Общая информация
Название Machine Learning & Data Science A-Z Hands-on Python 2021
Тип
Размер 6.77Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 223б
1 64.08Кб
1.1 Data_Set.csv 580б
1.1 Python Source Codes.zip 7.46Кб
1. Course Content.mp4 17.07Мб
1. Course Content.srt 6.43Кб
1. Introduction.mp4 38.11Мб
1. Introduction.mp4 17.03Мб
1. Introduction.srt 8.33Кб
1. Introduction.srt 4.69Кб
1. Learning Types.mp4 45.44Мб
1. Learning Types.srt 8.92Кб
1. Python Source Codes.html 368б
1. Reading and Modifying a Dataset.mp4 154.55Мб
1. Reading and Modifying a Dataset.srt 22.19Кб
1. Simple and Multiple Linear Regression Concepts.mp4 212.19Мб
1. Simple and Multiple Linear Regression Concepts.srt 31.21Кб
1. Supervised Learning Models - Introduction and Understanding the Data.mp4 233.75Мб
1. Supervised Learning Models - Introduction and Understanding the Data.srt 33.14Кб
10 131.15Кб
10.1 Data_New.csv 201б
10. Concatenation.mp4 65.88Мб
10. Concatenation.srt 8.05Кб
10. Hierarchical Clustering Model Development.mp4 145.89Мб
10. Hierarchical Clustering Model Development.srt 17.64Кб
10. Logistic Regression Concepts.mp4 10.85Мб
10. Logistic Regression Concepts.srt 3.45Кб
10. Pandas3.mp4 117.83Мб
10. Pandas3.srt 16.64Кб
10. Support Vector Regression Model Development.mp4 121.01Мб
10. Support Vector Regression Model Development.srt 11.43Кб
11 985.44Кб
11.1 Data_Set.csv 580б
11. Chapter 6 Quiz.html 160б
11. Chapter 7 Quiz.html 160б
11. Dummy Variable.mp4 57.59Мб
11. Dummy Variable.srt 7.90Кб
11. Logistic Regression Model Development.mp4 112.12Мб
11. Logistic Regression Model Development.srt 11.95Кб
11. Pandas4.mp4 203.04Мб
11. Pandas4.srt 26.69Кб
12 104.56Кб
12. Model Evaluation Concepts.mp4 83.47Мб
12. Model Evaluation Concepts.srt 19.29Кб
12. Normalization.mp4 186.87Мб
12. Normalization.srt 21.92Кб
12. Visualization with Matplotlib1.mp4 99.45Мб
12. Visualization with Matplotlib1.srt 16.05Кб
13 456.95Кб
13. Chapter3 Quiz.html 160б
13. Model Evaluation - Calculating with Python.mp4 174.04Мб
13. Model Evaluation - Calculating with Python.srt 19.93Кб
13. Visualization with Matplotlib2.mp4 205.24Мб
13. Visualization with Matplotlib2.srt 25.65Кб
14 369.49Кб
14. Chapter 5 Quiz.html 160б
14. Visualization with Matplotlib3.mp4 188.84Мб
14. Visualization with Matplotlib3.srt 19.60Кб
15 117.64Кб
15. Visualization with Matplotlib4.mp4 142.99Мб
15. Visualization with Matplotlib4.srt 17.28Кб
16 14.96Кб
16. Visualization with Matplotlib5.mp4 129.25Мб
16. Visualization with Matplotlib5.srt 14.44Кб
17 354.56Кб
17. Chapter 2 Quiz.html 160б
18 514.20Кб
19 372.05Кб
2 597.38Кб
2. Chapter 4 Quiz.html 160б
2. K-means Concepts1.mp4 44.53Мб
2. K-means Concepts1.srt 11.27Кб
2. k-NN Concepts.mp4 48.03Мб
2. k-NN Concepts.srt 11.54Кб
2. Multiple Linear Regression - Model Development.mp4 75.59Мб
2. Multiple Linear Regression - Model Development.srt 8.72Кб
2. NumPy1.mp4 37.49Мб
2. NumPy1.srt 8.21Кб
2. Statistics1.mp4 34.04Мб
2. Statistics1.srt 10.14Кб
2. Support Vector Regression - Model Tuning.mp4 125.61Мб
2. Support Vector Regression - Model Tuning.srt 13.57Кб
2. What is Machine Learning Some Basic Terms.mp4 25.82Мб
2. What is Machine Learning Some Basic Terms.srt 7.11Кб
20 335.04Кб
21 364.95Кб
22 771.31Кб
23 395.45Кб
24 1017.13Кб
25 176.89Кб
26 60.81Кб
27 896.22Кб
28 532.84Кб
29 175.81Кб
3 639.27Кб
3. Evaluation Metrics - Concepts.mp4 49.47Мб
3. Evaluation Metrics - Concepts.srt 12.64Кб
3. K-means Concepts2.mp4 21.28Мб
3. K-means Concepts2.srt 7.15Кб
3. K-Means - Model Tuning.mp4 15.30Мб
3. K-Means - Model Tuning.srt 2.57Кб
3. k-NN Model Development.mp4 140.65Мб
3. k-NN Model Development.srt 16.51Кб
3. NumPy2.mp4 56.91Мб
3. NumPy2.srt 9.70Кб
3. Python Installation.html 612б
3. Statistics2.mp4 207.49Мб
3. Statistics2.srt 21.92Кб
30 612.61Кб
31 568.13Кб
32 402.17Кб
33 136.11Кб
34 493.06Кб
35 543.39Кб
36 423.61Кб
37 823.73Кб
38 936.88Кб
39 226.93Кб
4 829.67Кб
4. Evaluation Metrics - Implementation.mp4 159.90Мб
4. Evaluation Metrics - Implementation.srt 18.25Кб
4. K-means Model Development1.mp4 35.98Мб
4. K-means Model Development1.srt 5.20Кб
4. k-NN - Model Tuning.mp4 133.64Мб
4. k-NN - Model Tuning.srt 13.05Кб
4. k-NN Training-Set and Test-Set Creation.mp4 228.42Мб
4. k-NN Training-Set and Test-Set Creation.srt 27.76Кб
4. NumPy3.mp4 84.52Мб
4. NumPy3.srt 13.58Кб
4. Python IDE.mp4 7.51Мб
4. Python IDE.srt 2.75Кб
4. Statistics3 - Covariance.mp4 107.48Мб
4. Statistics3 - Covariance.srt 15.72Кб
40 168.06Кб
41 118.17Кб
42 792.39Кб
43 54.35Кб
44 421.34Кб
45 95.78Кб
46 454.46Кб
47 371.17Кб
48 542.38Кб
49 992.18Кб
5 523.76Кб
5. Decision Tree Concepts.mp4 25.62Мб
5. Decision Tree Concepts.srt 7.59Кб
5. IDE Installation.mp4 22.28Мб
5. IDE Installation.srt 3.25Кб
5. K-means Model Development2.mp4 103.83Мб
5. K-means Model Development2.srt 13.80Кб
5. Missing Values1.mp4 129.64Мб
5. Missing Values1.srt 14.43Кб
5. NumPy4.mp4 56.56Мб
5. NumPy4.srt 7.69Кб
5. Overfitting and Underfitting.mp4 72.09Мб
5. Overfitting and Underfitting.srt 11.20Кб
5. Polynomial Linear Regression Concepts.mp4 26.39Мб
5. Polynomial Linear Regression Concepts.srt 6.67Кб
50 659.67Кб
51 572.71Кб
52 480.89Кб
53 911.41Кб
54 525.12Кб
55 23.54Кб
56 983.26Кб
57 1011.74Кб
58 787.03Кб
59 34.76Кб
6 47.10Кб
6. Decision Tree Model Development.mp4 66.84Мб
6. Decision Tree Model Development.srt 7.03Кб
6. Installation of Required Libraries.mp4 70.78Мб
6. Installation of Required Libraries.srt 8.57Кб
6. K-means - Model Evaluation.mp4 102.40Мб
6. K-means - Model Evaluation.srt 11.55Кб
6. Missing Values2.mp4 219.38Мб
6. Missing Values2.srt 22.39Кб
6. NumPy5.mp4 152.64Мб
6. NumPy5.srt 19.13Кб
6. Polynomial Linear Regression Model Development.mp4 206.95Мб
6. Polynomial Linear Regression Model Development.srt 20.75Кб
60 153.80Кб
61 623.59Кб
62 187.14Кб
63 385.19Кб
64 727.56Кб
65 742.36Кб
66 740.95Кб
67 952.60Кб
68 989.22Кб
69 719.46Кб
7 780.14Кб
7. DBSCAN Concepts.mp4 26.85Мб
7. DBSCAN Concepts.srt 6.28Кб
7. Decision Tree - Cross Validation.mp4 54.64Мб
7. Decision Tree - Cross Validation.srt 9.69Кб
7. NumPy6.mp4 134.50Мб
7. NumPy6.srt 18.48Кб
7. Outlier Detection1.mp4 73.20Мб
7. Outlier Detection1.srt 13.32Кб
7. Random Forest Concepts.mp4 30.23Мб
7. Random Forest Concepts.srt 7.43Кб
7. Spyder Interface.mp4 46.36Мб
7. Spyder Interface.srt 8.94Кб
70 150.04Кб
8 984.79Кб
8. DBSCAN Model Development.mp4 86.87Мб
8. DBSCAN Model Development.srt 10.41Кб
8. Naive Bayes Concepts.mp4 59.23Мб
8. Naive Bayes Concepts.srt 16.27Кб
8. Outlier Detection2.mp4 130.67Мб
8. Outlier Detection2.srt 15.18Кб
8. Pandas1.mp4 95.61Мб
8. Pandas1.srt 17.33Кб
8. Random Forest Model Development.mp4 246.24Мб
8. Random Forest Model Development.srt 24.62Кб
9 158.77Кб
9. Hierarchical Clustering Concepts.mp4 24.29Мб
9. Hierarchical Clustering Concepts.srt 6.53Кб
9. Naive Bayes Model Development.mp4 58.95Мб
9. Naive Bayes Model Development.srt 6.84Кб
9. Outlier Detection3.mp4 31.01Мб
9. Outlier Detection3.srt 3.55Кб
9. Pandas2.mp4 116.94Мб
9. Pandas2.srt 17.33Кб
9. Support Vector Regression Concepts.mp4 26.97Мб
9. Support Vector Regression Concepts.srt 7.50Кб
TutsNode.com.txt 63б
Статистика распространения по странам
США (US) 2
Россия (RU) 1
Швейцария (CH) 1
Турция (TR) 1
Бангладеш (BD) 1
Колумбия (CO) 1
Бельгия (BE) 1
Франция (FR) 1
Всего 9
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент