Кб |
3. NumPy2.mp4 |
56.91Мб |
3. NumPy2.srt |
9.70Кб |
3. Python Installation.html |
612б |
3. Statistics2.mp4 |
207.49Мб |
3. Statistics2.srt |
21.92Кб |
30 |
612.61Кб |
31 |
568.13Кб |
32 |
402.17Кб |
33 |
136.11Кб |
34 |
493.06Кб |
35 |
543.39Кб |
36 |
423.61Кб |
37 |
823.73Кб |
38 |
936.88Кб |
39 |
226.93Кб |
4 |
829.67Кб |
4. Evaluation Metrics - Implementation.mp4 |
159.90Мб |
4. Evaluation Metrics - Implementation.srt |
18.25Кб |
4. K-means Model Development1.mp4 |
35.98Мб |
4. K-means Model Development1.srt |
5.20Кб |
4. k-NN - Model Tuning.mp4 |
133.64Мб |
4. k-NN - Model Tuning.srt |
13.05Кб |
4. k-NN Training-Set and Test-Set Creation.mp4 |
228.42Мб |
4. k-NN Training-Set and Test-Set Creation.srt |
27.76Кб |
4. NumPy3.mp4 |
84.52Мб |
4. NumPy3.srt |
13.58Кб |
4. Python IDE.mp4 |
7.51Мб |
4. Python IDE.srt |
2.75Кб |
4. Statistics3 - Covariance.mp4 |
107.48Мб |
4. Statistics3 - Covariance.srt |
15.72Кб |
40 |
168.06Кб |
41 |
118.17Кб |
42 |
792.39Кб |
43 |
54.35Кб |
44 |
421.34Кб |
45 |
95.78Кб |
46 |
454.46Кб |
47 |
371.17Кб |
48 |
542.38Кб |
49 |
992.18Кб |
5 |
523.76Кб |
5. Decision Tree Concepts.mp4 |
25.62Мб |
5. Decision Tree Concepts.srt |
7.59Кб |
5. IDE Installation.mp4 |
22.28Мб |
5. IDE Installation.srt |
3.25Кб |
5. K-means Model Development2.mp4 |
103.83Мб |
5. K-means Model Development2.srt |
13.80Кб |
5. Missing Values1.mp4 |
129.64Мб |
5. Missing Values1.srt |
14.43Кб |
5. NumPy4.mp4 |
56.56Мб |
5. NumPy4.srt |
7.69Кб |
5. Overfitting and Underfitting.mp4 |
72.09Мб |
5. Overfitting and Underfitting.srt |
11.20Кб |
5. Polynomial Linear Regression Concepts.mp4 |
26.39Мб |
5. Polynomial Linear Regression Concepts.srt |
6.67Кб |
50 |
659.67Кб |
51 |
572.71Кб |
52 |
480.89Кб |
53 |
911.41Кб |
54 |
525.12Кб |
55 |
23.54Кб |
56 |
983.26Кб |
57 |
1011.74Кб |
58 |
787.03Кб |
59 |
34.76Кб |
6 |
47.10Кб |
6. Decision Tree Model Development.mp4 |
66.84Мб |
6. Decision Tree Model Development.srt |
7.03Кб |
6. Installation of Required Libraries.mp4 |
70.78Мб |
6. Installation of Required Libraries.srt |
8.57Кб |
6. K-means - Model Evaluation.mp4 |
102.40Мб |
6. K-means - Model Evaluation.srt |
11.55Кб |
6. Missing Values2.mp4 |
219.38Мб |
6. Missing Values2.srt |
22.39Кб |
6. NumPy5.mp4 |
152.64Мб |
6. NumPy5.srt |
19.13Кб |
6. Polynomial Linear Regression Model Development.mp4 |
206.95Мб |
6. Polynomial Linear Regression Model Development.srt |
20.75Кб |
60 |
153.80Кб |
61 |
623.59Кб |
62 |
187.14Кб |
63 |
385.19Кб |
64 |
727.56Кб |
65 |
742.36Кб |
66 |
740.95Кб |
67 |
952.60Кб |
68 |
989.22Кб |
69 |
719.46Кб |
7 |
780.14Кб |
7. DBSCAN Concepts.mp4 |
26.85Мб |
7. DBSCAN Concepts.srt |
6.28Кб |
7. Decision Tree - Cross Validation.mp4 |
54.64Мб |
7. Decision Tree - Cross Validation.srt |
9.69Кб |
7. NumPy6.mp4 |
134.50Мб |
7. NumPy6.srt |
18.48Кб |
7. Outlier Detection1.mp4 |
73.20Мб |
7. Outlier Detection1.srt |
13.32Кб |
7. Random Forest Concepts.mp4 |
30.23Мб |
7. Random Forest Concepts.srt |
7.43Кб |
7. Spyder Interface.mp4 |
46.36Мб |
7. Spyder Interface.srt |
8.94Кб |
70 |
150.04Кб |
8 |
984.79Кб |
8. DBSCAN Model Development.mp4 |
86.87Мб |
8. DBSCAN Model Development.srt |
10.41Кб |
8. Naive Bayes Concepts.mp4 |
59.23Мб |
8. Naive Bayes Concepts.srt |
16.27Кб |
8. Outlier Detection2.mp4 |
130.67Мб |
8. Outlier Detection2.srt |
15.18Кб |
8. Pandas1.mp4 |
95.61Мб |
8. Pandas1.srt |
17.33Кб |
8. Random Forest Model Development.mp4 |
246.24Мб |
8. Random Forest Model Development.srt |
24.62Кб |
9 |
158.77Кб |
9. Hierarchical Clustering Concepts.mp4 |
24.29Мб |
9. Hierarchical Clustering Concepts.srt |
6.53Кб |
9. Naive Bayes Model Development.mp4 |
58.95Мб |
9. Naive Bayes Model Development.srt |
6.84Кб |
9. Outlier Detection3.mp4 |
31.01Мб |
9. Outlier Detection3.srt |
3.55Кб |
9. Pandas2.mp4 |
116.94Мб |
9. Pandas2.srt |
17.33Кб |
9. Support Vector Regression Concepts.mp4 |
26.97Мб |
9. Support Vector Regression Concepts.srt |
7.50Кб |
TutsNode.com.txt |
63б |