Общая информация
Название Udacity - Data Scientist Nanodegree nd025 v1.0.0
Тип
Размер 7.80Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
._04. Possible Projects.html 4.00Кб
._index.html 4.00Кб
01. 01 Intro-4C4PuJANIdE.en.vtt 994б
01. 01 Intro-4C4PuJANIdE.mp4 2.73Мб
01. 01 Intro-4C4PuJANIdE.pt-BR.vtt 945б
01. 01 Intro-4C4PuJANIdE.zh-CN.vtt 922б
01. 01 Intro V1 2 V4-iW4uqhfRk10.en.vtt 1.92Кб
01. 01 Intro V1 2 V4-iW4uqhfRk10.mp4 5.59Мб
01. 01 Intro V1 2 V4-iW4uqhfRk10.pt-BR.vtt 2.17Кб
01. 01 Intro V1 V3-Zl_es7xtSqk.en.vtt 806б
01. 01 Intro V1 V3-Zl_es7xtSqk.mp4 2.87Мб
01. 01 Intro V1 V3-Zl_es7xtSqk.pt-BR.vtt 1.07Кб
01. 01 Welcome V1 V2-Ykd7CN5dDx0.en.vtt 2.39Кб
01. 01 Welcome V1 V2-Ykd7CN5dDx0.mp4 8.36Мб
01. 01 Welcome V1 V2-Ykd7CN5dDx0.pt-BR.vtt 2.69Кб
01. 04 L Types Of Errors-Twf1qnPZeSY.en-US.vtt 6.89Кб
01. 04 L Types Of Errors-Twf1qnPZeSY.mp4 6.55Мб
01. 04 L Types Of Errors-Twf1qnPZeSY.pt-BR.vtt 6.23Кб
01. 04 L Types Of Errors-Twf1qnPZeSY.zh-CN.vtt 6.02Кб
01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt 1.14Кб
01. 26 Spread Part 1-zb76Z_viYLY.en.vtt 898б
01. 26 Spread Part 1-zb76Z_viYLY.mp4 1.82Мб
01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt 889б
01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt 848б
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt 2.55Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt 2.00Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4 7.48Мб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt 1.77Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt 1.83Кб
01. Admissions Case Study Introduction.html 6.17Кб
01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt 787б
01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt 655б
01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4 2.09Мб
01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt 567б
01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt 566б
01. Announcement.html 7.63Кб
01. A Repository's History - Intro-UBmg3syQS0E.ar.vtt 4.91Кб
01. A Repository's History - Intro-UBmg3syQS0E.en.vtt 3.89Кб
01. A Repository's History - Intro-UBmg3syQS0E.mp4 12.31Мб
01. A Repository's History - Intro-UBmg3syQS0E.pt-BR.vtt 4.13Кб
01. A Repository's History - Intro-UBmg3syQS0E.zh-CN.vtt 3.46Кб
01. Bayes Rule.html 8.72Кб
01. Bayes Rules-CohZnkZMOxE.ar.vtt 896б
01. Bayes Rules-CohZnkZMOxE.en.vtt 714б
01. Bayes Rules-CohZnkZMOxE.es-ES.vtt 746б
01. Bayes Rules-CohZnkZMOxE.it.vtt 767б
01. Bayes Rules-CohZnkZMOxE.ja.vtt 902б
01. Bayes Rules-CohZnkZMOxE.mp4 3.79Мб
01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt 695б
01. Bayes Rules-CohZnkZMOxE.th.vtt 1.00Кб
01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt 633б
01. Binomial.html 7.80Кб
01. Binomial-3koDdc9r73E.ar.vtt 1.09Кб
01. Binomial-3koDdc9r73E.en.vtt 839б
01. Binomial-3koDdc9r73E.es-ES.vtt 885б
01. Binomial-3koDdc9r73E.ja.vtt 835б
01. Binomial-3koDdc9r73E.mp4 4.90Мб
01. Binomial-3koDdc9r73E.pt-BR.vtt 864б
01. Binomial-3koDdc9r73E.zh-CN.vtt 759б
01. Binomial-x1yamZeOMPY.ar.vtt 493б
01. Binomial-x1yamZeOMPY.en.vtt 339б
01. Binomial-x1yamZeOMPY.es-ES.vtt 356б
01. Binomial-x1yamZeOMPY.ja.vtt 326б
01. Binomial-x1yamZeOMPY.mp4 1.93Мб
01. Binomial-x1yamZeOMPY.pt-BR.vtt 362б
01. Binomial-x1yamZeOMPY.zh-CN.vtt 302б
01. Blogging for Data Science-WrvGpRN5XQI.en.vtt 3.92Кб
01. Blogging for Data Science-WrvGpRN5XQI.mp4 25.24Мб
01. Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt 4.01Кб
01. C4 Intro-gXlqR86h0yI.en.vtt 2.47Кб
01. C4 Intro-gXlqR86h0yI.mp4 8.67Мб
01. C4 Intro-gXlqR86h0yI.pt-BR.vtt 2.69Кб
01. Capstone-jewlarqqbTo.en.vtt 3.18Кб
01. Capstone-jewlarqqbTo.mp4 6.19Мб
01. Case Study Introduction-J5uvdPxHIfs.en.vtt 598б
01. Case Study Introduction-J5uvdPxHIfs.mp4 2.13Мб
01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt 735б
01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt 532б
01. Confidence Intervals Introduction-crleT4000ak.en.vtt 1.67Кб
01. Confidence Intervals Introduction-crleT4000ak.mp4 2.78Мб
01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt 1.75Кб
01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt 1.34Кб
01. Congrats!.html 4.89Кб
01. Congrats!-P3MfbMs-D98.en.vtt 2.94Кб
01. Congrats!-P3MfbMs-D98.mp4 13.27Мб
01. Congrats!-P3MfbMs-D98.pt-BR.vtt 3.13Кб
01. Congrats-OTp4YOTDd0Q.en.vtt 1.71Кб
01. Congrats-OTp4YOTDd0Q.mp4 6.35Мб
01. Congratulations!.html 4.40Кб
01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt 3.50Кб
01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 16.45Мб
01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt 3.47Кб
01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt 2.38Кб
01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt 1.82Кб
01. Creating New Repositories - Intro-KT163BkqIeg.mp4 6.80Мб
01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt 1.91Кб
01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt 1.68Кб
01. FAQ.html 5.40Кб
01. FAQ.html 5.40Кб
01. Figure 8 Project-QbLVh5GTuJQ.en.vtt 4.28Кб
01. Figure 8 Project-QbLVh5GTuJQ.mp4 13.64Мб
01. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt 4.42Кб
01. Get Opportunities with LinkedIn.html 10.47Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt 4.78Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt 3.54Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4 8.89Мб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt 3.47Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt 3.20Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt 2.97Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt 2.22Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4 4.39Мб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt 2.28Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt 1.91Кб
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt 617б
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4 2.85Мб
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt 582б
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt 532б
01. IBM Project Overview-XP_f64c07Gc.en.vtt 3.65Кб
01. IBM Project Overview-XP_f64c07Gc.mp4 13.50Мб
01. Instructor.html 5.15Кб
01. Instructor.html 5.86Кб
01. Instructor.html 6.18Кб
01. Instructor.html 8.52Кб
01. Instructors.html 6.52Кб
01. Instructors.html 6.99Кб
01. Instructors Introduction-lIvm8urf4GE.ar.vtt 1.21Кб
01. Instructors Introduction-lIvm8urf4GE.en.vtt 1.01Кб
01. Instructors Introduction-lIvm8urf4GE.mp4 2.88Мб
01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt 953б
01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt 883б
01. Intro.html 5.02Кб
01. Intro.html 5.21Кб
01. Intro.html 5.25Кб
01. Intro.html 5.26Кб
01. Intro.html 5.35Кб
01. Intro.html 5.39Кб
01. Intro.html 5.53Кб
01. Intro.html 5.57Кб
01. Intro.html 5.74Кб
01. Intro.html 6.05Кб
01. Intro.html 6.17Кб
01. Intro.html 6.36Кб
01. Intro.html 6.39Кб
01. Intro.html 6.39Кб
01. Intro.html 6.69Кб
01. Intro.html 6.81Кб
01. Intro.html 7.44Кб
01. Intro.html 7.57Кб
01. Intro-28mN6RvGXDM.en.vtt 1013б
01. Intro-28mN6RvGXDM.mp4 2.61Мб
01. Introduce Instructors.html 8.26Кб
01. Introducing Alexis.html 7.79Кб
01. Introducing Alexis-38ExGpdyvJI.en.vtt 694б
01. Introducing Alexis-38ExGpdyvJI.mp4 2.05Мб
01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt 599б
01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt 615б
01. Introduction.html 5.05Кб
01. Introduction.html 5.05Кб
01. Introduction.html 5.43Кб
01. Introduction.html 5.62Кб
01. Introduction.html 5.63Кб
01. Introduction.html 5.74Кб
01. Introduction.html 5.89Кб
01. Introduction.html 6.30Кб
01. Introduction.html 6.38Кб
01. Introduction.html 6.39Кб
01. Introduction.html 6.61Кб
01. Introduction.html 6.85Кб
01. Introduction.html 7.23Кб
01. Introduction.html 7.50Кб
01. Introduction.html 7.73Кб
01. Introduction.html 8.45Кб
01. Introduction.html 8.90Кб
01. Introduction.html 8.99Кб
01. Introduction.html 9.57Кб
01. Introduction.html 9.66Кб
01. Introduction.html 9.89Кб
01. Introduction.html 10.83Кб
01. Introduction.html 11.76Кб
01. Introduction.html 12.78Кб
01. Introduction.html 13.36Кб
01. Introduction-2Y279421n3A.ar.vtt 1.10Кб
01. Introduction-2Y279421n3A.en.vtt 836б
01. Introduction-2Y279421n3A.mp4 2.42Мб
01. Introduction-2Y279421n3A.pt-BR.vtt 879б
01. Introduction-2Y279421n3A.zh-CN.vtt 736б
01. Introduction-4F7SC0C6tfQ.ar.vtt 3.00Кб
01. Introduction-4F7SC0C6tfQ.en.vtt 2.35Кб
01. Introduction-4F7SC0C6tfQ.mp4 13.27Мб
01. Introduction-4F7SC0C6tfQ.pt-BR.vtt 2.70Кб
01. Introduction-4F7SC0C6tfQ.zh-CN.vtt 2.12Кб
01. Introduction-5DfFaAl1Wmc.en.vtt 1.71Кб
01. Introduction-5DfFaAl1Wmc.mp4 5.34Мб
01. Introduction-5DfFaAl1Wmc.pt-BR.vtt 1.76Кб
01. Introduction-eUrvACMMJ5w.ar.vtt 1.42Кб
01. Introduction-eUrvACMMJ5w.en.vtt 944б
01. Introduction-eUrvACMMJ5w.mp4 5.90Мб
01. Introduction-eUrvACMMJ5w.pt-BR.vtt 1.07Кб
01. Introduction-eUrvACMMJ5w.zh-CN.vtt 862б
01. Introduction-k7YOVTkFRJM.en.vtt 1.17Кб
01. Introduction-k7YOVTkFRJM.mp4 4.28Мб
01. Introduction-k7YOVTkFRJM.pt-BR.vtt 1.17Кб
01. Introduction-LcX-s-ujp7U.en.vtt 641б
01. Introduction-LcX-s-ujp7U.mp4 2.02Мб
01. Introduction-LcX-s-ujp7U.pt-BR.vtt 844б
01. Introduction-p5L4rTV1Pgk.ar.vtt 1.74Кб
01. Introduction-p5L4rTV1Pgk.en.vtt 1.38Кб
01. Introduction-p5L4rTV1Pgk.mp4 8.85Мб
01. Introduction-p5L4rTV1Pgk.pt-BR.vtt 1.51Кб
01. Introduction-p5L4rTV1Pgk.zh-CN.vtt 1.24Кб
01. Introduction-RVcFzwBXI2M.en.vtt 3.19Кб
01. Introduction-RVcFzwBXI2M.mp4 6.36Мб
01. Introduction-RVcFzwBXI2M.pt-BR.vtt 3.41Кб
01. Introduction-SvdlBB-ZjcQ.ar.vtt 1.19Кб
01. Introduction-SvdlBB-ZjcQ.en.vtt 940б
01. Introduction-SvdlBB-ZjcQ.mp4 2.75Мб
01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt 987б
01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt 750б
01. Introduction to Advanced SQL-i0VaVPIKUks.ar.vtt 1.15Кб
01. Introduction to Advanced SQL-i0VaVPIKUks.en.vtt 940б
01. Introduction to Advanced SQL-i0VaVPIKUks.mp4 3.23Мб
01. Introduction to Advanced SQL-i0VaVPIKUks.pt-BR.vtt 825б
01. Introduction to Advanced SQL-i0VaVPIKUks.zh-CN.vtt 944б
01. Introduction to Aggregations-5vRf_Ntoxfw.ar.vtt 3.52Кб
01. Introduction to Aggregations-5vRf_Ntoxfw.en.vtt 2.54Кб
01. Introduction to Aggregations-5vRf_Ntoxfw.mp4 9.24Мб
01. Introduction to Aggregations-5vRf_Ntoxfw.pt-BR.vtt 2.74Кб
01. Introduction to Aggregations-5vRf_Ntoxfw.zh-CN.vtt 2.22Кб
01. Introduction to Conditional Probability.html 6.39Кб
01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt 2.30Кб
01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt 1.73Кб
01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4 6.54Мб
01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt 1.88Кб
01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt 1.53Кб
01. Introduction to Data Cleaning-YTtH3NM2BX0.ar.vtt 1.34Кб
01. Introduction to Data Cleaning-YTtH3NM2BX0.en.vtt 958б
01. Introduction to Data Cleaning-YTtH3NM2BX0.mp4 3.55Мб
01. Introduction to Data Cleaning-YTtH3NM2BX0.pt-BR.vtt 937б
01. Introduction to Data Cleaning-YTtH3NM2BX0.zh-CN.vtt 893б
01. Introduction to Data Visualization.html 6.84Кб
01. Introduction to JOINs-YvZ010GU-Ck.ar.vtt 2.44Кб
01. Introduction to JOINs-YvZ010GU-Ck.en.vtt 1.66Кб
01. Introduction to JOINs-YvZ010GU-Ck.mp4 4.19Мб
01. Introduction to JOINs-YvZ010GU-Ck.pt-BR.vtt 1.77Кб
01. Introduction to JOINs-YvZ010GU-Ck.zh-CN.vtt 1.40Кб
01. Introduction to Logistic Regression-P_f2RjjnPEg.en.vtt 1.66Кб
01. Introduction to Logistic Regression-P_f2RjjnPEg.mp4 10.77Мб
01. Introduction to Logistic Regression-P_f2RjjnPEg.pt-BR.vtt 1.92Кб
01. Introduction to Logistic Regression-P_f2RjjnPEg.zh-CN.vtt 1.42Кб
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.en.vtt 1.39Кб
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.mp4 10.07Мб
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.pt-BR.vtt 1.49Кб
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.zh-CN.vtt 1.17Кб
01. Introduction to Probability.html 6.58Кб
01. Introduction to Probability-HeoQccoqfTk.ar.vtt 1.37Кб
01. Introduction to Probability-HeoQccoqfTk.en.vtt 1.06Кб
01. Introduction to Probability-HeoQccoqfTk.mp4 4.21Мб
01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt 1.24Кб
01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt 949б
01. Introduction To Software Engineering-7kphieW4yl4.en.vtt 3.15Кб
01. Introduction To Software Engineering-7kphieW4yl4.mp4 10.99Мб
01. Introduction To Software Engineering-7kphieW4yl4.pt-BR.vtt 3.50Кб
01. Introduction to the Lesson.html 4.99Кб
01. Introduction to Window Functions-u3qLjP8KMKc.ar.vtt 1.15Кб
01. Introduction to Window Functions-u3qLjP8KMKc.en.vtt 906б
01. Introduction to Window Functions-u3qLjP8KMKc.mp4 3.80Мб
01. Introduction to Window Functions-u3qLjP8KMKc.pt-BR.vtt 935б
01. Introduction to Window Functions-u3qLjP8KMKc.zh-CN.vtt 886б
01. Introduction-tpFPcxoGxaE.en.vtt 1.89Кб
01. Introduction-tpFPcxoGxaE.mp4 4.71Мб
01. Introduction-tpFPcxoGxaE.pt-BR.vtt 1.73Кб
01. Introduction-TRw4bvZuEG8.en.vtt 1.16Кб
01. Introduction-TRw4bvZuEG8.mp4 4.25Мб
01. Introduction-TRw4bvZuEG8.pt-BR.vtt 1.19Кб
01. Introduction-VpxATYHhKM8.en.vtt 700б
01. Introduction-VpxATYHhKM8.mp4 2.23Мб
01. Introduction-VpxATYHhKM8.pt-BR.vtt 767б
01. Introduction-Yg0gBpTzkMo.en.vtt 1.70Кб
01. Introduction-Yg0gBpTzkMo.mp4 6.20Мб
01. Introduction-Yg0gBpTzkMo.pt-BR.vtt 1.81Кб
01. Introduction-Z8WNfx9Oq9s.ar.vtt 2.07Кб
01. Introduction-Z8WNfx9Oq9s.en.vtt 1.35Кб
01. Introduction-Z8WNfx9Oq9s.mp4 5.88Мб
01. Introduction-Z8WNfx9Oq9s.pt-BR.vtt 1.55Кб
01. Introduction-Z8WNfx9Oq9s.zh-CN.vtt 1.30Кб
01. Intro-EBGMcpWe8-U.en.vtt 1.84Кб
01. Intro-EBGMcpWe8-U.mp4 5.54Мб
01. Intro-j5RmK0UHOTY.ar.vtt 1.42Кб
01. Intro-j5RmK0UHOTY.en.vtt 1.07Кб
01. Intro-j5RmK0UHOTY.mp4 3.22Мб
01. Intro-j5RmK0UHOTY.pt-BR.vtt 1.05Кб
01. Intro-j5RmK0UHOTY.zh-CN.vtt 988б
01. Intro-SBUOhyXcR1Q.ar.vtt 3.85Кб
01. Intro-SBUOhyXcR1Q.en.vtt 2.81Кб
01. Intro-SBUOhyXcR1Q.mp4 8.34Мб
01. Intro-SBUOhyXcR1Q.pt-BR.vtt 2.82Кб
01. Intro-SBUOhyXcR1Q.zh-CN.vtt 2.49Кб
01. Intro-svCesgAQ46Q.en.vtt 1.04Кб
01. Intro-svCesgAQ46Q.mp4 3.23Мб
01. Intro to Experiment Design and Recommendation Engines.html 5.11Кб
01. Intro-VkqtlJuZ9rs.ar.vtt 1.28Кб
01. Intro-VkqtlJuZ9rs.en.vtt 1.06Кб
01. Intro-VkqtlJuZ9rs.mp4 3.40Мб
01. Intro-VkqtlJuZ9rs.pt-BR.vtt 1.20Кб
01. Intro-VkqtlJuZ9rs.zh-CN.vtt 946б
01. K-means considerations.html 6.58Кб
01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.mp4 5.07Мб
01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.pt-BR.vtt 2.07Кб
01. L2 011 Intro HD V2-TlpGWQBLG6E.mp4 2.14Мб
01. L2 011 Intro HD V2-TlpGWQBLG6E.pt-BR.vtt 1009б
01. L2 01 Intro V1 V1-z7v7oa--W48.en.vtt 1.22Кб
01. L2 01 Intro V1 V1-z7v7oa--W48.mp4 5.64Мб
01. L2 01 Intro V1 V1-z7v7oa--W48.pt-BR.vtt 1.39Кб
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.en.vtt 685б
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.mp4 2.82Мб
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.pt-BR.vtt 871б
01. L3 011 Intro V3-4BpAF4MYKm8.en.vtt 1.72Кб
01. L3 011 Intro V3-4BpAF4MYKm8.mp4 3.85Мб
01. L3 011 Intro V3-4BpAF4MYKm8.pt-BR.vtt 1.88Кб
01. L3 011 Intro V3-4BpAF4MYKm8.zh-CN.vtt 1.45Кб
01. L4 011 Intro V2-JzvJIWG8Rk4.en.vtt 1.55Кб
01. L4 011 Intro V2-JzvJIWG8Rk4.mp4 3.36Мб
01. L4 011 Intro V2-JzvJIWG8Rk4.pt-BR.vtt 1.63Кб
01. L4 011 Intro V2-JzvJIWG8Rk4.zh-CN.vtt 1.40Кб
01. L4 Intro V2--PGMIIXFCgg.en.vtt 1.95Кб
01. L4 Intro V2--PGMIIXFCgg.mp4 5.88Мб
01. L4 Intro V2--PGMIIXFCgg.pt-BR.vtt 2.20Кб
01. L5 011 Intro V3-ckylQMBXB10.en.vtt 1.80Кб
01. L5 011 Intro V3-ckylQMBXB10.mp4 4.18Мб
01. L5 011 Intro V3-ckylQMBXB10.pt-BR.vtt 1.90Кб
01. L6 011 Intro V1-gLy8qpursJI.mp4 3.91Мб
01. L6 011 Intro V1-gLy8qpursJI.pt-BR.vtt 1.54Кб
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.en.vtt 8.97Кб
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.mp4 9.20Мб
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.pt-BR.vtt 9.28Кб
01. L7 011 Intro V1-Virihwp36do.mp4 1.41Мб
01. L7 011 Intro V1-Virihwp36do.pt-BR.vtt 759б
01. Lesson Introduction.html 5.70Кб
01. Lesson Introduction.html 5.86Кб
01. Lesson Introduction.html 6.03Кб
01. Lesson Introduction-rw3YaQ2CTNQ.mp4 3.03Мб
01. Linear Combination. Part 1.html 5.75Кб
01. Linear Combinations 1-fmal7UE7dEE.en.vtt 6.78Кб
01. Linear Combinations 1-fmal7UE7dEE.mp4 8.30Мб
01. Linear Combinations 1-fmal7UE7dEE.pt-BR.vtt 7.01Кб
01. Linear Combinations 1-fmal7UE7dEE.zh-CN.vtt 5.86Кб
01. Maximum Probability.html 7.79Кб
01. Maximum Probability-5zkupL6EWh8.ar.vtt 607б
01. Maximum Probability-5zkupL6EWh8.en.vtt 486б
01. Maximum Probability-5zkupL6EWh8.es-ES.vtt 529б
01. Maximum Probability-5zkupL6EWh8.ja.vtt 491б
01. Maximum Probability-5zkupL6EWh8.mp4 1.27Мб
01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt 552б
01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt 411б
01. Maximum Probability-b2zvrFL8AUw.ar.vtt 2.71Кб
01. Maximum Probability-b2zvrFL8AUw.en.vtt 2.11Кб
01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt 2.17Кб
01. Maximum Probability-b2zvrFL8AUw.ja.vtt 2.01Кб
01. Maximum Probability-b2zvrFL8AUw.mp4 21.97Мб
01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt 2.58Кб
01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt 1.75Кб
01. Mean Squared Error Function.html 6.07Кб
01. ML Charity Project-aVodYHcOB8U.en.vtt 1.32Кб
01. ML Charity Project-aVodYHcOB8U.mp4 3.99Мб
01. ML Charity Project-aVodYHcOB8U.pt-BR.vtt 1.37Кб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt 4.37Кб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4 21.68Мб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt 4.25Кб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt 4.26Кб
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.en.vtt 3.86Кб
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.mp4 3.38Мб
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.pt-BR.vtt 3.89Кб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.en.vtt 5.01Кб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.mp4 15.47Мб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.pt-BR.vtt 4.56Кб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.zh-CN.vtt 4.69Кб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.en.vtt 2.28Кб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.mp4 8.39Мб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.pt-BR.vtt 2.41Кб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.zh-CN.vtt 2.02Кб
01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt 716б
01. Naive Bayes Intro V2-vNOiQXghgRY.mp4 3.22Мб
01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt 690б
01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt 631б
01. Natural Language Processing-UQBxJzoCp-I.en.vtt 1.17Кб
01. Natural Language Processing-UQBxJzoCp-I.mp4 3.39Мб
01. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt 1.30Кб
01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt 1.03Кб
01. NLP and Pipelines.html 8.08Кб
01. Non-linear Data.html 7.52Кб
01. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633б
01. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14Мб
01. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600б
01. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624б
01. Our Goal .html 5.39Кб
01. Overview.html 6.38Кб
01. Perception Algorithm V2-ebIlG6Pqwas.en.vtt 1.01Кб
01. Perception Algorithm V2-ebIlG6Pqwas.mp4 5.37Мб
01. Perception Algorithm V2-ebIlG6Pqwas.pt-BR.vtt 928б
01. Perception Algorithm V2-ebIlG6Pqwas.zh-CN.vtt 916б
01. Project Intro.html 5.76Кб
01. Project Introduction.html 4.93Кб
01. Project Introduction.html 5.40Кб
01. Project Introduction.html 7.11Кб
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.en.vtt 1.31Кб
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.mp4 2.85Мб
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.pt-BR.vtt 1.45Кб
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.zh-CN.vtt 1.19Кб
01. Project Overview.html 7.08Кб
01. Prove Your Skills With GitHub.html 10.55Кб
01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt 684б
01. Python Probability Introduction-tFMdvAN7WDY.en.vtt 484б
01. Python Probability Introduction-tFMdvAN7WDY.mp4 1.65Мб
01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt 541б
01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt 441б
01. Random Projection.html 6.85Кб
01. Regression Introduction-PKqSS0TzXeA.en.vtt 756б
01. Regression Introduction-PKqSS0TzXeA.mp4 2.16Мб
01. Regression Introduction-PKqSS0TzXeA.pt-BR.vtt 935б
01. Regression Introduction-PKqSS0TzXeA.zh-CN.vtt 643б
01. Scripting-Qxe_gCiXUDg.ar.vtt 885б
01. Scripting-Qxe_gCiXUDg.en.vtt 645б
01. Scripting-Qxe_gCiXUDg.mp4 4.24Мб
01. Scripting-Qxe_gCiXUDg.pt-BR.vtt 810б
01. Scripting-Qxe_gCiXUDg.zh-CN.vtt 569б
01. Shell Intro--EtN5oD8MM0.ar.vtt 5.39Кб
01. Shell Intro--EtN5oD8MM0.en.vtt 4.01Кб
01. Shell Intro--EtN5oD8MM0.mp4 10.76Мб
01. Shell Intro--EtN5oD8MM0.pt-BR.vtt 3.51Кб
01. Shell Intro--EtN5oD8MM0.zh-CN.vtt 3.76Кб
01. Starbucks Lab-QPKRboscAf4.en.vtt 3.27Кб
01. Starbucks Lab-QPKRboscAf4.mp4 16.21Мб
01. Support Vector Machine V2-LBmM6pZCrI0.en.vtt 514б
01. Support Vector Machine V2-LBmM6pZCrI0.mp4 2.42Мб
01. Support Vector Machine V2-LBmM6pZCrI0.pt-BR.vtt 543б
01. Support Vector Machine V2-LBmM6pZCrI0.zh-CN.vtt 432б
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.ar.vtt 2.38Кб
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.en.vtt 1.81Кб
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4 6.59Мб
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.pt-BR.vtt 1.58Кб
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.zh-CN.vtt 1.63Кб
01. Types of Errors.html 6.02Кб
01. Undoing Changes - Intro-Kfi7l41wUVc.ar.vtt 2.44Кб
01. Undoing Changes - Intro-Kfi7l41wUVc.en.vtt 1.86Кб
01. Undoing Changes - Intro-Kfi7l41wUVc.mp4 6.31Мб
01. Undoing Changes - Intro-Kfi7l41wUVc.pt-BR.vtt 1.71Кб
01. Undoing Changes - Intro-Kfi7l41wUVc.zh-CN.vtt 1.78Кб
01. Vectors 1-oPBz-MLVUHk.en.vtt 4.61Кб
01. Vectors 1-oPBz-MLVUHk.mp4 4.88Мб
01. Vectors 1-oPBz-MLVUHk.pt-BR.vtt 4.42Кб
01. Vectors 1-oPBz-MLVUHk.zh-CN.vtt 3.98Кб
01. Video Intro.html 7.35Кб
01. Video Intro.html 9.13Кб
01. Video Intro.html 10.43Кб
01. Video Introduction.html 6.58Кб
01. Video Introduction.html 6.87Кб
01. Video Introduction.html 7.18Кб
01. Video Introduction.html 7.19Кб
01. Video Introduction.html 7.53Кб
01. Video Introduction.html 7.68Кб
01. Video Introduction.html 8.78Кб
01. Video Introduction.html 9.78Кб
01. Video Introduction to Advanced SQL.html 7.03Кб
01. Video Introduction to Aggregation.html 8.43Кб
01. Video Introduction to SQL Data Cleaning.html 7.04Кб
01. Video Introduction to Window Functions.html 7.69Кб
01. Video Motivation.html 7.14Кб
01. Video SQL Introduction.html 9.74Кб
01. Video What are Measures of Spread.html 9.60Кб
01. Welcome!.html 6.55Кб
01. Welcome.html 5.44Кб
01. Welcome.html 5.57Кб
01. Welcome.html 5.77Кб
01. Welcome-SaSzn718doY.en.vtt 1.46Кб
01. Welcome-SaSzn718doY.mp4 8.01Мб
01. Welcome-SaSzn718doY.pt-BR.vtt 1.64Кб
01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.en.vtt 2.37Кб
01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.mp4 9.07Мб
01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.pt-BR.vtt 2.18Кб
01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt 1.15Кб
01. Welcome To Linear Regression-zxZkTkM34BY.mp4 3.90Мб
01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt 1.21Кб
01. What's a Vector.html 6.11Кб
01. What do Data Scientists Do.html 5.03Кб
01. What do Data Scientists Do.html 5.18Кб
01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt 3.30Кб
01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt 3.30Кб
01. What Do Data Scientists Do-sN2DbIJUZmw.mp4 14.96Мб
01. What Do Data Scientists Do-sN2DbIJUZmw.mp4 14.96Мб
01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt 3.31Кб
01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt 3.31Кб
01. What is a Matrix.html 8.36Кб
01. What is Version Control.html 8.67Кб
01. What It Takes.html 5.49Кб
01. What It Takes.html 5.49Кб
01. Why Network-exjEm9Paszk.ar.vtt 5.14Кб
01. Why Network-exjEm9Paszk.en.vtt 3.40Кб
01. Why Network-exjEm9Paszk.es-MX.vtt 3.20Кб
01. Why Network-exjEm9Paszk.mp4 17.37Мб
01. Why Network-exjEm9Paszk.pt-BR.vtt 3.20Кб
01. Why Network-exjEm9Paszk.zh-CN.vtt 3.29Кб
02. 02 Intro SC V1-mIgABrjJVBY.en.vtt 1.45Кб
02. 02 Intro SC V1-mIgABrjJVBY.mp4 1.08Мб
02. 02 Intro SC V1-mIgABrjJVBY.pt-BR.vtt 1.40Кб
02. AB Testing.html 8.25Кб
02. AB Testing-EcWvhbIjT9o.en.vtt 3.08Кб
02. AB Testing-EcWvhbIjT9o.mp4 6.32Мб
02. AB Testing-EcWvhbIjT9o.pt-BR.vtt 3.61Кб
02. AB Testing-EcWvhbIjT9o.zh-CN.vtt 2.58Кб
02. Adam from IBM-NjjtY5UHyac.en.vtt 4.52Кб
02. Adam from IBM-NjjtY5UHyac.mp4 18.86Мб
02. Adam from IBM-NjjtY5UHyac.pt-BR.vtt 4.33Кб
02. Admissions 1.html 8.81Кб
02. Admissions 1-CLgVLQAEYw8.ar.vtt 1.42Кб
02. Admissions 1-CLgVLQAEYw8.en.vtt 1.08Кб
02. Admissions 1-CLgVLQAEYw8.es-ES.vtt 1.17Кб
02. Admissions 1-CLgVLQAEYw8.hr.vtt 1.05Кб
02. Admissions 1-CLgVLQAEYw8.it.vtt 1.11Кб
02. Admissions 1-CLgVLQAEYw8.ja.vtt 1.08Кб
02. Admissions 1-CLgVLQAEYw8.mp4 7.61Мб
02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt 1.28Кб
02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt 1.14Кб
02. Admissions 1-CLgVLQAEYw8.tr.vtt 1.14Кб
02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt 1.05Кб
02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt 1.09Кб
02. Admissions 1-f3y_weFskL4.ar.vtt 99б
02. Admissions 1-f3y_weFskL4.en.vtt 88б
02. Admissions 1-f3y_weFskL4.es-ES.vtt 95б
02. Admissions 1-f3y_weFskL4.hr.vtt 87б
02. Admissions 1-f3y_weFskL4.it.vtt 89б
02. Admissions 1-f3y_weFskL4.ja.vtt 100б
02. Admissions 1-f3y_weFskL4.mp4 323.09Кб
02. Admissions 1-f3y_weFskL4.pt-BR.vtt 101б
02. Admissions 1-f3y_weFskL4.pt-PT.vtt 89б
02. Admissions 1-f3y_weFskL4.tr.vtt 81б
02. Admissions 1-f3y_weFskL4.zh-CN.vtt 94б
02. Admissions 1-f3y_weFskL4.zh-Hans.vtt 98б
02. Applications of CNNs.html 12.91Кб
02. Applications of CNNs-HrYNL_1SV2Y.en.vtt 5.37Кб
02. Applications of CNNs-HrYNL_1SV2Y.mp4 17.70Мб
02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66Кб
02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.70Кб
02. Arithmetic Operators.html 10.18Кб
02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt 4.67Кб
02. Arithmetic Operators-M8TIOK2P2yw.en.vtt 3.42Кб
02. Arithmetic Operators-M8TIOK2P2yw.mp4 11.07Мб
02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt 3.70Кб
02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt 2.97Кб
02. Cancer Test.html 11.23Кб
02. Cancer Test-CNpSrdnYvbo.ar.vtt 4.48Кб
02. Cancer Test-CNpSrdnYvbo.en.vtt 3.25Кб
02. Cancer Test-CNpSrdnYvbo.es-ES.vtt 3.44Кб
02. Cancer Test-CNpSrdnYvbo.it.vtt 3.45Кб
02. Cancer Test-CNpSrdnYvbo.ja.vtt 3.28Кб
02. Cancer Test-CNpSrdnYvbo.mp4 18.01Мб
02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt 3.05Кб
02. Cancer Test-CNpSrdnYvbo.th.vtt 5.13Кб
02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt 3.06Кб
02. Cancer Test-FnNveASivMA.ar.vtt 1.32Кб
02. Cancer Test-FnNveASivMA.en.vtt 1.05Кб
02. Cancer Test-FnNveASivMA.es-ES.vtt 1.07Кб
02. Cancer Test-FnNveASivMA.it.vtt 1.08Кб
02. Cancer Test-FnNveASivMA.ja.vtt 1018б
02. Cancer Test-FnNveASivMA.mp4 2.08Мб
02. Cancer Test-FnNveASivMA.pt-BR.vtt 1014б
02. Cancer Test-FnNveASivMA.th.vtt 1.94Кб
02. Cancer Test-FnNveASivMA.zh-CN.vtt 978б
02. Classification Problems 1.html 6.76Кб
02. Classsification Example-Dh625piH7Z0.en.vtt 2.70Кб
02. Classsification Example-Dh625piH7Z0.mp4 2.07Мб
02. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51Кб
02. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37Кб
02. Clean and Modular Code.html 10.65Кб
02. Cleaning with String Functions-y1fduSu7Ovc.ar.vtt 4.09Кб
02. Cleaning with String Functions-y1fduSu7Ovc.en.vtt 3.08Кб
02. Cleaning with String Functions-y1fduSu7Ovc.mp4 4.22Мб
02. Cleaning with String Functions-y1fduSu7Ovc.pt-BR.vtt 3.44Кб
02. Cleaning with String Functions-y1fduSu7Ovc.zh-CN.vtt 2.66Кб
02. Conditional Statements.html 16.48Кб
02. Continuous Perceptrons.html 7.57Кб
02. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33Кб
02. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13Мб
02. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31Кб
02. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15Кб
02. Corporate Messaging Case Study.html 7.81Кб
02. Corporate Messaging Case Study-xnDsUsrF884.en.vtt 2.54Кб
02. Corporate Messaging Case Study-xnDsUsrF884.mp4 4.70Мб
02. Corporate Messaging Case Study-xnDsUsrF884.pt-BR.vtt 3.05Кб
02. Course Overview.html 6.71Кб
02. Course Syllabus.html 7.37Кб
02. Create a Pull Request.html 10.05Кб
02. Create A Repo From Scratch.html 14.78Кб
02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt 3.50Кб
02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 16.45Мб
02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt 3.47Кб
02. CRISP-DM-PaVwnGcqlSE.en.vtt 1.32Кб
02. CRISP-DM-PaVwnGcqlSE.mp4 4.00Мб
02. CRISP-DM-PaVwnGcqlSE.pt-BR.vtt 1.43Кб
02. Data Vis L4 C02 V1-wBDC5AmYgyg.en.vtt 3.07Кб
02. Data Vis L4 C02 V1-wBDC5AmYgyg.mp4 3.58Мб
02. Data Vis L4 C02 V1-wBDC5AmYgyg.pt-BR.vtt 2.77Кб
02. Data Vis L4 C02 V1-wBDC5AmYgyg.zh-CN.vtt 2.64Кб
02. DataVis L5C02 V3-bgDNMfG9Gfs.en.vtt 6.74Кб
02. DataVis L5C02 V3-bgDNMfG9Gfs.mp4 6.79Мб
02. DataVis L5C02 V3-bgDNMfG9Gfs.pt-BR.vtt 7.01Кб
02. Default Arguments-cG6UfBZX2KI.ar.vtt 2.72Кб
02. Default Arguments-cG6UfBZX2KI.en.vtt 2.05Кб
02. Default Arguments-cG6UfBZX2KI.mp4 5.64Мб
02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt 2.40Кб
02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt 1.81Кб
02. Defining Functions.html 14.76Кб
02. Defining Functions-IP_tJYhynbc.ar.vtt 6.65Кб
02. Defining Functions-IP_tJYhynbc.en.vtt 5.39Кб
02. Defining Functions-IP_tJYhynbc.mp4 15.48Мб
02. Defining Functions-IP_tJYhynbc.pt-BR.vtt 5.95Кб
02. Defining Functions-IP_tJYhynbc.zh-CN.vtt 4.76Кб
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt 4.74Кб
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt 3.22Кб
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 6.17Мб
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt 3.51Кб
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt 2.74Кб
02. Disaster Relief Project Preview-DuwYAjqGM3E.en.vtt 1.70Кб
02. Disaster Relief Project Preview-DuwYAjqGM3E.mp4 5.33Мб
02. Disaster Relief Project Preview-DuwYAjqGM3E.pt-BR.vtt 2.14Кб
02. Displaying A Repository's Commits.html 18.63Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.36Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.48Мб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.46Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.26Кб
02. Ensembles.html 9.29Кб
02. First Things First-ehjC7JK-zMI.en.vtt 1.26Кб
02. First Things First-ehjC7JK-zMI.mp4 3.98Мб
02. First Things First-ehjC7JK-zMI.pt-BR.vtt 1.33Кб
02. Fitting Logistic Regression-Dg0rBDQnIYg.en.vtt 2.60Кб
02. Fitting Logistic Regression-Dg0rBDQnIYg.mp4 9.74Мб
02. Fitting Logistic Regression-Dg0rBDQnIYg.pt-BR.vtt 2.82Кб
02. Fitting Logistic Regression-Dg0rBDQnIYg.zh-CN.vtt 2.11Кб
02. Flipping Coins.html 9.14Кб
02. Flipping Coins-lgUDXtUyLLg.ar.vtt 799б
02. Flipping Coins-lgUDXtUyLLg.en.vtt 635б
02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt 686б
02. Flipping Coins-lgUDXtUyLLg.hr.vtt 637б
02. Flipping Coins-lgUDXtUyLLg.it.vtt 695б
02. Flipping Coins-lgUDXtUyLLg.ja.vtt 617б
02. Flipping Coins-lgUDXtUyLLg.mp4 4.62Мб
02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt 570б
02. Flipping Coins-lgUDXtUyLLg.ru.vtt 617б
02. Flipping Coins-lgUDXtUyLLg.th.vtt 1.15Кб
02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt 536б
02. Flipping Coins-OpNufHYgJCg.ar.vtt 2.01Кб
02. Flipping Coins-OpNufHYgJCg.en.vtt 1.47Кб
02. Flipping Coins-OpNufHYgJCg.es-ES.vtt 1.55Кб
02. Flipping Coins-OpNufHYgJCg.hr.vtt 1.50Кб
02. Flipping Coins-OpNufHYgJCg.it.vtt 1.64Кб
02. Flipping Coins-OpNufHYgJCg.ja.vtt 1.32Кб
02. Flipping Coins-OpNufHYgJCg.mp4 11.32Мб
02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt 1.33Кб
02. Flipping Coins-OpNufHYgJCg.th.vtt 2.84Кб
02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt 1.34Кб
02. Forking A Repository.html 15.96Кб
02. Forking a Repository - What Is Forking-z4mkVwqVztc.ar.vtt 2.16Кб
02. Forking a Repository - What Is Forking-z4mkVwqVztc.en.vtt 1.72Кб
02. Forking a Repository - What Is Forking-z4mkVwqVztc.mp4 5.29Мб
02. Forking a Repository - What Is Forking-z4mkVwqVztc.pt-BR.vtt 1.76Кб
02. Forking a Repository - What Is Forking-z4mkVwqVztc.zh-CN.vtt 1.73Кб
02. Gaussian Mixture Model (GMM) Clustering.html 7.56Кб
02. Git Add.html 20.66Кб
02. Gradient Descent.html 12.63Кб
02. Gradient Descent-29PmNG7fuuM.en.vtt 1.60Кб
02. Gradient Descent-29PmNG7fuuM.mp4 2.46Мб
02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt 1.52Кб
02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt 1.41Кб
02. Guess the Person.html 6.24Кб
02. Heads Tails.html 7.85Кб
02. Heads Tails-iyX0-eXStbw.ar.vtt 472б
02. Heads Tails-iyX0-eXStbw.en.vtt 341б
02. Heads Tails-iyX0-eXStbw.es-ES.vtt 357б
02. Heads Tails-iyX0-eXStbw.ja.vtt 300б
02. Heads Tails-iyX0-eXStbw.mp4 1.08Мб
02. Heads Tails-iyX0-eXStbw.pt-BR.vtt 375б
02. Heads Tails-iyX0-eXStbw.zh-CN.vtt 309б
02. Heads Tails-yo55zJtJQwo.ar.vtt 141б
02. Heads Tails-yo55zJtJQwo.en.vtt 118б
02. Heads Tails-yo55zJtJQwo.es-ES.vtt 125б
02. Heads Tails-yo55zJtJQwo.ja.vtt 139б
02. Heads Tails-yo55zJtJQwo.mp4 1.03Мб
02. Heads Tails-yo55zJtJQwo.pt-BR.vtt 158б
02. Heads Tails-yo55zJtJQwo.zh-CN.vtt 117б
02. Histograms-4t10RgUv2Fc.ar.vtt 2.27Кб
02. Histograms-4t10RgUv2Fc.en.vtt 1.61Кб
02. Histograms-4t10RgUv2Fc.mp4 2.57Мб
02. Histograms-4t10RgUv2Fc.pt-BR.vtt 1.75Кб
02. Histograms-4t10RgUv2Fc.zh-CN.vtt 1.38Кб
02. History - A Statistician's Perspective.html 5.78Кб
02. History - Statisticians Perspective-zNNouqLGF9E.en.vtt 2.07Кб
02. History - Statisticians Perspective-zNNouqLGF9E.mp4 5.50Мб
02. History - Statisticians Perspective-zNNouqLGF9E.pt-BR.vtt 2.29Кб
02. How NLP Pipelines Work.html 8.36Кб
02. Hypothesis Testing.html 8.81Кб
02. Hypothesis Testing-9GbHHpiK6wk.en.vtt 2.52Кб
02. Hypothesis Testing-9GbHHpiK6wk.mp4 10.68Мб
02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt 2.42Кб
02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt 2.26Кб
02. Identifying Recommendation Engines-KwegrgvV-V4.en.vtt 847б
02. Identifying Recommendation Engines-KwegrgvV-V4.mp4 3.48Мб
02. If Elif and Else-KZubH5XT0eU.ar.vtt 4.12Кб
02. If Elif and Else-KZubH5XT0eU.en.vtt 2.83Кб
02. If Elif and Else-KZubH5XT0eU.mp4 18.28Мб
02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt 3.18Кб
02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt 2.50Кб
02. If Statements-jWiIUMrwPqA.ar.vtt 3.99Кб
02. If Statements-jWiIUMrwPqA.en.vtt 2.70Кб
02. If Statements-jWiIUMrwPqA.mp4 16.99Мб
02. If Statements-jWiIUMrwPqA.pt-BR.vtt 3.11Кб
02. If Statements-jWiIUMrwPqA.zh-CN.vtt 2.32Кб
02. Indentation-G8qUNOTHtrM.ar.vtt 1.54Кб
02. Indentation-G8qUNOTHtrM.en.vtt 1.09Кб
02. Indentation-G8qUNOTHtrM.mp4 7.65Мб
02. Indentation-G8qUNOTHtrM.pt-BR.vtt 1.31Кб
02. Indentation-G8qUNOTHtrM.zh-CN.vtt 1007б
02. Info on the Diamond Dataset.html 6.99Кб
02. Instructors.html 6.76Кб
02. Interview Adam [IBM].html 4.97Кб
02. Interview Robert Chang [AirBnB].html 5.23Кб
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.en.vtt 1.31Кб
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.mp4 2.85Мб
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.pt-BR.vtt 1.45Кб
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.zh-CN.vtt 1.19Кб
02. Introducing PyTorch.html 7.36Кб
02. Introduction.html 7.31Кб
02. Introduction.html 7.50Кб
02. Introduction.html 8.36Кб
02. Introduction-tn-CrUTkCUc.en.vtt 3.28Кб
02. Introduction-tn-CrUTkCUc.en.vtt 3.28Кб
02. Introduction-tn-CrUTkCUc.mp4 7.54Мб
02. Introduction-tn-CrUTkCUc.mp4 7.54Мб
02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09Кб
02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09Кб
02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84Кб
02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84Кб
02. Introduction to GPU Workspaces.html 16.20Кб
02. Introduction to Machine Learning-pLcFPPI1L-0.en.vtt 2.02Кб
02. Introduction to Machine Learning-pLcFPPI1L-0.mp4 2.81Мб
02. Introduction to Machine Learning-pLcFPPI1L-0.pt-BR.vtt 2.62Кб
02. Introduction to Machine Learning-pLcFPPI1L-0.zh-CN.vtt 1.72Кб
02. Introduction to NumPy.html 8.70Кб
02. Introduction to Pandas.html 8.47Кб
02. Introduction to Subqueries-s8ZJMj4gscY.ar.vtt 941б
02. Introduction to Subqueries-s8ZJMj4gscY.en.vtt 639б
02. Introduction to Subqueries-s8ZJMj4gscY.mp4 2.83Мб
02. Introduction to Subqueries-s8ZJMj4gscY.pt-BR.vtt 753б
02. Introduction to Subqueries-s8ZJMj4gscY.zh-CN.vtt 547б
02. Introduction-Vnj2VNQROtI.ar.vtt 2.28Кб
02. Introduction-Vnj2VNQROtI.en.vtt 1.58Кб
02. Introduction-Vnj2VNQROtI.mp4 9.59Мб
02. Introduction-Vnj2VNQROtI.pt-BR.vtt 1.79Кб
02. Introduction-Vnj2VNQROtI.zh-CN.vtt 1.62Кб
02. Intro to Term 2.html 5.18Кб
02. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt 3.40Кб
02. Kaggle Project Final For Classroom-Ssttix340C8.mp4 10.15Мб
02. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt 2.89Кб
02. Keras.html 15.58Кб
02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt 1.02Кб
02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt 806б
02. L1 01 Intro V3-yyNtiUyI5Tw.mp4 5.21Мб
02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt 1021б
02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt 745б
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.en.vtt 1.25Кб
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.mp4 2.21Мб
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.pt-BR.vtt 1.48Кб
02. L1 - Remote Repos Intro-AnSlYftJnwA.ar.vtt 3.08Кб
02. L1 - Remote Repos Intro-AnSlYftJnwA.en.vtt 2.28Кб
02. L1 - Remote Repos Intro-AnSlYftJnwA.mp4 4.11Мб
02. L1 - Remote Repos Intro-AnSlYftJnwA.pt-BR.vtt 2.25Кб
02. L1 - Remote Repos Intro-AnSlYftJnwA.zh-CN.vtt 1.97Кб
02. L1 - Sending Branches To Remote-414f0ukhOTY.ar.vtt 1.27Кб
02. L1 - Sending Branches To Remote-414f0ukhOTY.en.vtt 1.01Кб
02. L1 - Sending Branches To Remote-414f0ukhOTY.mp4 826.62Кб
02. L1 - Sending Branches To Remote-414f0ukhOTY.pt-BR.vtt 982б
02. L1 - Sending Branches To Remote-414f0ukhOTY.zh-CN.vtt 1017б
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.en.vtt 5.12Кб
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.mp4 9.80Мб
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.pt-BR.vtt 5.48Кб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.en.vtt 1.38Кб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.mp4 4.05Мб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.pt-BR.vtt 1.69Кб
02. L2 - Pushing To A Fork-WRgNpr19t48.ar.vtt 6.87Кб
02. L2 - Pushing To A Fork-WRgNpr19t48.en.vtt 5.39Кб
02. L2 - Pushing To A Fork-WRgNpr19t48.mp4 7.65Мб
02. L2 - Pushing To A Fork-WRgNpr19t48.pt-BR.vtt 5.31Кб
02. L2 - Pushing To A Fork-WRgNpr19t48.zh-CN.vtt 4.83Кб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.en.vtt 2.34Кб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.mp4 4.28Мб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.pt-BR.vtt 2.48Кб
02. L3 - Pull Request In Action-d3AGtKmHxUk.ar.vtt 5.45Кб
02. L3 - Pull Request In Action-d3AGtKmHxUk.en.vtt 4.20Кб
02. L3 - Pull Request In Action-d3AGtKmHxUk.mp4 4.57Мб
02. L3 - Pull Request In Action-d3AGtKmHxUk.pt-BR.vtt 3.83Кб
02. L3 - Pull Request In Action-d3AGtKmHxUk.zh-CN.vtt 3.76Кб
02. L3 - Pull Request In Theory-twLr9ndsf90.ar.vtt 3.04Кб
02. L3 - Pull Request In Theory-twLr9ndsf90.en.vtt 2.22Кб
02. L3 - Pull Request In Theory-twLr9ndsf90.mp4 1.65Мб
02. L3 - Pull Request In Theory-twLr9ndsf90.pt-BR.vtt 2.35Кб
02. L3 - Pull Request In Theory-twLr9ndsf90.zh-CN.vtt 2.09Кб
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.en.vtt 3.55Кб
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.mp4 5.26Мб
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.pt-BR.vtt 3.67Кб
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.zh-CN.vtt 2.88Кб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.en.vtt 1.47Кб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.mp4 3.64Мб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.pt-BR.vtt 1.59Кб
02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.en.vtt 2.80Кб
02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.mp4 4.37Мб
02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.pt-BR.vtt 2.98Кб
02. Lesson Overview.html 9.42Кб
02. Lesson Overview.html 12.18Кб
02. Lesson Overview -q1beUVlLoIQ.en.vtt 1.38Кб
02. Lesson Overview -q1beUVlLoIQ.mp4 3.98Мб
02. Lesson Overview -q1beUVlLoIQ.pt-BR.vtt 1.60Кб
02. Lesson Topics-LBzA08F_r4w.en.vtt 1.24Кб
02. Lesson Topics-LBzA08F_r4w.mp4 3.81Мб
02. Lesson Topics-LBzA08F_r4w.pt-BR.vtt 1.35Кб
02. Linear Combination. Part 2.html 5.75Кб
02. Linear Combinations 2-RsKJNDTb8nw.en.vtt 7.21Кб
02. Linear Combinations 2-RsKJNDTb8nw.mp4 14.17Мб
02. Linear Combinations 2-RsKJNDTb8nw.pt-BR.vtt 7.04Кб
02. Linear Combinations 2-RsKJNDTb8nw.zh-CN.vtt 6.36Кб
02. Matrix Addition.html 8.73Кб
02. Medical Example 1.html 8.39Кб
02. Medical Example 1-E1ph6NP3_v4.ar.vtt 132б
02. Medical Example 1-E1ph6NP3_v4.en.vtt 119б
02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt 125б
02. Medical Example 1-E1ph6NP3_v4.it.vtt 138б
02. Medical Example 1-E1ph6NP3_v4.ja.vtt 141б
02. Medical Example 1-E1ph6NP3_v4.mp4 747.17Кб
02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt 146б
02. Medical Example 1-E1ph6NP3_v4.th.vtt 164б
02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt 118б
02. Medical Example 1-mFfbts1lAEo.ar.vtt 558б
02. Medical Example 1-mFfbts1lAEo.en.vtt 427б
02. Medical Example 1-mFfbts1lAEo.es-ES.vtt 466б
02. Medical Example 1-mFfbts1lAEo.it.vtt 422б
02. Medical Example 1-mFfbts1lAEo.ja.vtt 444б
02. Medical Example 1-mFfbts1lAEo.mp4 2.69Мб
02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt 498б
02. Medical Example 1-mFfbts1lAEo.th.vtt 813б
02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt 341б
02. Meet Chris-0ccflD9x5WU.ar.vtt 6.32Кб
02. Meet Chris-0ccflD9x5WU.en.vtt 4.89Кб
02. Meet Chris-0ccflD9x5WU.es-MX.vtt 4.52Кб
02. Meet Chris-0ccflD9x5WU.mp4 32.54Мб
02. Meet Chris-0ccflD9x5WU.pt-BR.vtt 4.47Кб
02. Meet Chris-0ccflD9x5WU.zh-CN.vtt 4.41Кб
02. Meet the Instructors.html 5.57Кб
02. Meet The Instructors-XAU2Nf51vfU.en.vtt 5.82Кб
02. Meet The Instructors-XAU2Nf51vfU.mp4 17.31Мб
02. Meet The Instructors-XAU2Nf51vfU.pt-BR.vtt 6.03Кб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt 1.66Кб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4 4.80Мб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt 1.68Кб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt 1.53Кб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.en.vtt 1.17Кб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.mp4 3.07Мб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.pt-BR.vtt 1.18Кб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.zh-CN.vtt 1005б
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.en.vtt 1.20Кб
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.mp4 4.34Мб
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.pt-BR.vtt 1.27Кб
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.zh-CN.vtt 1008б
02. Model Complexity Graph.html 7.16Кб
02. Model Complexity Graph-Question-YS5OQCA5cLY.en-US.vtt 3.32Кб
02. Model Complexity Graph-Question-YS5OQCA5cLY.mp4 5.41Мб
02. Model Complexity Graph-Question-YS5OQCA5cLY.pt-BR.vtt 3.12Кб
02. Model Complexity Graph-Question-YS5OQCA5cLY.zh-CN.vtt 3.03Кб
02. Modifying The Last Commit.html 6.79Кб
02. Motivation for Data Visualization.html 12.67Кб
02. Multiple Linear Regression-rvYZp99nj6c.en.vtt 2.65Кб
02. Multiple Linear Regression-rvYZp99nj6c.mp4 13.78Мб
02. Multiple Linear Regression-rvYZp99nj6c.pt-BR.vtt 2.62Кб
02. Multiple Linear Regression-rvYZp99nj6c.zh-CN.vtt 2.23Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt 2.17Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt 1.63Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4 2.76Мб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt 1.78Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt 1.45Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt 2.36Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt 1.70Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4 2.22Мб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt 1.77Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt 1.51Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.ar.vtt 2.17Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.en.vtt 1.67Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.mp4 1.06Мб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.pt-BR.vtt 1.54Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.zh-CN.vtt 1.59Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt 1.74Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 1.28Мб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt 1.88Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt 1.53Кб
02. Non-Positional Encodings for Third Variables.html 15.08Кб
02. NULLs-WYUkLKn6XCw.ar.vtt 1.53Кб
02. NULLs-WYUkLKn6XCw.en.vtt 1.08Кб
02. NULLs-WYUkLKn6XCw.mp4 3.84Мб
02. NULLs-WYUkLKn6XCw.pt-BR.vtt 1.20Кб
02. NULLs-WYUkLKn6XCw.zh-CN.vtt 1015б
02. Outline.html 6.31Кб
02. Overview.html 8.63Кб
02. Overview of other clustering methods.html 6.61Кб
02. Parch Posey Database-JOMI560DgXg.ar.vtt 1.65Кб
02. Parch Posey Database-JOMI560DgXg.en.vtt 1.21Кб
02. Parch Posey Database-JOMI560DgXg.mp4 5.26Мб
02. Parch Posey Database-JOMI560DgXg.pt-BR.vtt 1.35Кб
02. Parch Posey Database-JOMI560DgXg.zh-CN.vtt 1.15Кб
02. Practice Statistical Significance.html 8.07Кб
02. Procedural vs. Object-Oriented Programming.html 12.77Кб
02. Project Details.html 9.02Кб
02. Project Motivation and Details.html 8.59Кб
02. Project Overview.html 8.16Кб
02. Project Overview.html 8.38Кб
02. Project Overview.html 8.94Кб
02. Projects.html 8.69Кб
02. Projects-1-E_ZYovKeI.en.vtt 527б
02. Projects-1-E_ZYovKeI.mp4 867.30Кб
02. Projects-1-E_ZYovKeI.pt-BR.vtt 516б
02. Python Installation.html 9.74Кб
02. Python Installation.html 10.97Кб
02. Python Installation-2_P05aYChqQ.ar.vtt 2.24Кб
02. Python Installation-2_P05aYChqQ.ar.vtt 2.24Кб
02. Python Installation-2_P05aYChqQ.en.vtt 1.76Кб
02. Python Installation-2_P05aYChqQ.en.vtt 1.76Кб
02. Python Installation-2_P05aYChqQ.mp4 6.71Мб
02. Python Installation-2_P05aYChqQ.mp4 6.71Мб
02. Python Installation-2_P05aYChqQ.pt-BR.vtt 2.12Кб
02. Python Installation-2_P05aYChqQ.pt-BR.vtt 2.12Кб
02. Python Installation-2_P05aYChqQ.zh-CN.vtt 1.64Кб
02. Python Installation-2_P05aYChqQ.zh-CN.vtt 1.64Кб
02. Quiz Housing Prices.html 8.86Кб
02. Random Projection.html 7.13Кб
02. Recommending Apps 1.html 10.04Кб
02. Remote Repositories.html 11.77Кб
02. Reviews.html 5.35Кб
02. Reviews.html 5.35Кб
02. Revisiting the Data Analysis Process.html 7.20Кб
02. Roles of a Data Engineer.html 5.60Кб
02. Roles Of A Data Engineer-f57UbUlSDgo.en.vtt 2.46Кб
02. Roles Of A Data Engineer-f57UbUlSDgo.mp4 9.11Мб
02. Roles Of A Data Engineer-f57UbUlSDgo.pt-BR.vtt 2.90Кб
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt 2.26Кб
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4 4.66Мб
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt 2.41Кб
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt 1.83Кб
02. Scatterplots and Correlation.html 11.01Кб
02. Scenario Description.html 7.20Кб
02. Shape.html 8.20Кб
02. Shape-DjsL64Kjr1Q.ar.vtt 2.60Кб
02. Shape-DjsL64Kjr1Q.en.vtt 1.85Кб
02. Shape-DjsL64Kjr1Q.es-ES.vtt 1.85Кб
02. Shape-DjsL64Kjr1Q.ja.vtt 1.78Кб
02. Shape-DjsL64Kjr1Q.mp4 11.18Мб
02. Shape-DjsL64Kjr1Q.pt-BR.vtt 1.97Кб
02. Shape-DjsL64Kjr1Q.zh-CN.vtt 1.60Кб
02. Shape-w5qcGO8krMw.ar.vtt 1002б
02. Shape-w5qcGO8krMw.en.vtt 790б
02. Shape-w5qcGO8krMw.es-ES.vtt 817б
02. Shape-w5qcGO8krMw.ja.vtt 748б
02. Shape-w5qcGO8krMw.mp4 1.62Мб
02. Shape-w5qcGO8krMw.pt-BR.vtt 848б
02. Shape-w5qcGO8krMw.zh-CN.vtt 644б
02. Simulating Coin Flips.html 6.69Кб
02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt 4.92Кб
02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt 3.60Кб
02. Simulating Coin Flips-7YtQNZ3iy6o.mp4 3.84Мб
02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt 3.91Кб
02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt 3.18Кб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt 3.40Кб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4 8.49Мб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt 3.25Кб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt 3.00Кб
02. Software Requirements.html 7.04Кб
02. Support.html 5.01Кб
02. Support.html 5.01Кб
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.en.vtt 701б
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.mp4 1.55Мб
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.pt-BR.vtt 638б
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.zh-CN.vtt 588б
02. Tagging.html 18.26Кб
02. Testing.html 6.29Кб
02. Text + Images FULL OUTER JOIN.html 11.01Кб
02. Text Course Outline.html 9.30Кб
02. Text Optional Lessons Note.html 8.53Кб
02. Text What's Ahead.html 8.19Кб
02. Tidy Data.html 9.75Кб
02. Training Optimization.html 6.19Кб
02. Training Optimization-UiGKhx9pUYc.en.vtt 824б
02. Training Optimization-UiGKhx9pUYc.mp4 2.96Мб
02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874б
02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840б
02. Troubleshooting Possible Errors.html 6.18Кб
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.ar.vtt 3.89Кб
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.en.vtt 3.30Кб
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.mp4 4.41Мб
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.pt-BR.vtt 2.75Кб
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.zh-CN.vtt 3.08Кб
02. Use Your Story to Stand Out.html 7.91Кб
02. Vectors, what even are they Part 2.html 6.15Кб
02. Vectors 2-R7WiQYixvRQ.en.vtt 2.82Кб
02. Vectors 2-R7WiQYixvRQ.mp4 2.52Мб
02. Vectors 2-R7WiQYixvRQ.pt-BR.vtt 2.55Кб
02. Vectors 2-R7WiQYixvRQ.zh-CN.vtt 2.29Кб
02. Version Control In Daily Use.html 10.20Кб
02. Video + Text Example Recommendation Engines.html 10.00Кб
02. Video CRISP-DM.html 11.23Кб
02. Video Descriptive vs. Inferential Statistics.html 9.73Кб
02. Video First Things First.html 6.62Кб
02. Video Fitting Logistic Regression.html 8.77Кб
02. Video From Sampling Distributions to Confidence Intervals.html 8.17Кб
02. Video Histograms.html 9.39Кб
02. Video Introduction to Machine Learning.html 8.44Кб
02. Video Introduction to NULLs.html 8.29Кб
02. Video Introduction to Subqueries.html 7.02Кб
02. Video LEFT RIGHT.html 7.58Кб
02. Video Lesson Topics.html 7.42Кб
02. Video Multiple Linear Regression.html 9.16Кб
02. Video The Parch Posey Database.html 9.83Кб
02. Video Why Would We Want to Split Data Into Separate Tables.html 9.58Кб
02. Video Window Functions 1.html 9.33Кб
02. Welcome to the Course!.html 5.83Кб
02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.en.vtt 6.25Кб
02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.mp4 40.19Мб
02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.pt-BR.vtt 5.97Кб
02. What is an Experiment.html 18.87Кб
02. What Is An Experiment-fH_xF5_SDCE.en.vtt 2.45Кб
02. What Is An Experiment-fH_xF5_SDCE.mp4 2.91Мб
02. What Is An Experiment-fH_xF5_SDCE.pt-BR.vtt 2.63Кб
02. What Is An Experiment Pt 2-PYzN1usi7QY.en.vtt 4.16Кб
02. What Is An Experiment Pt 2-PYzN1usi7QY.mp4 6.77Мб
02. What Is An Experiment Pt 2-PYzN1usi7QY.pt-BR.vtt 4.31Кб
02. What Makes a Bad Visual.html 7.53Кб
02. What Makes a Bad Visual-zbvB_9f7bFs.ar.vtt 4.49Кб
02. What Makes a Bad Visual-zbvB_9f7bFs.en.vtt 3.32Кб
02. What Makes a Bad Visual-zbvB_9f7bFs.mp4 6.14Мб
02. What Makes a Bad Visual-zbvB_9f7bFs.pt-BR.vtt 3.35Кб
02. What Makes a Bad Visual-zbvB_9f7bFs.zh-CN.vtt 3.11Кб
02. Which line is better.html 7.43Кб
02. Why Not Store Everything in One Table-rvY4A6FpS40.ar.vtt 1.12Кб
02. Why Not Store Everything in One Table-rvY4A6FpS40.en.vtt 898б
02. Why Not Store Everything in One Table-rvY4A6FpS40.mp4 863.33Кб
02. Why Not Store Everything in One Table-rvY4A6FpS40.pt-BR.vtt 834б
02. Why Not Store Everything in One Table-rvY4A6FpS40.zh-CN.vtt 761б
02. Why Use Separate Tables-UIQBtpmqYOs.ar.vtt 4.17Кб
02. Why Use Separate Tables-UIQBtpmqYOs.en.vtt 3.07Кб
02. Why Use Separate Tables-UIQBtpmqYOs.mp4 3.95Мб
02. Why Use Separate Tables-UIQBtpmqYOs.pt-BR.vtt 3.26Кб
02. Why Use Separate Tables-UIQBtpmqYOs.zh-CN.vtt 2.58Кб
02. Window Functions-gp0RPgkDHsQ.ar.vtt 3.50Кб
02. Window Functions-gp0RPgkDHsQ.en.vtt 2.64Кб
02. Window Functions-gp0RPgkDHsQ.mp4 3.68Мб
02. Window Functions-gp0RPgkDHsQ.pt-BR.vtt 2.47Кб
02. Window Functions-gp0RPgkDHsQ.zh-CN.vtt 2.37Кб
02. Windows Installing Git Bash.html 8.92Кб
02. Workspace Portfolio Exercise.html 5.98Кб
02-guide-how-transfer-learning-v3-01.png 251.26Кб
02-guide-how-transfer-learning-v3-02.png 219.27Кб
02-guide-how-transfer-learning-v3-03.png 228.93Кб
02-guide-how-transfer-learning-v3-04.png 255.16Кб
02-guide-how-transfer-learning-v3-05.png 232.52Кб
02-guide-how-transfer-learning-v3-06.png 259.12Кб
02-guide-how-transfer-learning-v3-07.png 233.30Кб
02-guide-how-transfer-learning-v3-08.png 241.57Кб
02-guide-how-transfer-learning-v3-09.png 228.05Кб
02-guide-how-transfer-learning-v3-10.png 241.76Кб
03. [For Windows] Configuring Git Bash to Run Python.html 13.25Кб
03. AB Testing.html 10.22Кб
03. Add A Remote Repository.html 32.05Кб
03. Admissions 2.html 8.48Кб
03. Admissions 2-o91iPvtqt78.ar.vtt 94б
03. Admissions 2-o91iPvtqt78.en.vtt 90б
03. Admissions 2-o91iPvtqt78.es-ES.vtt 95б
03. Admissions 2-o91iPvtqt78.hr.vtt 85б
03. Admissions 2-o91iPvtqt78.it.vtt 88б
03. Admissions 2-o91iPvtqt78.ja.vtt 88б
03. Admissions 2-o91iPvtqt78.mp4 339.25Кб
03. Admissions 2-o91iPvtqt78.pt-BR.vtt 91б
03. Admissions 2-o91iPvtqt78.zh-CN.vtt 83б
03. Admissions 2-o91iPvtqt78.zh-Hans.vtt 85б
03. Admissions 2-pJrwiukN3Ls.ar.vtt 208б
03. Admissions 2-pJrwiukN3Ls.en.vtt 196б
03. Admissions 2-pJrwiukN3Ls.es-ES.vtt 227б
03. Admissions 2-pJrwiukN3Ls.hr.vtt 209б
03. Admissions 2-pJrwiukN3Ls.it.vtt 205б
03. Admissions 2-pJrwiukN3Ls.ja.vtt 219б
03. Admissions 2-pJrwiukN3Ls.mp4 1.21Мб
03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt 223б
03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt 215б
03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt 180б
03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt 189б
03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.en.vtt 2.45Кб
03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.mp4 3.84Мб
03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.pt-BR.vtt 2.83Кб
03. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37Кб
03. Arvato Final Project-qBR6A0IQXEE.mp4 25.37Мб
03. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72Кб
03. Bar Charts.html 14.42Кб
03. Better Formula.html 7.88Кб
03. Better Formula-vMAl1m8ZtoI.ar.vtt 650б
03. Better Formula-vMAl1m8ZtoI.en.vtt 528б
03. Better Formula-vMAl1m8ZtoI.es-ES.vtt 533б
03. Better Formula-vMAl1m8ZtoI.ja.vtt 492б
03. Better Formula-vMAl1m8ZtoI.mp4 2.52Мб
03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt 523б
03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt 456б
03. Better Formula-z2xsu2Kehyo.ar.vtt 302б
03. Better Formula-z2xsu2Kehyo.en.vtt 216б
03. Better Formula-z2xsu2Kehyo.es-ES.vtt 231б
03. Better Formula-z2xsu2Kehyo.ja.vtt 202б
03. Better Formula-z2xsu2Kehyo.mp4 1.10Мб
03. Better Formula-z2xsu2Kehyo.pt-BR.vtt 240б
03. Better Formula-z2xsu2Kehyo.zh-CN.vtt 186б
03. BMG Inspiration-ulMqa4YWbvc.en.vtt 2.47Кб
03. BMG Inspiration-ulMqa4YWbvc.mp4 11.56Мб
03. BMG Inspiration-ulMqa4YWbvc.pt-BR.vtt 2.35Кб
03. Branching.html 19.14Кб
03. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt 3.65Кб
03. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4 13.54Мб
03. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt 3.44Кб
03. Building a Funnel.html 9.05Кб
03. Case Study Clean and Tokenize.html 7.70Кб
03. Changing How Git Log Displays Information.html 13.14Кб
03. Class, Object, Method and Attribute.html 12.43Кб
03. Classification Example-46PywnGa_cQ.en.vtt 1.76Кб
03. Classification Example-46PywnGa_cQ.mp4 1.62Мб
03. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.60Кб
03. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65Кб
03. Classification Problems 1.html 8.74Кб
03. Classification Problems 1.html 9.60Кб
03. Classification Problems 2.html 5.60Кб
03. Classsification Example-Dh625piH7Z0.en.vtt 2.70Кб
03. Classsification Example-Dh625piH7Z0.en.vtt 2.70Кб
03. Classsification Example-Dh625piH7Z0.mp4 2.07Мб
03. Classsification Example-Dh625piH7Z0.mp4 2.07Мб
03. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51Кб
03. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51Кб
03. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37Кб
03. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37Кб
03. Clone An Existing Repo.html 16.24Кб
03. Color Palettes.html 18.91Кб
03. Components of a Web App.html 11.51Кб
03. Cross Validation.html 6.08Кб
03. Dan Frank Interview-Me-KRvZW1QQ.mp4 26.13Мб
03. Dan Frank Interview-Me-KRvZW1QQ.pt-BR.vtt 5.39Кб
03. Data Types and NULLs-RgTcYwKqtYI.ar.vtt 3.07Кб
03. Data Types and NULLs-RgTcYwKqtYI.en.vtt 2.25Кб
03. Data Types and NULLs-RgTcYwKqtYI.mp4 2.13Мб
03. Data Types and NULLs-RgTcYwKqtYI.pt-BR.vtt 2.23Кб
03. Data Types and NULLs-RgTcYwKqtYI.zh-CN.vtt 1.98Кб
03. DataVis L3 03 V2-srRhFrSPdvs.en.vtt 6.40Кб
03. DataVis L3 03 V2-srRhFrSPdvs.mp4 6.98Мб
03. DataVis L3 03 V2-srRhFrSPdvs.pt-BR.vtt 6.90Кб
03. DataVis L3 03 V2-srRhFrSPdvs.zh-CN.vtt 5.45Кб
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.en.vtt 3.60Кб
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.mp4 3.75Мб
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.pt-BR.vtt 3.38Кб
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.zh-CN.vtt 3.15Кб
03. DataVis L5C03 V2-iokI7HrxeNc.en.vtt 3.67Кб
03. DataVis L5C03 V2-iokI7HrxeNc.mp4 4.22Мб
03. DataVis L5C03 V2-iokI7HrxeNc.pt-BR.vtt 3.78Кб
03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt 5.13Кб
03. Elevator Pitch-S-nAHPrkQrQ.en.vtt 3.53Кб
03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt 3.56Кб
03. Elevator Pitch-S-nAHPrkQrQ.mp4 20.63Мб
03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt 3.47Кб
03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt 3.40Кб
03. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt 1.49Кб
03. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt 1.05Кб
03. Entity Relationship Diagrams-YY2TAJLEINA.mp4 1.31Мб
03. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt 1.15Кб
03. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt 979б
03. Essence of Linear Algebra.html 5.38Кб
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.en.vtt 7.03Кб
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4 8.60Мб
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.pt-BR.vtt 7.08Кб
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.zh-CN.vtt 6.12Кб
03. Fair Coin.html 8.74Кб
03. Fair Coin-9LrlrexpW_o.ar.vtt 1.09Кб
03. Fair Coin-9LrlrexpW_o.en.vtt 879б
03. Fair Coin-9LrlrexpW_o.es-ES.vtt 957б
03. Fair Coin-9LrlrexpW_o.hr.vtt 957б
03. Fair Coin-9LrlrexpW_o.it.vtt 967б
03. Fair Coin-9LrlrexpW_o.ja.vtt 911б
03. Fair Coin-9LrlrexpW_o.mp4 5.84Мб
03. Fair Coin-9LrlrexpW_o.pt-BR.vtt 884б
03. Fair Coin-9LrlrexpW_o.th.vtt 1.78Кб
03. Fair Coin-9LrlrexpW_o.zh-CN.vtt 828б
03. Fair Coin-fSKL742j-zk.ar.vtt 278б
03. Fair Coin-fSKL742j-zk.en.vtt 190б
03. Fair Coin-fSKL742j-zk.es-ES.vtt 192б
03. Fair Coin-fSKL742j-zk.hr.vtt 155б
03. Fair Coin-fSKL742j-zk.it.vtt 178б
03. Fair Coin-fSKL742j-zk.ja.vtt 149б
03. Fair Coin-fSKL742j-zk.mp4 797.83Кб
03. Fair Coin-fSKL742j-zk.pt-BR.vtt 173б
03. Fair Coin-fSKL742j-zk.th.vtt 342б
03. Fair Coin-fSKL742j-zk.zh-CN.vtt 197б
03. Figure 8 Project-QbLVh5GTuJQ.en.vtt 4.28Кб
03. Figure 8 Project-QbLVh5GTuJQ.mp4 13.64Мб
03. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt 4.42Кб
03. Figure 8 Project V2-adtlHL42AuQ.en.vtt 3.90Кб
03. Figure 8 Project V2-adtlHL42AuQ.mp4 12.62Мб
03. Figure 8 Project V2-adtlHL42AuQ.pt-BR.vtt 4.03Кб
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.en.vtt 1.75Кб
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.mp4 4.78Мб
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.pt-BR.vtt 1.57Кб
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.zh-CN.vtt 1.45Кб
03. Further Motivation.html 6.20Кб
03. Further Motivation-sjGxUKrbKoI.ar.vtt 2.03Кб
03. Further Motivation-sjGxUKrbKoI.en.vtt 1.46Кб
03. Further Motivation-sjGxUKrbKoI.mp4 3.51Мб
03. Further Motivation-sjGxUKrbKoI.pt-BR.vtt 1.63Кб
03. Further Motivation-sjGxUKrbKoI.zh-CN.vtt 1.39Кб
03. Gaussian Distribution in One Dimension.html 7.53Кб
03. Git and Version Control Terminology.html 13.86Кб
03. Git Commit.html 21.43Кб
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.ar.vtt 3.63Кб
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.en.vtt 2.65Кб
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.mp4 10.33Мб
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.pt-BR.vtt 2.79Кб
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.zh-CN.vtt 2.42Кб
03. GitHub profile important items.html 7.32Кб
03. GitHub profile important items-prvPVTjVkwQ.ar.vtt 3.93Кб
03. GitHub profile important items-prvPVTjVkwQ.en.vtt 2.93Кб
03. GitHub profile important items-prvPVTjVkwQ.mp4 3.36Мб
03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt 3.14Кб
03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt 2.65Кб
03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt 10.81Кб
03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 11.25Мб
03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt 10.84Кб
03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt 9.46Кб
03. Gradient Descent The Math.html 5.93Кб
03. Heads Tails 2.html 7.88Кб
03. Heads Tails 2-S87Z5DgPJeo.ar.vtt 250б
03. Heads Tails 2-S87Z5DgPJeo.en.vtt 214б
03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt 233б
03. Heads Tails 2-S87Z5DgPJeo.ja.vtt 243б
03. Heads Tails 2-S87Z5DgPJeo.mp4 1.44Мб
03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt 249б
03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt 216б
03. Heads Tails 2-vLhdJtXx060.ar.vtt 339б
03. Heads Tails 2-vLhdJtXx060.en.vtt 244б
03. Heads Tails 2-vLhdJtXx060.es-ES.vtt 239б
03. Heads Tails 2-vLhdJtXx060.ja.vtt 248б
03. Heads Tails 2-vLhdJtXx060.mp4 1.60Мб
03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt 291б
03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt 250б
03. Hierarchical clustering single-link.html 6.61Кб
03. History - A Computer Scientist's Perspective.html 5.89Кб
03. How Computers Interpret Images.html 9.02Кб
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.52Кб
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.18Мб
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 5.95Кб
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 4.91Кб
03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.en.vtt 3.16Кб
03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.mp4 4.94Мб
03. Image Classifier - Part 1 - Development.html 6.50Кб
03. Install Python Using Anaconda.html 9.87Кб
03. Interview Caroline [BMG].html 5.14Кб
03. Interview Dan [Coinbase].html 4.98Кб
03. Interview Rachel [Kaggle].html 5.00Кб
03. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt 3.92Кб
03. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4 25.24Мб
03. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt 4.01Кб
03. Knowledge.html 6.70Кб
03. Knowledge.html 6.70Кб
03. Known and Inferred.html 6.25Кб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.en.vtt 1.89Кб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.mp4 4.81Мб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.pt-BR.vtt 1.94Кб
03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt 1.70Кб
03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt 1.17Кб
03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4 4.03Мб
03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt 1.39Кб
03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt 1.10Кб
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.ar.vtt 2.92Кб
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.en.vtt 2.23Кб
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.mp4 2.60Мб
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.pt-BR.vtt 2.03Кб
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.zh-CN.vtt 2.10Кб
03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.mp4 7.07Мб
03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.pt-BR.vtt 4.96Кб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.en.vtt 2.44Кб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.mp4 9.66Мб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.pt-BR.vtt 2.74Кб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.en.vtt 2.17Кб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.mp4 7.70Мб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.pt-BR.vtt 2.68Кб
03. L3 031 Bar Charts V3-ybXcduB6cXA.en.vtt 3.41Кб
03. L3 031 Bar Charts V3-ybXcduB6cXA.mp4 6.41Мб
03. L3 031 Bar Charts V3-ybXcduB6cXA.pt-BR.vtt 4.01Кб
03. L3 031 Bar Charts V3-ybXcduB6cXA.zh-CN.vtt 2.77Кб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.en.vtt 3.21Кб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.mp4 6.49Мб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.pt-BR.vtt 3.22Кб
03. L3 - Include Upstream Changes-VvoC6hN6FjU.ar.vtt 3.98Кб
03. L3 - Include Upstream Changes-VvoC6hN6FjU.en.vtt 3.28Кб
03. L3 - Include Upstream Changes-VvoC6hN6FjU.mp4 3.01Мб
03. L3 - Include Upstream Changes-VvoC6hN6FjU.pt-BR.vtt 3.77Кб
03. L3 - Include Upstream Changes-VvoC6hN6FjU.zh-CN.vtt 3.02Кб
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.en.vtt 3.42Кб
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.mp4 4.66Мб
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.pt-BR.vtt 3.57Кб
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.zh-CN.vtt 3.01Кб
03. L4 Components Of A Web App V4-2aJf5sO2ox4.en.vtt 2.45Кб
03. L4 Components Of A Web App V4-2aJf5sO2ox4.mp4 3.31Мб
03. L4 Components Of A Web App V4-2aJf5sO2ox4.pt-BR.vtt 2.65Кб
03. L5 031 Color Palettes V1-nirOTWkuiSM.en.vtt 3.55Кб
03. L5 031 Color Palettes V1-nirOTWkuiSM.mp4 4.49Мб
03. L5 031 Color Palettes V1-nirOTWkuiSM.pt-BR.vtt 3.54Кб
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.en.vtt 1.20Кб
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.mp4 1.14Мб
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.pt-BR.vtt 1.30Кб
03. Levels of Measurement Types of Data.html 11.38Кб
03. Linear Combination and Span.html 9.57Кб
03. Matrix Addition Quiz.html 7.94Кб
03. Medical Example 2.html 8.41Кб
03. Medical Example 2-FV_hc3MzS_8.ar.vtt 3.86Кб
03. Medical Example 2-FV_hc3MzS_8.en.vtt 2.84Кб
03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt 2.99Кб
03. Medical Example 2-FV_hc3MzS_8.it.vtt 3.02Кб
03. Medical Example 2-FV_hc3MzS_8.ja.vtt 2.73Кб
03. Medical Example 2-FV_hc3MzS_8.mp4 22.05Мб
03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt 3.16Кб
03. Medical Example 2-FV_hc3MzS_8.th.vtt 5.40Кб
03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt 2.42Кб
03. Medical Example 2-VLLG0rYC7To.ar.vtt 491б
03. Medical Example 2-VLLG0rYC7To.en.vtt 373б
03. Medical Example 2-VLLG0rYC7To.es-ES.vtt 406б
03. Medical Example 2-VLLG0rYC7To.it.vtt 409б
03. Medical Example 2-VLLG0rYC7To.ja.vtt 373б
03. Medical Example 2-VLLG0rYC7To.mp4 2.49Мб
03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt 444б
03. Medical Example 2-VLLG0rYC7To.th.vtt 634б
03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt 351б
03. Meet Andrew.html 4.95Кб
03. Minimizing Distances.html 6.44Кб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt 1.56Кб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4 4.19Мб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt 1.46Кб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt 1.41Кб
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt 2.65Кб
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4 9.20Мб
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt 2.50Кб
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt 2.50Кб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.en.vtt 6.11Кб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.mp4 18.13Мб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.pt-BR.vtt 5.49Кб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.zh-CN.vtt 5.35Кб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.en.vtt 2.48Кб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.mp4 8.39Мб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.pt-BR.vtt 2.32Кб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.zh-CN.vtt 2.09Кб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.en-US.vtt 6.11Кб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4 9.23Мб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.pt-BR.vtt 5.74Кб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.zh-CN.vtt 5.23Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt 4.70Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt 3.55Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4 2.60Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt 3.41Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt 3.31Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt 1.57Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt 1.16Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4 908.99Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt 1.17Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt 1.06Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt 2.19Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt 1.52Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4 5.03Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt 1.57Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt 1.35Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt 1.46Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt 1.14Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4 1.85Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt 1.22Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt 1.03Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt 2.15Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt 1.60Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4 4.23Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt 1.67Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt 1.49Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.ar.vtt 6.46Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.en.vtt 4.92Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.mp4 3.55Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.pt-BR.vtt 4.53Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.zh-CN.vtt 4.53Кб
03. Next Steps-kXMCKZ4HqsM.en.vtt 3.33Кб
03. Next Steps-kXMCKZ4HqsM.mp4 12.96Мб
03. Next Steps-kXMCKZ4HqsM.pt-BR.vtt 3.49Кб
03. Non-Linear Models.html 7.54Кб
03. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.30Кб
03. Non-Linear Models-HWuBKCZsCo8.mp4 1.13Мб
03. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39Кб
03. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12Кб
03. NumPy 0 V1-vyjMs8KFHlE.en.vtt 4.14Кб
03. NumPy 0 V1-vyjMs8KFHlE.mp4 4.35Мб
03. NumPy 0 V1-vyjMs8KFHlE.pt-BR.vtt 4.71Кб
03. NumPy 0 V1-vyjMs8KFHlE.zh-CN.vtt 3.68Кб
03. Opening a terminal.html 7.26Кб
03. Overplotting, Transparency, and Jitter.html 11.03Кб
03. Part 1 V2-n4mbZYIfKb4.en.vtt 10.47Кб
03. Part 1 V2-n4mbZYIfKb4.mp4 13.81Мб
03. Part 1 V2-n4mbZYIfKb4.pt-BR.vtt 9.38Кб
03. Part 1 V2-n4mbZYIfKb4.zh-CN.vtt 8.57Кб
03. Practice Conditional Statements.html 10.15Кб
03. Pre-Lab Student Admissions in Keras.html 11.51Кб
03. Prior And Posterior.html 10.87Кб
03. Prior And Posterior-GlmS_jox08s.ar.vtt 509б
03. Prior And Posterior-GlmS_jox08s.en.vtt 351б
03. Prior And Posterior-GlmS_jox08s.es-ES.vtt 337б
03. Prior And Posterior-GlmS_jox08s.it.vtt 338б
03. Prior And Posterior-GlmS_jox08s.ja.vtt 419б
03. Prior And Posterior-GlmS_jox08s.mp4 3.75Мб
03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt 433б
03. Prior And Posterior-GlmS_jox08s.th.vtt 768б
03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt 355б
03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt 4.20Кб
03. Prior And Posterior-o2Tpws5C2Eg.en.vtt 3.28Кб
03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt 3.41Кб
03. Prior And Posterior-o2Tpws5C2Eg.it.vtt 3.47Кб
03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt 2.86Кб
03. Prior And Posterior-o2Tpws5C2Eg.mp4 14.97Мб
03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt 3.24Кб
03. Prior And Posterior-o2Tpws5C2Eg.th.vtt 5.61Кб
03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt 2.99Кб
03. Probability Quiz.html 10.45Кб
03. Programming in Python.html 5.58Кб
03. Program Structure Schedule.html 12.21Кб
03. Project Details.html 10.90Кб
03. Project Details.html 11.99Кб
03. Project Preview.html 6.01Кб
03. Project Workspace.html 5.57Кб
03. PyTorch Tensors.html 6.67Кб
03. Quiz Arithmetic Operators.html 12.51Кб
03. Quiz Defining Functions.html 9.46Кб
03. Quiz Descriptive vs. Inferential (Udacity Students).html 10.94Кб
03. Quiz FULL OUTER JOIN.html 9.39Кб
03. Quiz LEFT RIGHT.html 8.31Кб
03. Quiz Logistic Regression Quick Check.html 10.81Кб
03. Quiz Machine Learning Big Picture.html 9.19Кб
03. Quiz Window Functions 1.html 8.42Кб
03. Rachel from Kaggle-uVsYYzxbyIg.en.vtt 6.60Кб
03. Rachel from Kaggle-uVsYYzxbyIg.mp4 26.42Мб
03. Rachel from Kaggle-uVsYYzxbyIg.pt-BR.vtt 6.07Кб
03. Random Forests.html 5.92Кб
03. Random Projection in sklearn.html 5.66Кб
03. Recommending Apps 2.html 8.06Кб
03. Refactoring Code.html 7.99Кб
03. Reverting A Commit.html 8.36Кб
03. Reviewing Existing Work.html 20.20Кб
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt 2.75Кб
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4 3.74Мб
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt 2.57Кб
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt 2.36Кб
03. Screencast Fitting A Multiple Linear Regression Model.html 8.16Кб
03. ScreenCast Sampling Distributions and Confidence Intervals.html 8.01Кб
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt 2.45Кб
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4 5.08Мб
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt 2.70Кб
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt 2.07Кб
03. Setting Up Hypothesis Tests - Part I.html 10.45Кб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt 1.23Кб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4 2.62Мб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt 1.21Кб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt 1.12Кб
03. Software Data Requirements.html 8.29Кб
03. Solution Housing Prices.html 7.59Кб
03. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939б
03. Solution Housing Prices-uhdTulw9-Nc.mp4 1001.40Кб
03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1.00Кб
03. Starting the Project.html 6.56Кб
03. Statistical Significance - Solution.html 6.75Кб
03. Stay in sync with source project.html 19.72Кб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.en.vtt 1.40Кб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.mp4 2.91Мб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.pt-BR.vtt 1.09Кб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.zh-CN.vtt 1.15Кб
03. Tell A Story-_IdOUEhjVGI.ar.vtt 2.35Кб
03. Tell A Story-_IdOUEhjVGI.en.vtt 1.89Кб
03. Tell A Story-_IdOUEhjVGI.mp4 6.05Мб
03. Tell A Story-_IdOUEhjVGI.pt-BR.vtt 1.88Кб
03. Tell A Story-_IdOUEhjVGI.zh-CN.vtt 1.79Кб
03. Tell A Story.html 6.04Кб
03. Term 2 Projects.html 8.52Кб
03. Testing.html 6.09Кб
03. Testing and Data Science.html 7.45Кб
03. Testing-EeBZpb-PSac.en.vtt 2.41Кб
03. Testing-EeBZpb-PSac.mp4 2.00Мб
03. Testing-EeBZpb-PSac.pt-BR.vtt 2.37Кб
03. Testing-EeBZpb-PSac.zh-CN.vtt 1.99Кб
03. Testing-gmxGRJSKEb0.en-US.vtt 7.63Кб
03. Testing-gmxGRJSKEb0.mp4 5.63Мб
03. Testing-gmxGRJSKEb0.pt-BR.vtt 7.34Кб
03. Testing-gmxGRJSKEb0.zh-CN.vtt 6.75Кб
03. Testing your models.html 11.42Кб
03. Text Lesson Topics.html 8.23Кб
03. Text Processing.html 10.42Кб
03. Text Processing-6LO6I5M18PQ.en.vtt 1.18Кб
03. Text Processing-6LO6I5M18PQ.mp4 1.77Мб
03. Text Processing-6LO6I5M18PQ.pt-BR.vtt 1.24Кб
03. Text Processing-6LO6I5M18PQ.zh-CN.vtt 1.06Кб
03. Text Processing-pqheVyctkNQ.en.vtt 2.63Кб
03. Text Processing-pqheVyctkNQ.mp4 2.96Мб
03. Text Processing-pqheVyctkNQ.pt-BR.vtt 2.96Кб
03. Text Processing-pqheVyctkNQ.zh-CN.vtt 2.30Кб
03. Text README Showcase.html 10.95Кб
03. Text What's Ahead.html 9.80Кб
03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.en.vtt 1.95Кб
03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.mp4 5.81Мб
03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.pt-BR.vtt 1.95Кб
03. Troubleshooting Possible Errors.html 6.07Кб
03. Two Types of Unsupervised Learning-aHK_rpaS_ts.en.vtt 1.74Кб
03. Two Types of Unsupervised Learning-aHK_rpaS_ts.mp4 2.16Мб
03. Two Types of Unsupervised Learning-aHK_rpaS_ts.pt-BR.vtt 1.77Кб
03. Types of Experiment.html 9.37Кб
03. Types Of Experiments-7ihDj4M7EiU.en.vtt 4.93Кб
03. Types Of Experiments-7ihDj4M7EiU.mp4 7.55Мб
03. Types Of Experiments-7ihDj4M7EiU.pt-BR.vtt 5.30Кб
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.ar.vtt 2.87Кб
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.en.vtt 2.51Кб
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.mp4 3.02Мб
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.pt-BR.vtt 2.10Кб
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.zh-CN.vtt 2.26Кб
03. Univariate Exploration.html 5.72Кб
03. Vectors, what even are they Part 3.html 6.15Кб
03. Vectors 3-mWV_MpEjz9c.en.vtt 5.85Кб
03. Vectors 3-mWV_MpEjz9c.mp4 6.29Мб
03. Vectors 3-mWV_MpEjz9c.pt-BR.vtt 5.43Кб
03. Vectors 3-mWV_MpEjz9c.zh-CN.vtt 4.96Кб
03. Video + Quiz Write Your First Subquery.html 14.66Кб
03. Video + Text The Parch Posey Database.html 12.22Кб
03. Video How Do We Know Our Recommendations Are Good.html 8.88Кб
03. Video Introduction to JOINs.html 7.69Кб
03. Video NULLs and Aggregation.html 9.12Кб
03. Video The Data Science Process - Business Data.html 11.57Кб
03. Video Two Types of Unsupervised Learning.html 7.45Кб
03. Video Weekdays vs. Weekends What is the Difference.html 9.07Кб
03. Video Welcome!.html 8.38Кб
03. What's Next.html 4.91Кб
03. What Is Coming Up-oDJsnQcCPr4.ar.vtt 1.31Кб
03. What Is Coming Up-oDJsnQcCPr4.en.vtt 963б
03. What Is Coming Up-oDJsnQcCPr4.mp4 2.19Мб
03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt 1.07Кб
03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt 913б
03. What is the Difference-I3tQvrCgNrQ.ar.vtt 1.83Кб
03. What is the Difference-I3tQvrCgNrQ.en.vtt 1.31Кб
03. What is the Difference-I3tQvrCgNrQ.mp4 1.27Мб
03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt 1.46Кб
03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt 1.09Кб
03. Why Use an Elevator Pitch.html 6.53Кб
03. Why Use NumPy.html 8.27Кб
03. Why Use Pandas.html 7.28Кб
03. Workspace.html 5.23Кб
03. Workspace.html 5.29Кб
03. World Bank Datasets.html 14.14Кб
03. World Bank Datasets-lNPzOLzZVbw.en.vtt 5.14Кб
03. World Bank Datasets-lNPzOLzZVbw.mp4 9.25Мб
03. World Bank Datasets-lNPzOLzZVbw.pt-BR.vtt 5.20Кб
03. Your First JOIN-HkX9fkNRbU8.ar.vtt 2.56Кб
03. Your First JOIN-HkX9fkNRbU8.en.vtt 2.06Кб
03. Your First JOIN-HkX9fkNRbU8.mp4 2.12Мб
03. Your First JOIN-HkX9fkNRbU8.pt-BR.vtt 1.81Кб
03. Your First JOIN-HkX9fkNRbU8.zh-CN.vtt 1.87Кб
03. Your First Subquery-cTM1jPYXLoQ.ar.vtt 4.05Кб
03. Your First Subquery-cTM1jPYXLoQ.en.vtt 2.86Кб
03. Your First Subquery-cTM1jPYXLoQ.mp4 4.33Мб
03. Your First Subquery-cTM1jPYXLoQ.pt-BR.vtt 3.15Кб
03. Your First Subquery-cTM1jPYXLoQ.zh-CN.vtt 2.56Кб
04. [For Windows] Configuring Git Bash to Run Python.html 14.49Кб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.en.vtt 6.71Кб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.mp4 8.18Мб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.pt-BR.vtt 7.48Кб
04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.en.vtt 1.46Кб
04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.mp4 3.29Мб
04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.pt-BR.vtt 1.61Кб
04. 06 Unit Tests V1-wb9jggHEvgI.en.vtt 3.91Кб
04. 06 Unit Tests V1-wb9jggHEvgI.mp4 4.49Мб
04. 06 Unit Tests V1-wb9jggHEvgI.pt-BR.vtt 4.04Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83Мб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76Кб
04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt 4.65Кб
04. 29 Number Summary-gzUN5zKLHjQ.en.vtt 3.56Кб
04. 29 Number Summary-gzUN5zKLHjQ.mp4 4.36Мб
04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt 3.90Кб
04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt 2.93Кб
04. 5 Flips 1 Head.html 7.90Кб
04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt 364б
04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt 256б
04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt 281б
04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt 254б
04. 5 Flips 1 Head-4LVRNqpdxsw.mp4 1.59Мб
04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt 356б
04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt 268б
04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt 222б
04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt 146б
04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt 160б
04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt 180б
04. 5 Flips 1 Head-VEfOdACY9rA.mp4 1.49Мб
04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt 223б
04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt 153б
04. Absolute vs. Relative Frequency.html 11.82Кб
04. Admissions 3.html 8.36Кб
04. Admissions 3-iKTYAsZLbhc.ar.vtt 738б
04. Admissions 3-iKTYAsZLbhc.en.vtt 622б
04. Admissions 3-iKTYAsZLbhc.es-ES.vtt 671б
04. Admissions 3-iKTYAsZLbhc.hr.vtt 662б
04. Admissions 3-iKTYAsZLbhc.it.vtt 671б
04. Admissions 3-iKTYAsZLbhc.ja.vtt 625б
04. Admissions 3-iKTYAsZLbhc.mp4 1.57Мб
04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt 692б
04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt 556б
04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt 579б
04. Admissions 3-rDw0TIpwJ-c.ar.vtt 108б
04. Admissions 3-rDw0TIpwJ-c.en.vtt 95б
04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt 104б
04. Admissions 3-rDw0TIpwJ-c.hr.vtt 95б
04. Admissions 3-rDw0TIpwJ-c.it.vtt 94б
04. Admissions 3-rDw0TIpwJ-c.ja.vtt 116б
04. Admissions 3-rDw0TIpwJ-c.mp4 467.38Кб
04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt 99б
04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt 99б
04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt 101б
04. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37Кб
04. Arvato Final Project-qBR6A0IQXEE.mp4 25.37Мб
04. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72Кб
04. Arvato Terms and Conditions.html 7.67Кб
04. Bagging.html 5.75Кб
04. Bivariate Exploration.html 5.72Кб
04. Branching Effectively.html 27.90Кб
04. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt 3.65Кб
04. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4 13.54Мб
04. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt 3.44Кб
04. Building a Funnel - Discussion.html 7.72Кб
04. Business And Data Understanding - Example-bXQTGS61BU8.en.vtt 1.60Кб
04. Business And Data Understanding - Example-bXQTGS61BU8.mp4 5.51Мб
04. Business And Data Understanding - Example-bXQTGS61BU8.pt-BR.vtt 1.67Кб
04. Business Example.html 7.20Кб
04. Business Example-Wzz7omSDfEk.en.vtt 1.99Кб
04. Business Example-Wzz7omSDfEk.mp4 4.18Мб
04. Business Example-Wzz7omSDfEk.pt-BR.vtt 2.22Кб
04. Business Example-Wzz7omSDfEk.zh-CN.vtt 1.76Кб
04. Classification Example-46PywnGa_cQ.en.vtt 1.76Кб
04. Classification Example-46PywnGa_cQ.en.vtt 1.76Кб
04. Classification Example-46PywnGa_cQ.mp4 1.62Мб
04. Classification Example-46PywnGa_cQ.mp4 1.62Мб
04. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.60Кб
04. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.60Кб
04. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65Кб
04. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65Кб
04. Classification Problems 2.html 7.57Кб
04. Classification Problems 2.html 8.43Кб
04. Cleaning.html 8.56Кб
04. Cleaning-qawXp9DPV6I.en.vtt 8.29Кб
04. Cleaning-qawXp9DPV6I.mp4 19.59Мб
04. Cleaning-qawXp9DPV6I.pt-BR.vtt 9.05Кб
04. Cleaning-qawXp9DPV6I.zh-CN.vtt 7.47Кб
04. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29Кб
04. Combinando modelos-Boy3zHVrWB4.mp4 4.73Мб
04. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29Кб
04. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61Кб
04. Commit Messages.html 11.25Кб
04. Confusion Matrix.html 9.07Кб
04. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71Кб
04. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52Кб
04. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04Мб
04. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76Кб
04. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96Кб
04. Congratulations.html 5.90Кб
04. COUNT-b4FCWAEGmLg.ar.vtt 1.81Кб
04. COUNT-b4FCWAEGmLg.en.vtt 1.43Кб
04. COUNT-b4FCWAEGmLg.mp4 1.29Мб
04. COUNT-b4FCWAEGmLg.pt-BR.vtt 1.62Кб
04. COUNT-b4FCWAEGmLg.zh-CN.vtt 1.27Кб
04. Course Overview.html 6.41Кб
04. Create Your Elevator Pitch.html 7.53Кб
04. Creating and Saving NumPy ndarrays.html 17.99Кб
04. Creating Pandas Series.html 10.18Кб
04. DataVis L3 04 V2-HLum_ys7RJ0.en.vtt 3.98Кб
04. DataVis L3 04 V2-HLum_ys7RJ0.mp4 4.32Мб
04. DataVis L3 04 V2-HLum_ys7RJ0.pt-BR.vtt 4.27Кб
04. DataVis L3 04 V2-HLum_ys7RJ0.zh-CN.vtt 3.45Кб
04. Data Vis L4 C04 V1-O6ElT4IFXc0.en.vtt 3.16Кб
04. Data Vis L4 C04 V1-O6ElT4IFXc0.mp4 3.24Мб
04. Data Vis L4 C04 V1-O6ElT4IFXc0.pt-BR.vtt 3.12Кб
04. Data Vis L4 C04 V1-O6ElT4IFXc0.zh-CN.vtt 2.80Кб
04. Defining Networks.html 6.68Кб
04. Determine A Repo's Status.html 15.97Кб
04. Determining What To Work On.html 21.25Кб
04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.en.vtt 5.77Кб
04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.mp4 25.82Мб
04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.pt-BR.vtt 5.70Кб
04. Elevator Pitch-0QtgTG49E9I.ar.vtt 2.28Кб
04. Elevator Pitch-0QtgTG49E9I.en.vtt 2.06Кб
04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt 1.99Кб
04. Elevator Pitch-0QtgTG49E9I.mp4 9.98Мб
04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt 1.94Кб
04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt 1.99Кб
04. Encodings Practice.html 6.29Кб
04. Error Function Intuition.html 6.42Кб
04. Examining single-link clustering.html 6.79Кб
04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.en.vtt 4.51Кб
04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.mp4 18.92Мб
04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.pt-BR.vtt 4.69Кб
04. Exploratory vs. Explanatory Analyses.html 7.12Кб
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.ar.vtt 4.93Кб
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.en.vtt 3.63Кб
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.mp4 8.22Мб
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.pt-BR.vtt 4.18Кб
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.zh-CN.vtt 3.22Кб
04. Figure 8 Project-QbLVh5GTuJQ.en.vtt 4.28Кб
04. Figure 8 Project-QbLVh5GTuJQ.mp4 13.64Мб
04. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt 4.42Кб
04. Fitting A Line-gkdoknEEcaI.en.vtt 1.41Кб
04. Fitting A Line-gkdoknEEcaI.mp4 1.12Мб
04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt 1.42Кб
04. Fitting a Line Through Data.html 7.56Кб
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.en.vtt 3.06Кб
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.mp4 9.70Мб
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.pt-BR.vtt 3.00Кб
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.zh-CN.vtt 2.71Кб
04. GMM Clustering in One Dimension.html 7.49Кб
04. Good GitHub repository.html 7.01Кб
04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt 2.56Кб
04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt 1.92Кб
04. Good GitHub repository-qBi8Q1EJdfQ.mp4 3.72Мб
04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt 2.07Кб
04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt 1.92Кб
04. Gradient Descent The Code.html 10.76Кб
04. Guess the Person Now.html 6.54Кб
04. Heat Maps.html 13.66Кб
04. How to Tackle the Exercises.html 10.58Кб
04. Image Classifier - Part 1 - Workspace.html 6.20Кб
04. Independent Component Analysis (ICA).html 6.33Кб
04. Interview Dan [Coinbase].html 5.18Кб
04. Interview Richard [Starbucks].html 5.22Кб
04. Interview Robert [Figure8].html 5.04Кб
04. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt 3.92Кб
04. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4 25.24Мб
04. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt 4.01Кб
04. Introduction to Linear Regression-RD4zbBvXDnM.en.vtt 1.88Кб
04. Introduction to Linear Regression-RD4zbBvXDnM.mp4 2.94Мб
04. Introduction to Linear Regression-RD4zbBvXDnM.pt-BR.vtt 2.12Кб
04. Introduction to Linear Regression-RD4zbBvXDnM.zh-CN.vtt 1.53Кб
04. Intro To MovieTweetings-cuXvLIkq_W8.en.vtt 725б
04. Intro To MovieTweetings-cuXvLIkq_W8.mp4 2.18Мб
04. K-Fold Cross Validation.html 5.81Кб
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.mp4 1.75Мб
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.pt-BR.vtt 2.07Кб
04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt 3.43Кб
04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt 2.45Кб
04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4 8.37Мб
04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt 2.88Кб
04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt 2.18Кб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.en.vtt 4.19Кб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.mp4 16.62Мб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.pt-BR.vtt 4.57Кб
04. L1 - Git Push In Theory-21TvMEtMRys.ar.vtt 927б
04. L1 - Git Push In Theory-21TvMEtMRys.en.vtt 665б
04. L1 - Git Push In Theory-21TvMEtMRys.mp4 656.11Кб
04. L1 - Git Push In Theory-21TvMEtMRys.pt-BR.vtt 666б
04. L1 - Git Push In Theory-21TvMEtMRys.zh-CN.vtt 616б
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.en.vtt 1.40Кб
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.mp4 2.41Мб
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.pt-BR.vtt 1.66Кб
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.zh-CN.vtt 1.18Кб
04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.en.vtt 3.64Кб
04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.mp4 3.81Мб
04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.pt-BR.vtt 3.32Кб
04. L4 041 Heat Maps V4-RyCdvsmBjtE.en.vtt 2.23Кб
04. L4 041 Heat Maps V4-RyCdvsmBjtE.mp4 4.30Мб
04. L4 041 Heat Maps V4-RyCdvsmBjtE.pt-BR.vtt 2.30Кб
04. L4 041 Heat Maps V4-RyCdvsmBjtE.zh-CN.vtt 1.97Кб
04. L5 Outro-rW1YP1aSb08.en.vtt 2.39Кб
04. L5 Outro-rW1YP1aSb08.mp4 9.60Мб
04. L5 Outro-rW1YP1aSb08.pt-BR.vtt 2.48Кб
04. L6 3 ICA V1 V1-ae94x-1JDzg.en.vtt 3.93Кб
04. L6 3 ICA V1 V1-ae94x-1JDzg.mp4 6.02Мб
04. L6 3 ICA V1 V1-ae94x-1JDzg.pt-BR.vtt 3.78Кб
04. Lab Student Admissions in Keras.html 5.84Кб
04. Latent Features-kYLcVgpEwGs.en.vtt 937б
04. Latent Features-kYLcVgpEwGs.mp4 1.69Мб
04. Latent Features-kYLcVgpEwGs.pt-BR.vtt 1.36Кб
04. Layers-pg99FkXYK0M.en.vtt 3.40Кб
04. Layers-pg99FkXYK0M.mp4 3.11Мб
04. Layers-pg99FkXYK0M.pt-BR.vtt 3.29Кб
04. Layers-pg99FkXYK0M.zh-CN.vtt 3.04Кб
04. Learning Plan - First Two Weeks.html 6.44Кб
04. Linear Boundaries.html 6.30Кб
04. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
04. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36Кб
04. Linear Combination -Quiz 1.html 8.19Кб
04. Loaded Coin 1.html 9.04Кб
04. Loaded Coin 1-sNvQeSikRFY.ar.vtt 265б
04. Loaded Coin 1-sNvQeSikRFY.en.vtt 217б
04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt 210б
04. Loaded Coin 1-sNvQeSikRFY.hr.vtt 213б
04. Loaded Coin 1-sNvQeSikRFY.it.vtt 212б
04. Loaded Coin 1-sNvQeSikRFY.ja.vtt 201б
04. Loaded Coin 1-sNvQeSikRFY.mp4 1.24Мб
04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt 201б
04. Loaded Coin 1-sNvQeSikRFY.th.vtt 252б
04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt 192б
04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt 591б
04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt 425б
04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt 417б
04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt 384б
04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt 444б
04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt 415б
04. Loaded Coin 1-T0EjWSjLGjQ.mp4 2.63Мб
04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt 442б
04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt 578б
04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt 380б
04. MacLinux Setup.html 11.03Кб
04. Manage an active PR.html 8.36Кб
04. Medical Example 3.html 8.30Кб
04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt 1.21Кб
04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt 953б
04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt 1003б
04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt 1010б
04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt 1.05Кб
04. Medical Example 3-Iz4ViIg9ZlQ.mp4 6.61Мб
04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt 1.16Кб
04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt 1.81Кб
04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt 785б
04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt 336б
04. Medical Example 3-Rf6WfB_1EJQ.en.vtt 279б
04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt 301б
04. Medical Example 3-Rf6WfB_1EJQ.it.vtt 289б
04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt 262б
04. Medical Example 3-Rf6WfB_1EJQ.mp4 2.10Мб
04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt 410б
04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt 212б
04. Meet Juno.html 4.94Кб
04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.en.vtt 3.19Кб
04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.mp4 2.34Мб
04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.pt-BR.vtt 3.10Кб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.en.vtt 6.14Кб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.mp4 23.41Мб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.pt-BR.vtt 5.42Кб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.zh-CN.vtt 5.68Кб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.en.vtt 3.07Кб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.mp4 10.26Мб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.pt-BR.vtt 3.35Кб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.zh-CN.vtt 2.80Кб
04. MLPs for Image Classification.html 8.29Кб
04. MLPs For Image Classification-TIFStebu530.en.vtt 3.82Кб
04. MLPs For Image Classification-TIFStebu530.mp4 4.40Мб
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.06Кб
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.42Кб
04. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08Кб
04. Multiclass Classification-uNTtvxwfox0.mp4 1.88Мб
04. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12Кб
04. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt 2.59Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt 1.97Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4 3.63Мб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt 2.08Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt 1.87Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt 1.27Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt 1023б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4 1.61Мб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt 1.07Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt 948б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.ar.vtt 837б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.en.vtt 651б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.mp4 499.47Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.pt-BR.vtt 617б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.zh-CN.vtt 639б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.ar.vtt 3.58Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.en.vtt 2.80Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.mp4 2.10Мб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.pt-BR.vtt 2.67Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.zh-CN.vtt 2.49Кб
04. Neural Network Architecture.html 12.19Кб
04. Normalizing 1.html 10.44Кб
04. Normalizing 1-5Tbd3_a5Vug.ar.vtt 562б
04. Normalizing 1-5Tbd3_a5Vug.en.vtt 424б
04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt 455б
04. Normalizing 1-5Tbd3_a5Vug.it.vtt 452б
04. Normalizing 1-5Tbd3_a5Vug.ja.vtt 374б
04. Normalizing 1-5Tbd3_a5Vug.mp4 2.92Мб
04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt 495б
04. Normalizing 1-5Tbd3_a5Vug.th.vtt 653б
04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt 369б
04. Normalizing 1-9SbUxcyDTaQ.ar.vtt 459б
04. Normalizing 1-9SbUxcyDTaQ.en.vtt 336б
04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt 348б
04. Normalizing 1-9SbUxcyDTaQ.it.vtt 372б
04. Normalizing 1-9SbUxcyDTaQ.ja.vtt 353б
04. Normalizing 1-9SbUxcyDTaQ.mp4 2.23Мб
04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt 418б
04. Normalizing 1-9SbUxcyDTaQ.th.vtt 700б
04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt 303б
04. Notebook + Quiz Building Confidence Intervals.html 16.24Кб
04. Notebook + Quiz Fitting A MLR Model.html 18.63Кб
04. NumPy 1 V1-EOHW29kDg7w.en.vtt 7.06Кб
04. NumPy 1 V1-EOHW29kDg7w.mp4 7.53Мб
04. NumPy 1 V1-EOHW29kDg7w.pt-BR.vtt 8.09Кб
04. NumPy 1 V1-EOHW29kDg7w.zh-CN.vtt 6.31Кб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.en.vtt 7.90Кб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.mp4 8.26Мб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.pt-BR.vtt 7.47Кб
04. OOP Syntax.html 10.02Кб
04. Overfitting and Underfitting.html 6.24Кб
04. Pandas 1 V1-iXnYN8cnhzs.en.vtt 3.40Кб
04. Pandas 1 V1-iXnYN8cnhzs.mp4 3.80Мб
04. Pandas 1 V1-iXnYN8cnhzs.pt-BR.vtt 3.77Кб
04. Pandas 1 V1-iXnYN8cnhzs.zh-CN.vtt 3.07Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt 2.19Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt 1.94Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt 1.43Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 8.93Мб
04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt 1.40Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt 1.74Кб
04. Possible Projects.html 9.73Кб
04. Practical Significance.html 10.88Кб
04. Practical Significance-eJ3idt3AJ7E.en.vtt 1.70Кб
04. Practical Significance-eJ3idt3AJ7E.mp4 3.21Мб
04. Program Structure Syllabus.html 8.92Кб
04. Project Workspace - ETL.html 5.94Кб
04. Push Changes To A Remote.html 14.30Кб
04. Py Part 2 V1-u50_ZyKqt8g.en.vtt 22.87Кб
04. Py Part 2 V1-u50_ZyKqt8g.mp4 34.58Мб
04. Py Part 2 V1-u50_ZyKqt8g.pt-BR.vtt 22.06Кб
04. Py Part 2 V1-u50_ZyKqt8g.zh-CN.vtt 18.59Кб
04. Quadratics.html 8.28Кб
04. Quadratics-1R44jvxIPJY.ar.vtt 1.68Кб
04. Quadratics-1R44jvxIPJY.en.vtt 1.37Кб
04. Quadratics-1R44jvxIPJY.es-ES.vtt 1.35Кб
04. Quadratics-1R44jvxIPJY.ja.vtt 1.18Кб
04. Quadratics-1R44jvxIPJY.mp4 7.29Мб
04. Quadratics-1R44jvxIPJY.pt-BR.vtt 1.35Кб
04. Quadratics-1R44jvxIPJY.zh-CN.vtt 1.17Кб
04. Quadratics-GzRNoodJZxk.ar.vtt 802б
04. Quadratics-GzRNoodJZxk.en.vtt 571б
04. Quadratics-GzRNoodJZxk.es-ES.vtt 565б
04. Quadratics-GzRNoodJZxk.ja.vtt 483б
04. Quadratics-GzRNoodJZxk.mp4 863.99Кб
04. Quadratics-GzRNoodJZxk.pt-BR.vtt 593б
04. Quadratics-GzRNoodJZxk.zh-CN.vtt 460б
04. Quiz Data Types (Quantitative vs. Categorical).html 14.05Кб
04. Quiz Descriptive vs. Inferential (Bagels).html 17.03Кб
04. Quiz ERD Fundamentals.html 12.35Кб
04. Quiz Setting Up Hypotheses.html 11.07Кб
04. Recommending Apps 3.html 6.82Кб
04. Recommending Apps-nEvW8B1HNq4.en.vtt 2.78Кб
04. Recommending Apps-nEvW8B1HNq4.mp4 6.32Мб
04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt 2.51Кб
04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt 2.57Кб
04. Resetting Commits.html 23.12Кб
04. Same Data, Different Stories.html 6.87Кб
04. Same Data Different Stories-jSSnkz3QT5Y.ar.vtt 2.58Кб
04. Same Data Different Stories-jSSnkz3QT5Y.en.vtt 1.83Кб
04. Same Data Different Stories-jSSnkz3QT5Y.mp4 4.68Мб
04. Same Data Different Stories-jSSnkz3QT5Y.pt-BR.vtt 1.86Кб
04. Same Data Different Stories-jSSnkz3QT5Y.zh-CN.vtt 1.76Кб
04. Scalar Multiplication of Matrix and Quiz.html 9.07Кб
04. Simulating Many Coin Flips.html 6.75Кб
04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt 3.98Кб
04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt 3.23Кб
04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4 3.41Мб
04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt 3.31Кб
04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt 3.01Кб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt 7.22Кб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4 21.06Мб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt 7.27Кб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt 6.05Кб
04. Solution Arithmetic Operators.html 9.30Кб
04. Solution Clean and Tokenize.html 9.31Кб
04. Solution Conditional Statements.html 9.99Кб
04. Solution Defining Functions.html 7.88Кб
04. Solutions FULL OUTER JOIN.html 8.08Кб
04. Solutions LEFT RIGHT.html 8.40Кб
04. Solutions Window Functions 1.html 8.22Кб
04. Solutions Write Your First Subquery.html 8.13Кб
04. Structure of this lesson.html 6.88Кб
04. Student Hub.html 6.30Кб
04. Student Hub.html 6.30Кб
04. Submitting the project.html 6.87Кб
04. SVM 03 Error Function V1-l-ahImxoi-U.en.vtt 2.71Кб
04. SVM 03 Error Function V1-l-ahImxoi-U.mp4 5.88Мб
04. SVM 03 Error Function V1-l-ahImxoi-U.pt-BR.vtt 2.37Кб
04. SVM 03 Error Function V1-l-ahImxoi-U.zh-CN.vtt 2.34Кб
04. Term 2 Projects.html 7.90Кб
04. Text + Quiz Your First JOIN.html 12.13Кб
04. Text Validating Your Recommendations.html 9.56Кб
04. The Front-End.html 7.66Кб
04. The Front End-CspuxLGFM4U.en.vtt 1.88Кб
04. The Front End-CspuxLGFM4U.mp4 4.89Мб
04. The Front End-CspuxLGFM4U.pt-BR.vtt 1.96Кб
04. Types of Machine Learning - Supervised.html 5.78Кб
04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.en.vtt 1.64Кб
04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.mp4 2.80Мб
04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.pt-BR.vtt 1.99Кб
04. Types of Sampling.html 10.59Кб
04. Types Of Sampling-GF_eQqNoarI.en.vtt 3.00Кб
04. Types Of Sampling-GF_eQqNoarI.mp4 3.34Мб
04. Types Of Sampling-GF_eQqNoarI.pt-BR.vtt 3.27Кб
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.ar.vtt 3.12Кб
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.en.vtt 2.65Кб
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.mp4 2.09Мб
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.pt-BR.vtt 1.99Кб
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.zh-CN.vtt 2.50Кб
04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.49Кб
04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.42Мб
04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.15Кб
04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.54Кб
04. Unit Tests.html 7.32Кб
04. Vectors- Mathematical definition .html 9.44Кб
04. Video + Text First Aggregation - COUNT.html 9.61Кб
04. Video Business Data Understanding - Example.html 10.85Кб
04. Video Fitting Logistic Regression in Python.html 8.84Кб
04. Video Introduction to Five Number Summary.html 10.44Кб
04. Video Introduction to Linear Regression.html 8.02Кб
04. Video Introduction to MovieTweetings.html 9.07Кб
04. Video K-Means Use Cases.html 7.40Кб
04. Video Latent Features.html 7.79Кб
04. Video Posting to Github.html 7.27Кб
04. Video What is Data Why is it important.html 8.23Кб
04. Viewing Modified Files.html 13.29Кб
04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.en.vtt 4.42Кб
04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.mp4 17.07Мб
04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.pt-BR.vtt 4.19Кб
04. What is Anaconda.html 11.77Кб
04. What is Data-ldTDAjrVsA8.ar.vtt 1.91Кб
04. What is Data-ldTDAjrVsA8.en.vtt 1.28Кб
04. What is Data-ldTDAjrVsA8.mp4 2.81Мб
04. What is Data-ldTDAjrVsA8.pt-BR.vtt 1.45Кб
04. What is Data-ldTDAjrVsA8.zh-CN.vtt 1.15Кб
04. Writing Clean Code.html 9.88Кб
04. Your first command (echo).html 8.00Кб
05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.en.vtt 885б
05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.mp4 2.30Мб
05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.pt-BR.vtt 985б
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.en.vtt 1.86Кб
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.mp4 2.77Мб
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.pt-BR.vtt 2.11Кб
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
05. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38Кб
05. 5 Flips 2 Heads.html 7.91Кб
05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt 1.39Кб
05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt 1.09Кб
05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt 1.09Кб
05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt 1.06Кб
05. 5 Flips 2 Heads-69je8wHh2mQ.mp4 7.52Мб
05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt 1.21Кб
05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt 994б
05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt 319б
05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt 238б
05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt 242б
05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt 247б
05. 5 Flips 2 Heads-lhhUjxnbad8.mp4 1.90Мб
05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt 260б
05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt 225б
05. 6 Screencast HTML Code V2-G7fBus1JSc0.en.vtt 7.78Кб
05. 6 Screencast HTML Code V2-G7fBus1JSc0.mp4 10.28Мб
05. 6 Screencast HTML Code V2-G7fBus1JSc0.pt-BR.vtt 8.14Кб
05. Accessing and Deleting Elements in Pandas Series.html 13.71Кб
05. AdaBoost.html 5.76Кб
05. Admissions 4.html 8.13Кб
05. Admissions 4-GD6cQhkoqS4.ar.vtt 90б
05. Admissions 4-GD6cQhkoqS4.en.vtt 86б
05. Admissions 4-GD6cQhkoqS4.hr.vtt 86б
05. Admissions 4-GD6cQhkoqS4.it.vtt 89б
05. Admissions 4-GD6cQhkoqS4.ja.vtt 97б
05. Admissions 4-GD6cQhkoqS4.mp4 831.76Кб
05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt 100б
05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt 90б
05. Admissions 4--GMhV1twy6Y.ar.vtt 204б
05. Admissions 4--GMhV1twy6Y.en.vtt 138б
05. Admissions 4--GMhV1twy6Y.es-ES.vtt 141б
05. Admissions 4--GMhV1twy6Y.hr.vtt 144б
05. Admissions 4--GMhV1twy6Y.it.vtt 173б
05. Admissions 4--GMhV1twy6Y.ja.vtt 154б
05. Admissions 4--GMhV1twy6Y.mp4 523.00Кб
05. Admissions 4--GMhV1twy6Y.pt-BR.vtt 149б
05. Admissions 4--GMhV1twy6Y.zh-CN.vtt 115б
05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt 119б
05. APIs [advanced version].html 9.46Кб
05. Assignment Operators-p_qfzL-x3Cs.ar.vtt 2.42Кб
05. Assignment Operators-p_qfzL-x3Cs.en.vtt 1.79Кб
05. Assignment Operators-p_qfzL-x3Cs.mp4 10.15Мб
05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt 2.08Кб
05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt 1.59Кб
05. Bayes Theorem.html 6.22Кб
05. Binomial Distributions Quiz.html 10.28Кб
05. Categorical Cross-Entropy.html 9.11Кб
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.82Кб
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.42Мб
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.13Кб
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.24Кб
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.ar.vtt 2.92Кб
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.en.vtt 2.29Кб
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.mp4 3.82Мб
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.pt-BR.vtt 2.65Кб
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.zh-CN.vtt 2.06Кб
05. Complete-link, average-link, Ward.html 6.79Кб
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt 2.19Кб
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4 2.21Мб
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt 2.08Кб
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt 1.79Кб
05. Confusion Matrix 2.html 6.63Кб
05. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt 1.05Кб
05. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt 1.10Кб
05. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 1.10Мб
05. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt 889б
05. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt 959б
05. Counting Missing Data.html 8.25Кб
05. COUNT NULLs-ngxgqfFFFLQ.ar.vtt 2.50Кб
05. COUNT NULLs-ngxgqfFFFLQ.en.vtt 1.86Кб
05. COUNT NULLs-ngxgqfFFFLQ.mp4 2.05Мб
05. COUNT NULLs-ngxgqfFFFLQ.pt-BR.vtt 1.98Кб
05. COUNT NULLs-ngxgqfFFFLQ.zh-CN.vtt 1.59Кб
05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt 959б
05. Create A Repo - Outro-h7j4STDFCjs.en.vtt 720б
05. Create A Repo - Outro-h7j4STDFCjs.mp4 2.96Мб
05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt 800б
05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt 664б
05. Data Types-gT6EYlsLZkE.ar.vtt 2.61Кб
05. Data Types-gT6EYlsLZkE.en.vtt 1.86Кб
05. Data Types-gT6EYlsLZkE.mp4 2.07Мб
05. Data Types-gT6EYlsLZkE.pt-BR.vtt 1.99Кб
05. Data Types-gT6EYlsLZkE.zh-CN.vtt 1.78Кб
05. DataVis L5C05 V1-v19gCP4TvwE.en.vtt 1.60Кб
05. DataVis L5C05 V1-v19gCP4TvwE.mp4 1.61Мб
05. DataVis L5C05 V1-v19gCP4TvwE.pt-BR.vtt 1.56Кб
05. Deciding on Metrics - Part I.html 8.43Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33Мб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72Мб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69Кб
05. Early Stopping.html 6.18Кб
05. Exercise OOP Syntax Practice - Part 1.html 8.36Кб
05. Experiment I.html 8.04Кб
05. Experiment I-JLKAdT2JESk.en.vtt 2.58Кб
05. Experiment I-JLKAdT2JESk.mp4 3.01Мб
05. Experiment I-JLKAdT2JESk.pt-BR.vtt 2.96Кб
05. Experiment I-JLKAdT2JESk.zh-CN.vtt 2.13Кб
05. Experiment Size.html 8.57Кб
05. Experiment Size-sImRm8e01jA.en.vtt 4.03Кб
05. Experiment Size-sImRm8e01jA.mp4 6.07Мб
05. Extract.html 18.24Кб
05. Extract Walk Through-Bbj8rQRRVoM.en.vtt 3.48Кб
05. Extract Walk Through-Bbj8rQRRVoM.mp4 5.34Мб
05. Extract Walk Through-Bbj8rQRRVoM.pt-BR.vtt 3.41Кб
05. Faceting in Two Directions.html 8.62Кб
05. FastICA Algorithm.html 5.85Кб
05. Feedforward.html 8.82Кб
05. Gaussian Distribution in 2D.html 7.52Кб
05. Git Diff.html 7.96Кб
05. Higher Dimensions.html 6.77Кб
05. How Does MLR Work-bvM6eUYyurA.en.vtt 5.29Кб
05. How Does MLR Work-bvM6eUYyurA.mp4 18.43Мб
05. How Does MLR Work-bvM6eUYyurA.pt-BR.vtt 5.10Кб
05. How Does MLR Work-bvM6eUYyurA.zh-CN.vtt 4.38Кб
05. HTML.html 13.09Кб
05. Image Classifier - Part 2 - Command Line App.html 8.11Кб
05. Implementing Gradient Descent.html 26.66Кб
05. Installing Anaconda.html 8.85Кб
05. Interview Richard [Starbucks].html 5.19Кб
05. Interview with Art - Part 1.html 7.05Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt 4.59Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt 3.82Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 21.79Мб
05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt 4.00Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt 3.40Кб
05. JOINs with Comparison Operators-48AgxPygRuQ.ar.vtt 3.00Кб
05. JOINs with Comparison Operators-48AgxPygRuQ.en.vtt 2.17Кб
05. JOINs with Comparison Operators-48AgxPygRuQ.mp4 4.22Мб
05. JOINs with Comparison Operators-48AgxPygRuQ.pt-BR.vtt 2.19Кб
05. JOINs with Comparison Operators-48AgxPygRuQ.zh-CN.vtt 1.90Кб
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.ar.vtt 1.05Кб
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.en.vtt 836б
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.mp4 3.67Мб
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.pt-BR.vtt 774б
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.zh-CN.vtt 780б
05. KMeans-B9jdQFpPEk0.en.vtt 1.62Кб
05. KMeans-B9jdQFpPEk0.mp4 1.69Мб
05. KMeans-B9jdQFpPEk0.pt-BR.vtt 1.86Кб
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.ar.vtt 3.60Кб
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.en.vtt 2.86Кб
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.mp4 3.29Мб
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.pt-BR.vtt 2.68Кб
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.zh-CN.vtt 2.50Кб
05. L1 - Git Pull In Theory-MjNU2LTDVAA.ar.vtt 1.52Кб
05. L1 - Git Pull In Theory-MjNU2LTDVAA.en.vtt 1.00Кб
05. L1 - Git Pull In Theory-MjNU2LTDVAA.mp4 898.50Кб
05. L1 - Git Pull In Theory-MjNU2LTDVAA.pt-BR.vtt 1.00Кб
05. L1 - Git Pull In Theory-MjNU2LTDVAA.zh-CN.vtt 1020б
05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt 3.35Кб
05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt 2.42Кб
05. L2 04b Variables II V3-4IJqbP8vi6A.mp4 16.81Мб
05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt 2.82Кб
05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt 2.19Кб
05. L3 - Squashing In Action-cL6ehKtJLUM.ar.vtt 9.90Кб
05. L3 - Squashing In Action-cL6ehKtJLUM.en.vtt 7.23Кб
05. L3 - Squashing In Action-cL6ehKtJLUM.mp4 8.16Мб
05. L3 - Squashing In Action-cL6ehKtJLUM.pt-BR.vtt 6.81Кб
05. L3 - Squashing In Action-cL6ehKtJLUM.zh-CN.vtt 6.24Кб
05. L3 - Squashing In Theory-H5JqcdIB5y0.ar.vtt 4.82Кб
05. L3 - Squashing In Theory-H5JqcdIB5y0.en.vtt 3.39Кб
05. L3 - Squashing In Theory-H5JqcdIB5y0.mp4 2.44Мб
05. L3 - Squashing In Theory-H5JqcdIB5y0.pt-BR.vtt 3.21Кб
05. L3 - Squashing In Theory-H5JqcdIB5y0.zh-CN.vtt 3.07Кб
05. L3 - Squashing Introduction-mRbeT2XVL9w.ar.vtt 1.68Кб
05. L3 - Squashing Introduction-mRbeT2XVL9w.en.vtt 1.34Кб
05. L3 - Squashing Introduction-mRbeT2XVL9w.mp4 4.40Мб
05. L3 - Squashing Introduction-mRbeT2XVL9w.pt-BR.vtt 1.33Кб
05. L3 - Squashing Introduction-mRbeT2XVL9w.zh-CN.vtt 1.17Кб
05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.en.vtt 1.53Кб
05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.mp4 2.70Мб
05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.pt-BR.vtt 1.68Кб
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.en.vtt 6.94Кб
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.mp4 7.96Мб
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.pt-BR.vtt 7.10Кб
05. Latent Features.html 12.01Кб
05. Learning Curves.html 6.15Кб
05. Learning Curves SC V1-ZNhnNVKl8NM.en.vtt 7.98Кб
05. Learning Curves SC V1-ZNhnNVKl8NM.mp4 6.01Мб
05. Learning Curves SC V1-ZNhnNVKl8NM.pt-BR.vtt 8.10Кб
05. Learning Plan - First Two Weeks.html 6.15Кб
05. Lesson Outro.html 5.02Кб
05. Lesson Outro.html 5.22Кб
05. Linear Boundaries.html 8.27Кб
05. Linear Boundaries.html 9.13Кб
05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
05. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
05. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36Кб
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36Кб
05. Linear Dependency .html 7.29Кб
05. Loaded Coin 2.html 8.72Кб
05. Loaded Coin 2-dGffszQYzqc.ar.vtt 1.06Кб
05. Loaded Coin 2-dGffszQYzqc.en.vtt 874б
05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt 880б
05. Loaded Coin 2-dGffszQYzqc.hr.vtt 942б
05. Loaded Coin 2-dGffszQYzqc.it.vtt 915б
05. Loaded Coin 2-dGffszQYzqc.ja.vtt 762б
05. Loaded Coin 2-dGffszQYzqc.mp4 3.36Мб
05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt 866б
05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt 817б
05. Loaded Coin 2-Y7tnbth-gag.ar.vtt 222б
05. Loaded Coin 2-Y7tnbth-gag.en.vtt 180б
05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt 185б
05. Loaded Coin 2-Y7tnbth-gag.hr.vtt 157б
05. Loaded Coin 2-Y7tnbth-gag.it.vtt 171б
05. Loaded Coin 2-Y7tnbth-gag.ja.vtt 159б
05. Loaded Coin 2-Y7tnbth-gag.mp4 805.43Кб
05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt 184б
05. Loaded Coin 2-Y7tnbth-gag.th.vtt 267б
05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt 164б
05. Machine Learning Workflow.html 7.35Кб
05. Machine Learning Workflow-0nA6oTIlwaA.en.vtt 921б
05. Machine Learning Workflow-0nA6oTIlwaA.mp4 1.21Мб
05. Machine Learning Workflow-0nA6oTIlwaA.pt-BR.vtt 1.02Кб
05. Measuring Outcomes.html 12.31Кб
05. Measuring Outcomes Pt 1-HPmMEkbT2uE.en.vtt 1014б
05. Measuring Outcomes Pt 1-HPmMEkbT2uE.mp4 1.59Мб
05. Measuring Outcomes Pt 1-HPmMEkbT2uE.pt-BR.vtt 1.10Кб
05. Measuring Outcomes Pt 2-yLdXcRXcfPw.en.vtt 2.85Кб
05. Measuring Outcomes Pt 2-yLdXcRXcfPw.mp4 5.19Мб
05. Measuring Outcomes Pt 2-yLdXcRXcfPw.pt-BR.vtt 3.36Кб
05. Medical Example 4.html 8.41Кб
05. Medical Example 4-pL8Bf6tck_A.ar.vtt 405б
05. Medical Example 4-pL8Bf6tck_A.en.vtt 310б
05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt 332б
05. Medical Example 4-pL8Bf6tck_A.it.vtt 308б
05. Medical Example 4-pL8Bf6tck_A.ja.vtt 305б
05. Medical Example 4-pL8Bf6tck_A.mp4 1.69Мб
05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt 360б
05. Medical Example 4-pL8Bf6tck_A.th.vtt 541б
05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt 277б
05. Medical Example 4-udduksMWMB4.ar.vtt 518б
05. Medical Example 4-udduksMWMB4.en.vtt 354б
05. Medical Example 4-udduksMWMB4.es-ES.vtt 360б
05. Medical Example 4-udduksMWMB4.it.vtt 359б
05. Medical Example 4-udduksMWMB4.ja.vtt 331б
05. Medical Example 4-udduksMWMB4.mp4 2.29Мб
05. Medical Example 4-udduksMWMB4.pt-BR.vtt 396б
05. Medical Example 4-udduksMWMB4.th.vtt 657б
05. Medical Example 4-udduksMWMB4.zh-CN.vtt 303б
05. Merging.html 17.02Кб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt 1.80Кб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4 4.16Мб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt 1.59Кб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt 1.64Кб
05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.en.vtt 2.98Кб
05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.mp4 2.17Мб
05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.pt-BR.vtt 2.96Кб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.en.vtt 7.92Кб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.mp4 22.51Мб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.pt-BR.vtt 7.64Кб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.zh-CN.vtt 7.17Кб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.en.vtt 1.92Кб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.mp4 6.99Мб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.pt-BR.vtt 2.03Кб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.zh-CN.vtt 1.66Кб
05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32Кб
05. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.90Мб
05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52Кб
05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65Кб
05. Moving a Line.html 7.53Кб
05. Moving A Line-8EIHFyL2Log.en.vtt 1.16Кб
05. Moving A Line-8EIHFyL2Log.mp4 981.31Кб
05. Moving A Line-8EIHFyL2Log.pt-BR.vtt 1.05Кб
05. Multiplication of a Square Matrices.html 10.23Кб
05. Multivariate Exploration.html 5.72Кб
05. Navigating directories (ls, cd, ..).html 7.86Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt 3.28Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt 2.57Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4 3.77Мб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt 2.76Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt 2.46Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt 6.92Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt 5.22Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4 6.19Мб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt 5.56Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt 4.72Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.ar.vtt 2.57Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.en.vtt 1.80Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.mp4 1.43Мб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.pt-BR.vtt 1.68Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.zh-CN.vtt 1.69Кб
05. Next Steps On How to Register.html 5.13Кб
05. Normalizing 2.html 10.45Кб
05. Normalizing 2--pOzdj6pnbA.ar.vtt 95б
05. Normalizing 2--pOzdj6pnbA.en.vtt 89б
05. Normalizing 2--pOzdj6pnbA.es-ES.vtt 109б
05. Normalizing 2--pOzdj6pnbA.it.vtt 90б
05. Normalizing 2--pOzdj6pnbA.ja.vtt 91б
05. Normalizing 2--pOzdj6pnbA.mp4 671.97Кб
05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt 92б
05. Normalizing 2--pOzdj6pnbA.th.vtt 108б
05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt 87б
05. Normalizing 2-WYA5Zbf8HC4.ar.vtt 903б
05. Normalizing 2-WYA5Zbf8HC4.en.vtt 646б
05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt 681б
05. Normalizing 2-WYA5Zbf8HC4.it.vtt 712б
05. Normalizing 2-WYA5Zbf8HC4.ja.vtt 618б
05. Normalizing 2-WYA5Zbf8HC4.mp4 4.26Мб
05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt 769б
05. Normalizing 2-WYA5Zbf8HC4.th.vtt 1.09Кб
05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt 553б
05. Notebook + Quiz Fitting Logistic Regression in Python.html 14.55Кб
05. Notebook Cleaning.html 7.83Кб
05. Notebook MovieTweeting Data.html 8.97Кб
05. NumPy 2 V1-KR3hHf9Zxxg.en.vtt 11.69Кб
05. NumPy 2 V1-KR3hHf9Zxxg.mp4 14.18Мб
05. NumPy 2 V1-KR3hHf9Zxxg.pt-BR.vtt 13.35Кб
05. NumPy 2 V1-KR3hHf9Zxxg.zh-CN.vtt 10.77Кб
05. Optimizers in Keras.html 6.17Кб
05. Outro.html 4.91Кб
05. Outro.html 5.18Кб
05. Outro-dVrYQ7o8a-k.en.vtt 493б
05. Outro-dVrYQ7o8a-k.mp4 1.21Мб
05. Outro-dVrYQ7o8a-k.pt-BR.vtt 422б
05. Outro-xj70jX9Moxs.en.vtt 1.28Кб
05. Outro-xj70jX9Moxs.mp4 5.54Мб
05. Outro-xj70jX9Moxs.pt-BR.vtt 1.26Кб
05. Pandas 2 V1-B7MuFIwboKU.en.vtt 3.31Кб
05. Pandas 2 V1-B7MuFIwboKU.mp4 3.77Мб
05. Pandas 2 V1-B7MuFIwboKU.pt-BR.vtt 3.84Кб
05. Pandas 2 V1-B7MuFIwboKU.zh-CN.vtt 3.00Кб
05. Perceptron Algorithm.html 6.96Кб
05. Pre-assessment.html 6.70Кб
05. Project Survey.html 9.93Кб
05. Project Workspace.html 5.85Кб
05. Project Workspace.html 6.02Кб
05. Project Workspace - ML Pipeline.html 5.96Кб
05. Pulling Changes From A Remote.html 14.42Кб
05. Py Part 3 V2-u8hDj5aJK6I.en.vtt 17.71Кб
05. Py Part 3 V2-u8hDj5aJK6I.mp4 28.37Мб
05. Py Part 3 V2-u8hDj5aJK6I.pt-BR.vtt 16.67Кб
05. Py Part 3 V2-u8hDj5aJK6I.zh-CN.vtt 14.56Кб
05. Quadratics 2.html 8.25Кб
05. Quadratics 2-HjpgML5zsUE.ar.vtt 1.18Кб
05. Quadratics 2-HjpgML5zsUE.en.vtt 879б
05. Quadratics 2-HjpgML5zsUE.es-ES.vtt 886б
05. Quadratics 2-HjpgML5zsUE.ja.vtt 760б
05. Quadratics 2-HjpgML5zsUE.mp4 4.66Мб
05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt 933б
05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt 763б
05. Quadratics 2-N-wpkttwcoA.ar.vtt 1.00Кб
05. Quadratics 2-N-wpkttwcoA.en.vtt 738б
05. Quadratics 2-N-wpkttwcoA.es-ES.vtt 823б
05. Quadratics 2-N-wpkttwcoA.ja.vtt 710б
05. Quadratics 2-N-wpkttwcoA.mp4 1.60Мб
05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt 741б
05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt 650б
05. Quiz 5 Number Summary Practice.html 10.52Кб
05. Quiz Clean Code.html 11.18Кб
05. Quiz Conditional Statements.html 12.10Кб
05. Quiz Exploratory vs. Explanatory.html 9.72Кб
05. Quiz Github Check.html 10.00Кб
05. Quiz Linear Regression Language.html 9.32Кб
05. Quiz Regression Metrics.html 12.73Кб
05. Quiz Student Admissions.html 8.20Кб
05. Quiz Window Functions 2.html 8.61Кб
05. Quizzes on Data Story Telling.html 13.81Кб
05. Richard Sharp Data Science-r0BCM6vhl0Q.en.vtt 2.26Кб
05. Richard Sharp Data Science-r0BCM6vhl0Q.mp4 9.29Мб
05. Richard Sharp Data Science-r0BCM6vhl0Q.pt-BR.vtt 2.16Кб
05. Running a Python Script.html 9.46Кб
05. Running A Python Script-vMKemwCderg.ar.vtt 2.98Кб
05. Running A Python Script-vMKemwCderg.en.vtt 2.23Кб
05. Running A Python Script-vMKemwCderg.mp4 2.55Мб
05. Running A Python Script-vMKemwCderg.pt-BR.vtt 2.54Кб
05. Running A Python Script-vMKemwCderg.zh-CN.vtt 2.13Кб
05. Scatterplot Practice.html 7.05Кб
05. Screencast + Text How Does MLR Work.html 9.29Кб
05. ScreenCast Difference In Means.html 8.33Кб
05. Screencast Using Workspaces.html 11.08Кб
05. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt 2.71Кб
05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4 7.67Мб
05. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt 2.79Кб
05. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt 2.28Кб
05. Setting Up Hypothesis Tests - Part II.html 10.74Кб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt 2.66Кб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4 7.25Мб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt 2.77Кб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt 2.24Кб
05. Solution Your First JOIN.html 8.24Кб
05. Squash Commits.html 15.33Кб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.en.vtt 4.64Кб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.mp4 12.93Мб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.pt-BR.vtt 3.99Кб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.zh-CN.vtt 3.78Кб
05. Text + Quiz Data Types (Ordinal vs. Nominal).html 13.26Кб
05. Text Descriptive vs. Inferential Statistics.html 9.62Кб
05. Text Map of SQL Content.html 12.18Кб
05. Text Subquery Formatting.html 9.00Кб
05. Training Networks.html 6.68Кб
05. Transpose.html 7.62Кб
05. Types of Machine Learning - Unsupervised Reinforcement.html 5.89Кб
05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.en.vtt 1.30Кб
05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.mp4 1.92Мб
05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.pt-BR.vtt 1.52Кб
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.ar.vtt 2.72Кб
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.en.vtt 2.23Кб
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.mp4 1.82Мб
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.pt-BR.vtt 2.10Кб
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.zh-CN.vtt 2.00Кб
05. Undoing Changes--_PPVk2UZMU.ar.vtt 904б
05. Undoing Changes--_PPVk2UZMU.en.vtt 651б
05. Undoing Changes--_PPVk2UZMU.mp4 2.59Мб
05. Undoing Changes--_PPVk2UZMU.pt-BR.vtt 646б
05. Undoing Changes--_PPVk2UZMU.zh-CN.vtt 597б
05. Unit Testing Tools.html 7.20Кб
05. Use Your Elevator Pitch on LinkedIn.html 8.98Кб
05. Using Built-in Functions to Create ndarrays.html 28.25Кб
05. Using Workspaces-45N9NK6kQ0Y.en.vtt 7.03Кб
05. Using Workspaces-45N9NK6kQ0Y.mp4 9.31Мб
05. Using Workspaces-45N9NK6kQ0Y.pt-BR.vtt 5.74Кб
05. Variables-7pxpUot4x0w.ar.vtt 2.80Кб
05. Variables-7pxpUot4x0w.en.vtt 2.09Кб
05. Variables-7pxpUot4x0w.mp4 15.33Мб
05. Variables-7pxpUot4x0w.pt-BR.vtt 2.45Кб
05. Variables-7pxpUot4x0w.zh-CN.vtt 1.79Кб
05. Variables and Assignment Operators.html 14.58Кб
05. Variable Scope.html 9.60Кб
05. Variable Scope-rYubQlAM-gw.ar.vtt 1.60Кб
05. Variable Scope-rYubQlAM-gw.en.vtt 1.24Кб
05. Variable Scope-rYubQlAM-gw.mp4 9.01Мб
05. Variable Scope-rYubQlAM-gw.pt-BR.vtt 1.54Кб
05. Variable Scope-rYubQlAM-gw.zh-CN.vtt 1.12Кб
05. Video COUNT NULLs.html 8.42Кб
05. Video Data Types (Quantitative vs. Categorical).html 8.73Кб
05. Video JOINs with Comparison Operators.html 8.54Кб
05. Video K-Means.html 7.46Кб
05. Video POSITION, STRPOS, SUBSTR.html 7.91Кб
05. Viewing File Changes.html 16.56Кб
05. Windows Setup.html 10.11Кб
05. Working with Equations.html 9.92Кб
06. [Optional] Kaggle Competition.html 5.58Кб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.en.vtt 7.63Кб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.mp4 7.65Мб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.pt-BR.vtt 8.52Кб
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38Кб
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38Кб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.en.vtt 7.71Кб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.mp4 20.47Мб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.pt-BR.vtt 7.92Кб
06. 5 Flips 3 Heads.html 7.92Кб
06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt 167б
06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt 122б
06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt 130б
06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt 157б
06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4 824.92Кб
06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt 160б
06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt 136б
06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt 2.52Кб
06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt 1.71Кб
06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt 1.74Кб
06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt 1.61Кб
06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4 11.94Мб
06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt 1.86Кб
06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt 1.52Кб
06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt 2.22Кб
06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt 1.54Кб
06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4 2.88Мб
06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt 1.80Кб
06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt 1.34Кб
06. Absolute Trick.html 7.53Кб
06. Absolute Trick-DJWjBAqSkZw.en.vtt 6.58Кб
06. Absolute Trick-DJWjBAqSkZw.mp4 5.17Мб
06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt 6.41Кб
06. Accuracy.html 7.54Кб
06. Accuracy-s6SfhPTNOHA.en.vtt 1.72Кб
06. Accuracy-s6SfhPTNOHA.en-US.vtt 2.08Кб
06. Accuracy-s6SfhPTNOHA.mp4 2.34Мб
06. Accuracy-s6SfhPTNOHA.pt-BR.vtt 1.87Кб
06. Accuracy-s6SfhPTNOHA.zh-CN.vtt 1.63Кб
06. A Couple of Notes about OOP.html 14.60Кб
06. Arithmetic Operations on Pandas Series.html 13.52Кб
06. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37Кб
06. Arvato Final Project-qBR6A0IQXEE.mp4 25.37Мб
06. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72Кб
06. Backpropagation.html 11.63Кб
06. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21Кб
06. Backpropagation V2-1SmY3TZTyUk.mp4 6.52Мб
06. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17Кб
06. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39Кб
06. Bar Chart Practice.html 6.82Кб
06. BertelsmannArvato Project Overview.html 8.26Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31Мб
06. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88Кб
06. Cancer Test Results.html 12.01Кб
06. Case Study Machine Learning Workflow.html 7.72Кб
06. Chain Rule-YAhIBOnbt54.en.vtt 1.65Кб
06. Chain Rule-YAhIBOnbt54.mp4 1.46Мб
06. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73Кб
06. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42Кб
06. Classification Error.html 6.44Кб
06. Course Outro.html 5.75Кб
06. Course Outro-twn_cheqoK8.ar.vtt 1.31Кб
06. Course Outro-twn_cheqoK8.en.vtt 998б
06. Course Outro-twn_cheqoK8.mp4 2.67Мб
06. Course Outro-twn_cheqoK8.pt-BR.vtt 896б
06. Course Outro-twn_cheqoK8.zh-CN.vtt 928б
06. Course Wrap Up.html 6.77Кб
06. Course Wrap Up-66Ut8Bv6kgc.ar.vtt 1.68Кб
06. Course Wrap Up-66Ut8Bv6kgc.en.vtt 1.34Кб
06. Course Wrap Up-66Ut8Bv6kgc.mp4 4.00Мб
06. Course Wrap Up-66Ut8Bv6kgc.pt-BR.vtt 1.30Кб
06. Course Wrap Up-66Ut8Bv6kgc.zh-CN.vtt 1.17Кб
06. Create an ndarray.html 7.38Кб
06. Create Your Profile With SEO In Mind.html 8.72Кб
06. Creating Metrics-__7tzDUY870.en.vtt 4.06Кб
06. Creating Metrics-__7tzDUY870.mp4 5.53Мб
06. Creating Metrics-__7tzDUY870.pt-BR.vtt 4.68Кб
06. Creating Metrics.html 11.84Кб
06. Current working directory (pwd).html 7.71Кб
06. Data Types (Continuous vs. Discrete).html 8.19Кб
06. Data Vis L4 C06 V2-f8Kh4PByiEA.en.vtt 3.16Кб
06. Data Vis L4 C06 V2-f8Kh4PByiEA.mp4 3.02Мб
06. Data Vis L4 C06 V2-f8Kh4PByiEA.pt-BR.vtt 3.11Кб
06. Data Vis L4 C06 V2-f8Kh4PByiEA.zh-CN.vtt 2.68Кб
06. DataVis L5C06 V2-BzzTlWHMyV0.en.vtt 3.58Кб
06. DataVis L5C06 V2-BzzTlWHMyV0.mp4 4.12Мб
06. DataVis L5C06 V2-BzzTlWHMyV0.pt-BR.vtt 3.54Кб
06. Deciding on Metrics - Part II.html 19.55Кб
06. Deep Learning.html 5.72Кб
06. Deep Learning And Neural Networks-4rKw3ekE5Wk.en.vtt 2.26Кб
06. Deep Learning And Neural Networks-4rKw3ekE5Wk.mp4 6.38Мб
06. Deep Learning And Neural Networks-4rKw3ekE5Wk.pt-BR.vtt 2.48Кб
06. Detecting Overfitting and Underfitting with Learning Curves.html 18.25Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69Мб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.50Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05Кб
06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15Кб
06. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01Мб
06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16Кб
06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02Кб
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt 1.81Кб
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt 1.43Кб
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4 3.54Мб
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt 1.39Кб
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt 1.23Кб
06. Exercise CSV.html 9.44Кб
06. Exercise HTML.html 8.08Кб
06. Experiment Size - Solution.html 6.73Кб
06. Explanatory Polishing.html 5.72Кб
06. Extracurriculars.html 6.95Кб
06. Fashion-MNIST Exercise.html 6.71Кб
06. Gender Bias.html 8.05Кб
06. Gender Bias-DeWp0hnRq4g.ar.vtt 399б
06. Gender Bias-DeWp0hnRq4g.en.vtt 281б
06. Gender Bias-DeWp0hnRq4g.hr.vtt 291б
06. Gender Bias-DeWp0hnRq4g.it.vtt 311б
06. Gender Bias-DeWp0hnRq4g.ja.vtt 293б
06. Gender Bias-DeWp0hnRq4g.mp4 1.49Мб
06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt 276б
06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt 257б
06. Gender Bias-JWl8lPGhlbY.ar.vtt 549б
06. Gender Bias-JWl8lPGhlbY.en.vtt 468б
06. Gender Bias-JWl8lPGhlbY.hr.vtt 425б
06. Gender Bias-JWl8lPGhlbY.it.vtt 476б
06. Gender Bias-JWl8lPGhlbY.ja.vtt 458б
06. Gender Bias-JWl8lPGhlbY.mp4 1.78Мб
06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt 447б
06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt 355б
06. GMM in 2D.html 7.41Кб
06. Having Git Ignore Files.html 13.17Кб
06. Hierarchical clustering implementation.html 6.84Кб
06. Higher Dimensions.html 8.74Кб
06. Higher Dimensions.html 9.60Кб
06. How to Reduce Features-ydhrelgjriI.en.vtt 1.86Кб
06. How to Reduce Features-ydhrelgjriI.mp4 2.33Мб
06. How to Reduce Features-ydhrelgjriI.pt-BR.vtt 1.85Кб
06. How to Succeed.html 5.47Кб
06. ICA.html 7.03Кб
06. Identify fixes for example “bad” profile.html 9.93Кб
06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt 490б
06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt 371б
06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 569.35Кб
06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt 457б
06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt 357б
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt 1.94Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt 1.39Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 1.59Мб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt 1.48Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt 1.31Кб
06. Image Classifier - Part 2 - Workspace.html 6.20Кб
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.en.vtt 3.01Кб
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.mp4 17.26Мб
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.pt-BR.vtt 2.88Кб
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.zh-CN.vtt 2.44Кб
06. Interpreting Results-UPOxxbKu6CQ.en.vtt 2.06Кб
06. Interpreting Results-UPOxxbKu6CQ.mp4 11.26Мб
06. Interpreting Results-UPOxxbKu6CQ.pt-BR.vtt 2.27Кб
06. Interpreting Results-UPOxxbKu6CQ.zh-CN.vtt 1.71Кб
06. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt 3.40Кб
06. Kaggle Project Final For Classroom-Ssttix340C8.mp4 10.15Мб
06. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt 2.89Кб
06. Keras Lab-a50un22BsLI.en.vtt 586б
06. Keras Lab-a50un22BsLI.mp4 2.19Мб
06. Keras Lab-a50un22BsLI.pt-BR.vtt 574б
06. Keras Lab-a50un22BsLI.zh-CN.vtt 540б
06. L1 061 Visualization In Python V1-MFS-1veFC_c.mp4 5.51Мб
06. L1 061 Visualization In Python V1-MFS-1veFC_c.pt-BR.vtt 2.63Кб
06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt 5.85Кб
06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4 27.11Мб
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.ar.vtt 2.09Кб
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.en.vtt 1.51Кб
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.mp4 1.29Мб
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.pt-BR.vtt 1.51Кб
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.zh-CN.vtt 1.43Кб
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.en.vtt 2.10Кб
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.mp4 3.32Мб
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.pt-BR.vtt 1.99Кб
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.zh-CN.vtt 2.00Кб
06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.en.vtt 1.19Кб
06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.mp4 2.13Мб
06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.pt-BR.vtt 1.27Кб
06. L6 061 Polishing Plots V3-4TixzVx79uk.mp4 3.64Мб
06. L6 061 Polishing Plots V3-4TixzVx79uk.pt-BR.vtt 1.64Кб
06. Loaded Coin 3.html 8.83Кб
06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt 279б
06. Loaded Coin 3-HohMRlmHoMQ.en.vtt 231б
06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt 234б
06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt 238б
06. Loaded Coin 3-HohMRlmHoMQ.it.vtt 234б
06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt 261б
06. Loaded Coin 3-HohMRlmHoMQ.mp4 1.69Мб
06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt 265б
06. Loaded Coin 3-HohMRlmHoMQ.th.vtt 354б
06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt 228б
06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt 302б
06. Loaded Coin 3-P4uljJ_OP6I.en.vtt 260б
06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt 257б
06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt 289б
06. Loaded Coin 3-P4uljJ_OP6I.it.vtt 291б
06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt 247б
06. Loaded Coin 3-P4uljJ_OP6I.mp4 1.35Мб
06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt 249б
06. Loaded Coin 3-P4uljJ_OP6I.th.vtt 447б
06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt 248б
06. Magnitude and Direction .html 8.89Кб
06. Managing packages.html 9.71Кб
06. Medical Example 5.html 8.41Кб
06. Medical Example 5-fqt7NIvMB0s.ar.vtt 153б
06. Medical Example 5-fqt7NIvMB0s.en.vtt 128б
06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt 142б
06. Medical Example 5-fqt7NIvMB0s.it.vtt 127б
06. Medical Example 5-fqt7NIvMB0s.ja.vtt 138б
06. Medical Example 5-fqt7NIvMB0s.mp4 528.90Кб
06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt 169б
06. Medical Example 5-fqt7NIvMB0s.th.vtt 204б
06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt 123б
06. Medical Example 5-ys9w-NNKCcU.ar.vtt 436б
06. Medical Example 5-ys9w-NNKCcU.en.vtt 349б
06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt 358б
06. Medical Example 5-ys9w-NNKCcU.it.vtt 341б
06. Medical Example 5-ys9w-NNKCcU.ja.vtt 315б
06. Medical Example 5-ys9w-NNKCcU.mp4 2.36Мб
06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt 393б
06. Medical Example 5-ys9w-NNKCcU.th.vtt 723б
06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt 275б
06. Merge Conflicts.html 20.00Кб
06. Mini Project Intro.html 5.36Кб
06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.en.vtt 2.73Кб
06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.mp4 2.49Мб
06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.pt-BR.vtt 2.97Кб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.en.vtt 1.76Кб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.mp4 7.48Мб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.pt-BR.vtt 1.61Кб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.zh-CN.vtt 1.64Кб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.en.vtt 1.42Кб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.mp4 6.00Мб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.pt-BR.vtt 1.59Кб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.zh-CN.vtt 1.21Кб
06. Model Validation in Keras.html 8.29Кб
06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.51Кб
06. Model Validation in Keras-002jNXSM6CU.mp4 5.20Мб
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.07Кб
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.74Кб
06. Multilayer Perceptrons.html 20.99Кб
06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.65Кб
06. Multilayer perceptrons-Rs9petvTBLk.mp4 2.85Мб
06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.71Кб
06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.39Кб
06. Normalization.html 8.13Кб
06. Normalization-eOV2UUY8vtM.en.vtt 3.24Кб
06. Normalization-eOV2UUY8vtM.mp4 3.13Мб
06. Normalization-eOV2UUY8vtM.pt-BR.vtt 3.37Кб
06. Normalization-eOV2UUY8vtM.zh-CN.vtt 2.88Кб
06. Normalizing 3.html 10.45Кб
06. Normalizing 3-etrUbOAoh1U.ar.vtt 110б
06. Normalizing 3-etrUbOAoh1U.en.vtt 103б
06. Normalizing 3-etrUbOAoh1U.es-ES.vtt 109б
06. Normalizing 3-etrUbOAoh1U.it.vtt 96б
06. Normalizing 3-etrUbOAoh1U.ja.vtt 94б
06. Normalizing 3-etrUbOAoh1U.mp4 650.53Кб
06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt 108б
06. Normalizing 3-etrUbOAoh1U.th.vtt 135б
06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt 90б
06. Normalizing 3-V96RcbbVP7Q.ar.vtt 283б
06. Normalizing 3-V96RcbbVP7Q.en.vtt 219б
06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt 234б
06. Normalizing 3-V96RcbbVP7Q.it.vtt 231б
06. Normalizing 3-V96RcbbVP7Q.ja.vtt 199б
06. Normalizing 3-V96RcbbVP7Q.mp4 1.22Мб
06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt 253б
06. Normalizing 3-V96RcbbVP7Q.th.vtt 339б
06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt 198б
06. Notebook + Quiz Difference in Means.html 16.01Кб
06. Notes On OOP-NcgDIWm6iBA.en.vtt 6.10Кб
06. Notes On OOP-NcgDIWm6iBA.mp4 6.26Мб
06. Notes On OOP-NcgDIWm6iBA.pt-BR.vtt 6.08Кб
06. Onward.html 5.23Кб
06. Onward-iXbMaTwfIJI.ar.vtt 1.43Кб
06. Onward-iXbMaTwfIJI.en.vtt 1.06Кб
06. Onward-iXbMaTwfIJI.mp4 3.51Мб
06. Onward-iXbMaTwfIJI.pt-BR.vtt 1.12Кб
06. Onward-iXbMaTwfIJI.zh-CN.vtt 973б
06. Other Adaptations of Bivariate Plots.html 13.22Кб
06. Outro.html 5.06Кб
06. Outro-xj70jX9Moxs.en.vtt 1.28Кб
06. Outro-xj70jX9Moxs.mp4 5.54Мб
06. Outro-xj70jX9Moxs.pt-BR.vtt 1.26Кб
06. Pandas 3 V1-yhMT0X6YPFA.en.vtt 2.92Кб
06. Pandas 3 V1-yhMT0X6YPFA.mp4 3.51Мб
06. Pandas 3 V1-yhMT0X6YPFA.pt-BR.vtt 3.41Кб
06. Pandas 3 V1-yhMT0X6YPFA.zh-CN.vtt 2.59Кб
06. Perceptrons.html 6.70Кб
06. Polishing Plots.html 14.49Кб
06. Programming Environment Setup.html 9.81Кб
06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt 6.17Кб
06. Programming Environment Setup-EKxDnCK0NAk.en.vtt 4.14Кб
06. Programming Environment Setup-EKxDnCK0NAk.mp4 7.42Мб
06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt 4.89Кб
06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt 3.93Кб
06. Project Workspace IDE.html 6.09Кб
06. Pull vs Fetch.html 8.50Кб
06. Pull Vs Fetch-kxXdk2HcOBo.ar.vtt 1.24Кб
06. Pull Vs Fetch-kxXdk2HcOBo.en.vtt 913б
06. Pull Vs Fetch-kxXdk2HcOBo.mp4 787.86Кб
06. Pull Vs Fetch-kxXdk2HcOBo.pt-BR.vtt 938б
06. Pull Vs Fetch-kxXdk2HcOBo.zh-CN.vtt 893б
06. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt 2.26Кб
06. PyTorch - Part 4-AEJV_RKZ7VU.mp4 3.32Мб
06. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt 2.19Кб
06. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt 1.91Кб
06. Quadratics 3.html 8.31Кб
06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt 599б
06. Quadratics 3-Ny2vcRZ6Aws.en.vtt 461б
06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt 459б
06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt 389б
06. Quadratics 3-Ny2vcRZ6Aws.mp4 2.61Мб
06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt 465б
06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt 403б
06. Quadratics 3-YSMWpFM92S0.ar.vtt 974б
06. Quadratics 3-YSMWpFM92S0.en.vtt 752б
06. Quadratics 3-YSMWpFM92S0.es-ES.vtt 746б
06. Quadratics 3-YSMWpFM92S0.ja.vtt 587б
06. Quadratics 3-YSMWpFM92S0.mp4 2.54Мб
06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt 673б
06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt 638б
06. Quiz + Notebook A Look at the Data.html 11.03Кб
06. Quiz Data Types (Quantitative vs. Categorical).html 15.52Кб
06. Quiz Experiment I.html 15.65Кб
06. Quiz False Positives.html 7.44Кб
06. Quiz Identifying Clusters.html 7.43Кб
06. Quiz JOINs with Comparison Operators.html 9.72Кб
06. Quiz POSITION, STRPOS, SUBSTR - AME DATA AS QUIZ 1.html 7.66Кб
06. Quiz Setting Up Hypothesis Tests.html 16.67Кб
06. Quiz Unit Tests.html 6.41Кб
06. Quiz Variables and Assignment Operators.html 14.06Кб
06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.en.vtt 5.56Кб
06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.mp4 8.86Мб
06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.en.vtt 11.88Кб
06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.mp4 17.93Мб
06. Regularization.html 7.21Кб
06. Scatter Plots.html 8.58Кб
06. Scatter Plots -DvlxZ37O4i8.ar.vtt 3.07Кб
06. Scatter Plots -DvlxZ37O4i8.en.vtt 2.39Кб
06. Scatter Plots -DvlxZ37O4i8.mp4 3.45Мб
06. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt 2.50Кб
06. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt 1.89Кб
06. Screencast Solution MovieTweeting Data .html 9.33Кб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt 1.93Кб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4 5.41Мб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt 1.94Кб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt 1.67Кб
06. Solution Conditional Statements.html 9.52Кб
06. Solution Student Admissions.html 7.06Кб
06. Solutions Window Functions 2.html 8.58Кб
06. Solving a Simplified Set of Equations.html 13.45Кб
06. Square Matrix Multiplication Quiz.html 8.86Кб
06. Student Admissions-TdgBi6LtOB8.en.vtt 2.50Кб
06. Student Admissions-TdgBi6LtOB8.mp4 5.41Мб
06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt 2.31Кб
06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt 2.33Кб
06. Subqueries Part II-jko-RrZd0R8.ar.vtt 2.11Кб
06. Subqueries Part II-jko-RrZd0R8.en.vtt 1.61Кб
06. Subqueries Part II-jko-RrZd0R8.mp4 2.34Мб
06. Subqueries Part II-jko-RrZd0R8.pt-BR.vtt 1.90Кб
06. Subqueries Part II-jko-RrZd0R8.zh-CN.vtt 1.50Кб
06. SUM-0zUP14PeiXk.ar.vtt 1.42Кб
06. SUM-0zUP14PeiXk.en.vtt 1.10Кб
06. SUM-0zUP14PeiXk.mp4 918.81Кб
06. SUM-0zUP14PeiXk.pt-BR.vtt 1.17Кб
06. SUM-0zUP14PeiXk.zh-CN.vtt 1003б
06. SVM 05 Classification Error V1-nWGVAGXwvGE.en.vtt 3.59Кб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.mp4 12.57Мб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.pt-BR.vtt 3.03Кб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.zh-CN.vtt 2.91Кб
06. Text ERD Reminder.html 9.66Кб
06. Try our workspace out!.html 6.73Кб
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.ar.vtt 2.69Кб
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.en.vtt 2.10Кб
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.mp4 2.18Мб
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.pt-BR.vtt 2.03Кб
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.zh-CN.vtt 1.86Кб
06. Up and Running On Medium-0QzbxjAcMq0.en.vtt 1.18Кб
06. Up and Running On Medium-0QzbxjAcMq0.mp4 2.83Мб
06. Up and Running On Medium-0QzbxjAcMq0.pt-BR.vtt 1.25Кб
06. Variable Scope.html 7.20Кб
06. Video + Quiz Introduction to Sampling Distributions Part I.html 11.01Кб
06. Video How to Reduce Features.html 7.27Кб
06. Video Interpreting Results - Part I.html 8.74Кб
06. Video More On Subqueries.html 7.85Кб
06. Video Multiple Linear Regression Model Results.html 9.09Кб
06. Video SUM.html 8.79Кб
06. Video Up And Running On Medium.html 6.86Кб
06. Video What if We Only Want One Number.html 9.08Кб
06. Video Why SQL.html 14.25Кб
06. Video Why SVD.html 8.37Кб
06. Viewing A Specific Commit.html 11.10Кб
06. Violin Plots.html 10.99Кб
06. Visualization in Python.html 7.09Кб
06. Weighting the Data.html 5.82Кб
06. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt 3.06Кб
06. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt 2.17Кб
06. Why Businesses Choose Databases-j4ey7--h9r8.mp4 2.03Мб
06. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt 2.68Кб
06. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt 2.06Кб
06. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt 4.30Кб
06. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt 2.87Кб
06. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4 3.94Мб
06. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt 3.25Кб
06. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt 2.76Кб
06. Why SVD-WdW1-rRQrLk.en.vtt 2.12Кб
06. Why SVD-WdW1-rRQrLk.mp4 5.58Мб
06. World Bank API [advanced version].html 7.52Кб
06. Writing Modular Code.html 9.67Кб
07. [Lab] Hierarchical clustering .html 6.90Кб
07. [Optional] Kaggle Competition.html 6.71Кб
07. 07 Changing K 1 V3-Bd3M-xUlqEI.en.vtt 1.84Кб
07. 07 Changing K 1 V3-Bd3M-xUlqEI.mp4 2.10Мб
07. 07 Changing K 1 V3-Bd3M-xUlqEI.pt-BR.vtt 1.94Кб
07. 10 Flips 5 Heads.html 7.93Кб
07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt 1.14Кб
07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt 908б
07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt 900б
07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt 923б
07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4 9.25Мб
07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt 1.24Кб
07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt 914б
07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt 342б
07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt 256б
07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt 251б
07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt 304б
07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4 3.37Мб
07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt 383б
07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt 215б
07. Accessing, Deleting, and Inserting Elements Into ndarrays.html 16.94Кб
07. Accuracy 2.html 6.63Кб
07. Accuracy 2-ueYCLfd_aNQ.en.vtt 688б
07. Accuracy 2-ueYCLfd_aNQ.en-US.vtt 716б
07. Accuracy 2-ueYCLfd_aNQ.mp4 573.82Кб
07. Accuracy 2-ueYCLfd_aNQ.pt.vtt 656б
07. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt 618б
07. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt 524б
07. Adapted Plot Practice.html 6.29Кб
07. Aggregation.html 7.87Кб
07. Aggregation-55eZrE82TqA.ar.vtt 1.05Кб
07. Aggregation-55eZrE82TqA.en.vtt 799б
07. Aggregation-55eZrE82TqA.hr.vtt 748б
07. Aggregation-55eZrE82TqA.it.vtt 797б
07. Aggregation-55eZrE82TqA.ja.vtt 708б
07. Aggregation-55eZrE82TqA.mp4 4.66Мб
07. Aggregation-55eZrE82TqA.pt-BR.vtt 797б
07. Aggregation-55eZrE82TqA.zh-CN.vtt 673б
07. Aggregation-8j5hria6Rc8.ar.vtt 98б
07. Aggregation-8j5hria6Rc8.en.vtt 90б
07. Aggregation-8j5hria6Rc8.hr.vtt 85б
07. Aggregation-8j5hria6Rc8.it.vtt 89б
07. Aggregation-8j5hria6Rc8.ja.vtt 89б
07. Aggregation-8j5hria6Rc8.mp4 447.99Кб
07. Aggregation-8j5hria6Rc8.pt-BR.vtt 89б
07. Aggregation-8j5hria6Rc8.zh-CN.vtt 84б
07. A Look at the Data-vPHVUYvCNGE.en.vtt 11.67Кб
07. A Look at the Data-vPHVUYvCNGE.mp4 16.36Мб
07. A Look at the Data-vPHVUYvCNGE.pt-BR.vtt 9.91Кб
07. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3.00Кб
07. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68Мб
07. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15Кб
07. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48Кб
07. A Repository's History - Outro-9rUf2HbdAd8.ar.vtt 1.47Кб
07. A Repository's History - Outro-9rUf2HbdAd8.en.vtt 1.01Кб
07. A Repository's History - Outro-9rUf2HbdAd8.mp4 4.39Мб
07. A Repository's History - Outro-9rUf2HbdAd8.pt-BR.vtt 1.06Кб
07. A Repository's History - Outro-9rUf2HbdAd8.zh-CN.vtt 933б
07. Arvato Terms and Conditions.html 8.40Кб
07. Backpropagation.html 19.36Кб
07. Backpropagation-MZL97-2joxQ.en-US.vtt 2.42Кб
07. Backpropagation-MZL97-2joxQ.mp4 3.44Мб
07. Backpropagation-MZL97-2joxQ.pt-BR.vtt 2.41Кб
07. Backpropagation-MZL97-2joxQ.zh-CN.vtt 2.14Кб
07. Boolean Expressions for Conditions.html 15.16Кб
07. Box Plots.html 12.25Кб
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt 1.22Кб
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt 988б
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4 1.74Мб
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt 1.14Кб
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt 935б
07. Complementary Outcomes.html 7.14Кб
07. Complementary Outcomes-YseJqD-1oUg.ar.vtt 838б
07. Complementary Outcomes-YseJqD-1oUg.en.vtt 682б
07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt 671б
07. Complementary Outcomes-YseJqD-1oUg.hr.vtt 640б
07. Complementary Outcomes-YseJqD-1oUg.it.vtt 697б
07. Complementary Outcomes-YseJqD-1oUg.ja.vtt 669б
07. Complementary Outcomes-YseJqD-1oUg.mp4 4.50Мб
07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt 695б
07. Complementary Outcomes-YseJqD-1oUg.th.vtt 1.22Кб
07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt 582б
07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt 3.12Кб
07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt 2.35Кб
07. Complex Boolean Expressions-gWmIKWgzFqI.mp4 15.06Мб
07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt 2.45Кб
07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt 2.13Кб
07. Conclusion.html 5.06Кб
07. Conditional Probability Bayes Rule Quiz.html 11.00Кб
07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt 1.54Кб
07. Confidence Intervals Applications-C0wgmeRx9yE.mp4 6.08Мб
07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt 1.64Кб
07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt 1.31Кб
07. Controlling Variables.html 7.83Кб
07. Controlling Variables-pLTneSg2MRY.en.vtt 2.35Кб
07. Controlling Variables-pLTneSg2MRY.mp4 4.68Мб
07. Controlling Variables-pLTneSg2MRY.pt-BR.vtt 2.58Кб
07. Course Structure.html 7.21Кб
07. Data Vis L4 C07 V1-f6v3L3IDo24.en.vtt 1.83Кб
07. Data Vis L4 C07 V1-f6v3L3IDo24.mp4 1.83Мб
07. Data Vis L4 C07 V1-f6v3L3IDo24.pt-BR.vtt 2.01Кб
07. Data Vis L4 C07 V1-f6v3L3IDo24.zh-CN.vtt 1.59Кб
07. Deciding on Metrics - Discussion.html 8.50Кб
07. Dimensionality Reduction-mANti9veGtc.en.vtt 2.33Кб
07. Dimensionality Reduction-mANti9veGtc.mp4 2.96Мб
07. Dimensionality Reduction-mANti9veGtc.pt-BR.vtt 2.40Кб
07. Div and Span.html 8.48Кб
07. Div and Span-cbKA_dvthcY.en.vtt 2.35Кб
07. Div and Span-cbKA_dvthcY.mp4 2.91Мб
07. Div and Span-cbKA_dvthcY.pt-BR.vtt 2.40Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98Кб
07. Editing a Python Script.html 8.55Кб
07. Entropy.html 6.74Кб
07. Entropy-piLpj1V1HEk.en.vtt 4.78Кб
07. Entropy-piLpj1V1HEk.mp4 12.59Мб
07. Entropy-piLpj1V1HEk.pt-BR.vtt 4.19Кб
07. Entropy-piLpj1V1HEk.zh-CN.vtt 4.32Кб
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt 1.33Кб
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt 1017б
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4 3.87Мб
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt 1.04Кб
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt 905б
07. Exercise JSON and XML.html 9.46Кб
07. Exercise OOP Syntax Practice - Part 2.html 8.36Кб
07. Good And Bad Examples-95oLh3WtdhY.ar.vtt 4.14Кб
07. Good And Bad Examples-95oLh3WtdhY.en.vtt 2.92Кб
07. Good And Bad Examples-95oLh3WtdhY.mp4 19.91Мб
07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt 3.29Кб
07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt 2.56Кб
07. How Databases Store Data-H0C9z_sRvLE.ar.vtt 1.80Кб
07. How Databases Store Data-H0C9z_sRvLE.en.vtt 1.28Кб
07. How Databases Store Data-H0C9z_sRvLE.mp4 1.24Мб
07. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt 1.38Кб
07. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt 1.18Кб
07. ICA in sklearn.html 5.59Кб
07. Identifying Data Types.html 11.58Кб
07. Inference Validation.html 6.70Кб
07. Interpreting Results in Python-IY88UTiJltQ.en.vtt 2.63Кб
07. Interpreting Results in Python-IY88UTiJltQ.mp4 10.96Мб
07. Interpreting Results in Python-IY88UTiJltQ.pt-BR.vtt 2.67Кб
07. Interpreting Results in Python-IY88UTiJltQ.zh-CN.vtt 2.25Кб
07. Keras.html 17.71Кб
07. Knowledge Based Recommendations-C_vU1tjQHZI.en.vtt 2.13Кб
07. Knowledge Based Recommendations-C_vU1tjQHZI.mp4 2.65Мб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.en.vtt 3.26Кб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.mp4 5.90Мб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.pt-BR.vtt 3.68Кб
07. L3 071 Pie Charts V3-kSrJGJHTKV8.en.vtt 2.55Кб
07. L3 071 Pie Charts V3-kSrJGJHTKV8.mp4 6.05Мб
07. L3 071 Pie Charts V3-kSrJGJHTKV8.pt-BR.vtt 2.91Кб
07. L3 071 Pie Charts V3-kSrJGJHTKV8.zh-CN.vtt 2.13Кб
07. L4 071 Box Plots V4-3gxJag12T0g.en.vtt 3.09Кб
07. L4 071 Box Plots V4-3gxJag12T0g.mp4 4.02Мб
07. L4 071 Box Plots V4-3gxJag12T0g.pt-BR.vtt 3.12Кб
07. L4 071 Box Plots V4-3gxJag12T0g.zh-CN.vtt 2.73Кб
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.en.vtt 938б
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.mp4 1.04Мб
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.pt-BR.vtt 955б
07. L7 0F1 Congrats V3-LF-obnL7CI0.mp4 2.79Мб
07. L7 0F1 Congrats V3-LF-obnL7CI0.pt-BR.vtt 859б
07. Latent Factors-jZz7tFEF2Dc.en.vtt 2.12Кб
07. Latent Factors-jZz7tFEF2Dc.mp4 2.96Мб
07. Lesson Wrap Up.html 5.36Кб
07. Lesson Wrap Up-6Koa4nAu-04.ar.vtt 946б
07. Lesson Wrap Up-6Koa4nAu-04.en.vtt 737б
07. Lesson Wrap Up-6Koa4nAu-04.mp4 2.82Мб
07. Lesson Wrap Up-6Koa4nAu-04.pt-BR.vtt 820б
07. Lesson Wrap Up-6Koa4nAu-04.zh-CN.vtt 695б
07. Linear Combination - Quiz 2.html 7.70Кб
07. Manipulate a Series.html 8.20Кб
07. Margin Error.html 6.39Кб
07. Matrix Multiplication - General.html 10.07Кб
07. Medical Example 6.html 8.41Кб
07. Medical Example 6-iyE5h48qPFQ.ar.vtt 191б
07. Medical Example 6-iyE5h48qPFQ.en.vtt 169б
07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt 166б
07. Medical Example 6-iyE5h48qPFQ.it.vtt 164б
07. Medical Example 6-iyE5h48qPFQ.ja.vtt 141б
07. Medical Example 6-iyE5h48qPFQ.mp4 639.69Кб
07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt 164б
07. Medical Example 6-iyE5h48qPFQ.th.vtt 305б
07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt 163б
07. Medical Example 6--lC9xztr4zA.ar.vtt 473б
07. Medical Example 6--lC9xztr4zA.en.vtt 433б
07. Medical Example 6--lC9xztr4zA.es-ES.vtt 426б
07. Medical Example 6--lC9xztr4zA.it.vtt 414б
07. Medical Example 6--lC9xztr4zA.ja.vtt 264б
07. Medical Example 6--lC9xztr4zA.mp4 1.68Мб
07. Medical Example 6--lC9xztr4zA.pt-BR.vtt 339б
07. Medical Example 6--lC9xztr4zA.th.vtt 604б
07. Medical Example 6--lC9xztr4zA.zh-CN.vtt 376б
07. Meet the Careers Team.html 6.85Кб
07. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.63Кб
07. Meet the Careers Team-cuKecPpZ7PM.mp4 10.12Мб
07. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.83Кб
07. Meet The Instructors-ndyjFUF2e9Q.en.vtt 246б
07. Meet The Instructors-ndyjFUF2e9Q.mp4 14.41Мб
07. Meet The Instructors-ndyjFUF2e9Q.pt-BR.vtt 1.98Кб
07. Meet Your Instructors.html 5.85Кб
07. Metric - Click Through Rate.html 7.44Кб
07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt 3.60Кб
07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4 3.90Мб
07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt 4.04Кб
07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt 2.92Кб
07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.en.vtt 1.26Кб
07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.mp4 1.04Мб
07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.pt-BR.vtt 1.16Кб
07. Notebook Normalization.html 7.84Кб
07. NumPy 3 V1-Rt4aydeo9F8.en.vtt 6.90Кб
07. NumPy 3 V1-Rt4aydeo9F8.mp4 8.50Мб
07. NumPy 3 V1-Rt4aydeo9F8.pt-BR.vtt 7.25Кб
07. NumPy 3 V1-Rt4aydeo9F8.zh-CN.vtt 6.33Кб
07. On Python versions at Udacity.html 8.25Кб
07. Outro.html 5.19Кб
07. Outro.html 5.19Кб
07. Outro.html 5.53Кб
07. Outro-5eyvsMvAPYs.ar.vtt 1.55Кб
07. Outro-5eyvsMvAPYs.en.vtt 1.33Кб
07. Outro-5eyvsMvAPYs.mp4 4.96Мб
07. Outro-5eyvsMvAPYs.pt-BR.vtt 1.39Кб
07. Outro-5eyvsMvAPYs.zh-CN.vtt 1.25Кб
07. Outro-ot4fPX1jzOI.ar.vtt 1.43Кб
07. Outro-ot4fPX1jzOI.en.vtt 1.19Кб
07. Outro-ot4fPX1jzOI.mp4 3.80Мб
07. Outro-ot4fPX1jzOI.pt-BR.vtt 1.08Кб
07. Outro-ot4fPX1jzOI.zh-CN.vtt 1.10Кб
07. Parameters and options (ls -l).html 9.43Кб
07. Perceptrons.html 8.67Кб
07. Perceptrons.html 9.53Кб
07. Perceptrons as Logical Operators.html 17.25Кб
07. Pie Charts.html 12.37Кб
07. Polishing Plots Practice.html 6.10Кб
07. Pre-Lab IMDB Data in Keras.html 9.58Кб
07. Profile Essentials.html 10.50Кб
07. Project 1-PNsxDWtpQTk.en.vtt 5.22Кб
07. Project 1-PNsxDWtpQTk.mp4 6.42Мб
07. Project 1-PNsxDWtpQTk.pt-BR.vtt 4.87Кб
07. Py Part 5 V2-coBbbrGZXI0.en.vtt 17.41Кб
07. Py Part 5 V2-coBbbrGZXI0.mp4 27.08Мб
07. Py Part 5 V2-coBbbrGZXI0.pt-BR.vtt 17.58Кб
07. Py Part 5 V2-coBbbrGZXI0.zh-CN.vtt 13.89Кб
07. Python and APIs [advanced version].html 5.99Кб
07. Quadratics 4.html 7.84Кб
07. Quadratics 4-yimIE9fCvi8.ar.vtt 752б
07. Quadratics 4-yimIE9fCvi8.en.vtt 591б
07. Quadratics 4-yimIE9fCvi8.es-ES.vtt 595б
07. Quadratics 4-yimIE9fCvi8.ja.vtt 449б
07. Quadratics 4-yimIE9fCvi8.mp4 2.00Мб
07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt 547б
07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt 522б
07. Quadratics 4-zB2Y-5YEIec.ar.vtt 623б
07. Quadratics 4-zB2Y-5YEIec.en.vtt 496б
07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt 516б
07. Quadratics 4-zB2Y-5YEIec.ja.vtt 389б
07. Quadratics 4-zB2Y-5YEIec.mp4 519.05Кб
07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt 481б
07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt 389б
07. Quick Fixes #1.html 6.93Кб
07. Quick Fixes-Lb9e2KemR6I.ar.vtt 2.61Кб
07. Quick Fixes-Lb9e2KemR6I.en.vtt 1.89Кб
07. Quick Fixes-Lb9e2KemR6I.mp4 3.99Мб
07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt 2.06Кб
07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt 1.87Кб
07. Quiz Gaussian Mixtures.html 10.37Кб
07. Quiz Interpreting Coefficients in MLR.html 17.16Кб
07. Quiz More On Subqueries.html 12.58Кб
07. Quiz Refactoring - Wine Quality.html 7.63Кб
07. Quiz SUM.html 9.45Кб
07. Quizzes On Scatter Plots.html 15.78Кб
07. Regularization 2.html 6.15Кб
07. Regularization-ndYnUrx8xvs.en.vtt 8.07Кб
07. Regularization-ndYnUrx8xvs.mp4 7.57Мб
07. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78Кб
07. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96Кб
07. Rubric.html 9.81Кб
07. Running Totals And Count-rNJwmnzUTxg.ar.vtt 3.40Кб
07. Running Totals And Count-rNJwmnzUTxg.en.vtt 2.63Кб
07. Running Totals And Count-rNJwmnzUTxg.mp4 3.26Мб
07. Running Totals And Count-rNJwmnzUTxg.pt-BR.vtt 2.61Кб
07. Running Totals And Count-rNJwmnzUTxg.zh-CN.vtt 2.40Кб
07. Scikit Learn.html 5.63Кб
07. Scikit Learn-kxvmG8ZsOVg.en.vtt 1.01Кб
07. Scikit Learn-kxvmG8ZsOVg.mp4 2.34Мб
07. Scikit Learn-kxvmG8ZsOVg.pt-BR.vtt 1.15Кб
07. Screencast A Look at the Data.html 11.45Кб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt 6.46Кб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4 14.35Мб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt 6.53Кб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt 5.41Кб
07. Solution Detecting Overfitting and Underfitting.html 8.88Кб
07. Solution False Positives.html 6.26Кб
07. Solution Machine Learning Workflow.html 9.21Кб
07. Solutions JOINs with Comparison Operators.html 7.97Кб
07. Solutions POSITION, STRPOS, SUBSTR.html 7.39Кб
07. Solution Variables and Assignment Operators.html 11.03Кб
07. Solution Variable Scope.html 7.38Кб
07. Square Trick.html 7.52Кб
07. Square Trick-AGZEq-yQgRM.en.vtt 3.91Кб
07. Square Trick-AGZEq-yQgRM.mp4 3.28Мб
07. Square Trick-AGZEq-yQgRM.pt-BR.vtt 3.78Кб
07. SVM 06 Margin Error V2-dSac8Gfgbok.en.vtt 6.55Кб
07. SVM 06 Margin Error V2-dSac8Gfgbok.mp4 18.79Мб
07. SVM 06 Margin Error V2-dSac8Gfgbok.pt-BR.vtt 5.61Кб
07. SVM 06 Margin Error V2-dSac8Gfgbok.zh-CN.vtt 5.72Кб
07. Test Driven Development and Data Science.html 7.91Кб
07. Text Medium Getting Started Post and Links.html 11.42Кб
07. Text Primary and Foreign Keys.html 8.54Кб
07. Total Probability-_hXCgF-aMB0.ar.vtt 176б
07. Total Probability-_hXCgF-aMB0.en.vtt 140б
07. Total Probability-_hXCgF-aMB0.es-ES.vtt 143б
07. Total Probability-_hXCgF-aMB0.it.vtt 129б
07. Total Probability-_hXCgF-aMB0.ja.vtt 142б
07. Total Probability-_hXCgF-aMB0.mp4 672.27Кб
07. Total Probability-_hXCgF-aMB0.pt-BR.vtt 164б
07. Total Probability-_hXCgF-aMB0.th.vtt 240б
07. Total Probability-_hXCgF-aMB0.zh-CN.vtt 127б
07. Total Probability.html 10.53Кб
07. Total Probability-fAaE5K9OZJc.ar.vtt 404б
07. Total Probability-fAaE5K9OZJc.en.vtt 313б
07. Total Probability-fAaE5K9OZJc.es-ES.vtt 333б
07. Total Probability-fAaE5K9OZJc.it.vtt 324б
07. Total Probability-fAaE5K9OZJc.ja.vtt 345б
07. Total Probability-fAaE5K9OZJc.mp4 2.08Мб
07. Total Probability-fAaE5K9OZJc.pt-BR.vtt 391б
07. Total Probability-fAaE5K9OZJc.th.vtt 579б
07. Total Probability-fAaE5K9OZJc.zh-CN.vtt 297б
07. Truth Value Testing-e52uw7ejV8k.ar.vtt 2.63Кб
07. Truth Value Testing-e52uw7ejV8k.en.vtt 1.77Кб
07. Truth Value Testing-e52uw7ejV8k.mp4 12.78Мб
07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt 2.09Кб
07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt 1.60Кб
07. Try our workspace again!.html 8.08Кб
07. Types of Errors - Part I.html 8.85Кб
07. Types Of Errors - Part I-aw6GMxIvENc.en.vtt 2.13Кб
07. Types Of Errors - Part I-aw6GMxIvENc.mp4 3.07Мб
07. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt 1.99Кб
07. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt 1.80Кб
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.ar.vtt 1.95Кб
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.en.vtt 1.68Кб
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.mp4 2.06Мб
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.pt-BR.vtt 1.58Кб
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.zh-CN.vtt 1.59Кб
07. Using Dummy Tests.html 7.94Кб
07. Using Dummy Tests-rURTLjh3Hlc.en.vtt 3.23Кб
07. Using Dummy Tests-rURTLjh3Hlc.mp4 5.99Мб
07. Vectors- Quiz 1.html 7.50Кб
07. Video (ScreenCast) Interpret Results - Part II.html 8.81Кб
07. Video + Quiz Introduction to Sampling Distributions Part II.html 10.89Кб
07. Video Changing K.html 7.58Кб
07. Video Confidence Interval Applications.html 7.80Кб
07. Video Data Types (Ordinal vs. Nominal).html 8.94Кб
07. Video Dimensionality Reduction.html 7.77Кб
07. Video How Databases Store Data.html 11.12Кб
07. Video Introduction to Standard Deviation and Variance.html 9.93Кб
07. Video Latent Factors.html 8.55Кб
07. Video ROW_NUMBER RANK.html 7.62Кб
07. Video Ways to Recommend Knowledge Based.html 9.64Кб
07. Weighting the Models 1.html 7.23Кб
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt 3.38Кб
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt 2.70Кб
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4 5.20Мб
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt 2.83Кб
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt 2.22Кб
07. When do MLPs (not) work well .html 7.93Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.61Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.54Мб
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.84Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.11Кб
07. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01Кб
07. XOR Perceptron-TF83GfjYLdw.mp4 947.00Кб
07. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1.00Кб
07. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021б
08. (Optional) Margin Error Calculation.html 11.26Кб
08. [Lab] Independent Component Analysis.html 6.11Кб
08. [Lab Solution] Hierarchical Clustering.html 6.91Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.50Кб
08. Access Your Career Portal.html 6.75Кб
08. Advanced API Code Walk-through-AkqO534YooE.en.vtt 11.39Кб
08. Advanced API Code Walk-through-AkqO534YooE.mp4 17.73Мб
08. Advanced API Code Walk-through-AkqO534YooE.pt-BR.vtt 11.66Кб
08. Aggregation 2.html 7.91Кб
08. Aggregation 2-udXhxyls5Dw.ar.vtt 166б
08. Aggregation 2-udXhxyls5Dw.en.vtt 155б
08. Aggregation 2-udXhxyls5Dw.hr.vtt 149б
08. Aggregation 2-udXhxyls5Dw.it.vtt 151б
08. Aggregation 2-udXhxyls5Dw.ja.vtt 137б
08. Aggregation 2-udXhxyls5Dw.mp4 751.89Кб
08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt 168б
08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt 155б
08. Aggregation 2-xhpEqsHTf3g.ar.vtt 184б
08. Aggregation 2-xhpEqsHTf3g.en.vtt 148б
08. Aggregation 2-xhpEqsHTf3g.hr.vtt 163б
08. Aggregation 2-xhpEqsHTf3g.it.vtt 187б
08. Aggregation 2-xhpEqsHTf3g.ja.vtt 156б
08. Aggregation 2-xhpEqsHTf3g.mp4 719.39Кб
08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt 173б
08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt 126б
08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3.00Кб
08. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68Мб
08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15Кб
08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48Кб
08. Bayesian Learning 1.html 9.48Кб
08. Bayes Rule Diagram.html 8.80Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt 2.42Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt 1.92Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt 1.95Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt 2.09Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt 1.98Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4 12.52Мб
08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt 2.17Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt 3.48Кб
08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt 1.70Кб
08. BertelsmannArvato Project Workspace.html 6.61Кб
08. Checking Validity.html 7.97Кб
08. Checking Validity-H3H1SZXqDmQ.en.vtt 2.99Кб
08. Checking Validity-H3H1SZXqDmQ.mp4 4.65Мб
08. Checking Validity-H3H1SZXqDmQ.pt-BR.vtt 3.28Кб
08. Click Through Rate.html 7.78Кб
08. Commenting Object-Oriented Code.html 10.24Кб
08. CONCAT-bCxZnQN28Y4.ar.vtt 822б
08. CONCAT-bCxZnQN28Y4.en.vtt 630б
08. CONCAT-bCxZnQN28Y4.mp4 1.16Мб
08. CONCAT-bCxZnQN28Y4.pt-BR.vtt 737б
08. CONCAT-bCxZnQN28Y4.zh-CN.vtt 536б
08. Conclusion.html 5.61Кб
08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt 2.23Кб
08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt 1.54Кб
08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4 3.81Мб
08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt 1.70Кб
08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt 1.37Кб
08. Correlation Coefficients.html 9.30Кб
08. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt 2.16Кб
08. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt 1.76Кб
08. Correlation Coefficients-rL5Bn8Fi-zE.mp4 3.04Мб
08. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt 1.96Кб
08. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt 1.47Кб
08. Creating a Slide Deck with Jupyter.html 11.20Кб
08. Creating Pandas DataFrames.html 21.49Кб
08. DataVis L3 08 V2-f1we_0dUSXg.en.vtt 4.89Кб
08. DataVis L3 08 V2-f1we_0dUSXg.mp4 5.17Мб
08. DataVis L3 08 V2-f1we_0dUSXg.pt-BR.vtt 5.22Кб
08. DataVis L3 08 V2-f1we_0dUSXg.zh-CN.vtt 4.13Кб
08. DataVis L5C08 V2-fq-hakwfpZw.mp4 5.55Мб
08. DataVis L5C08 V2-fq-hakwfpZw.pt-BR.vtt 3.79Кб
08. Data Vis L6 C06 V1-qIot9qrvcF8.en.vtt 3.82Кб
08. Data Vis L6 C06 V1-qIot9qrvcF8.mp4 6.18Мб
08. Data Vis L6 C06 V1-qIot9qrvcF8.pt-BR.vtt 3.90Кб
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
08. Documentation-_Vl9NJkA6JQ.ar.vtt 3.42Кб
08. Documentation-_Vl9NJkA6JQ.en.vtt 2.70Кб
08. Documentation-_Vl9NJkA6JQ.mp4 15.93Мб
08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt 3.03Кб
08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt 2.36Кб
08. Documentation.html 8.74Кб
08. Dropout.html 6.09Кб
08. Dropout-Ty6K6YiGdBs.en.vtt 4.71Кб
08. Dropout-Ty6K6YiGdBs.mp4 4.22Мб
08. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66Кб
08. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06Кб
08. Dummy Variables--QTgDd-fZuA.en.vtt 2.05Кб
08. Dummy Variables--QTgDd-fZuA.mp4 16.17Мб
08. Dummy Variables--QTgDd-fZuA.pt-BR.vtt 2.00Кб
08. Dummy Variables--QTgDd-fZuA.zh-CN.vtt 1.67Кб
08. Elbow Method For Finding K-e7fqXpo63n8.en.vtt 2.71Кб
08. Elbow Method For Finding K-e7fqXpo63n8.mp4 4.34Мб
08. Elbow Method For Finding K-e7fqXpo63n8.pt-BR.vtt 2.63Кб
08. Entropy Formula 1.html 8.56Кб
08. Entropy Formula-iZiSYrOKvpo.en.vtt 1.80Кб
08. Entropy Formula-iZiSYrOKvpo.mp4 4.30Мб
08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt 1.69Кб
08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt 1.77Кб
08. Ethics in Machine Learning.html 5.66Кб
08. Ethics in ML-fNcTTXR8T08.en.vtt 1.52Кб
08. Ethics in ML-fNcTTXR8T08.mp4 4.42Мб
08. Ethics in ML-fNcTTXR8T08.pt-BR.vtt 1.94Кб
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt 1.06Кб
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt 821б
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4 3.57Мб
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt 965б
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt 704б
08. Exercise SQL Databases.html 9.46Кб
08. Experiment Sizing.html 8.26Кб
08. Formula.html 8.42Кб
08. Formula-DTdS-LlMTQ0.ar.vtt 1.26Кб
08. Formula-DTdS-LlMTQ0.en.vtt 931б
08. Formula-DTdS-LlMTQ0.es-ES.vtt 948б
08. Formula-DTdS-LlMTQ0.ja.vtt 984б
08. Formula-DTdS-LlMTQ0.mp4 10.75Мб
08. Formula-DTdS-LlMTQ0.pt-BR.vtt 1.19Кб
08. Formula-DTdS-LlMTQ0.zh-CN.vtt 745б
08. Formula-yTr8zCHdo5M.ar.vtt 334б
08. Formula-yTr8zCHdo5M.en.vtt 240б
08. Formula-yTr8zCHdo5M.es-ES.vtt 236б
08. Formula-yTr8zCHdo5M.ja.vtt 217б
08. Formula-yTr8zCHdo5M.mp4 1.28Мб
08. Formula-yTr8zCHdo5M.pt-BR.vtt 249б
08. Formula-yTr8zCHdo5M.zh-CN.vtt 210б
08. Grid Search.html 6.27Кб
08. Grid Search SC V1-zDw-ZGiHW5I.en.vtt 4.05Кб
08. Grid Search SC V1-zDw-ZGiHW5I.mp4 3.44Мб
08. Grid Search SC V1-zDw-ZGiHW5I.pt-BR.vtt 4.15Кб
08. Histograms.html 15.97Кб
08. How to Succeed.html 5.75Кб
08. IDs and Classes.html 9.85Кб
08. IDs and Classes-jnfDqdxDbO4.en.vtt 3.41Кб
08. IDs and Classes-jnfDqdxDbO4.mp4 4.43Мб
08. IDs and Classes-jnfDqdxDbO4.pt-BR.vtt 3.84Кб
08. Implementing Backpropagation.html 21.42Кб
08. Integers and Floats.html 12.60Кб
08. Know Your Audience-OjmrU5HlFD8.en.vtt 2.14Кб
08. Know Your Audience-OjmrU5HlFD8.mp4 4.09Мб
08. Know Your Audience-OjmrU5HlFD8.pt-BR.vtt 2.14Кб
08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt 5.85Кб
08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4 27.11Мб
08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.mp4 2.44Мб
08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.pt-BR.vtt 986б
08. L2 2 11 Logging V2-9qKQdRoIMbU.en.vtt 1.05Кб
08. L2 2 11 Logging V2-9qKQdRoIMbU.mp4 3.02Мб
08. L2 2 11 Logging V2-9qKQdRoIMbU.pt-BR.vtt 1.25Кб
08. L3 081 Histograms V2-RLez9L0htGQ.en.vtt 1.82Кб
08. L3 081 Histograms V2-RLez9L0htGQ.mp4 2.88Мб
08. L3 081 Histograms V2-RLez9L0htGQ.pt-BR.vtt 2.08Кб
08. L3 081 Histograms V2-RLez9L0htGQ.zh-CN.vtt 1.52Кб
08. L5 081 Plot Matrices V3-2wY-euTIE5g.en.vtt 2.40Кб
08. L5 081 Plot Matrices V3-2wY-euTIE5g.mp4 3.19Мб
08. L5 081 Plot Matrices V3-2wY-euTIE5g.pt-BR.vtt 2.58Кб
08. Lab IMDB Data in Keras.html 5.82Кб
08. Lesson Summary.html 5.31Кб
08. Linear Combination - Quiz 3.html 8.00Кб
08. Logging.html 6.34Кб
08. Matrix Multiplication Quiz.html 9.19Кб
08. Maximum.html 8.23Кб
08. Maximum-02v8ui9riew.ar.vtt 1.62Кб
08. Maximum-02v8ui9riew.en.vtt 1.27Кб
08. Maximum-02v8ui9riew.es-ES.vtt 1.28Кб
08. Maximum-02v8ui9riew.ja.vtt 1.10Кб
08. Maximum-02v8ui9riew.mp4 6.58Мб
08. Maximum-02v8ui9riew.pt-BR.vtt 1.29Кб
08. Maximum-02v8ui9riew.zh-CN.vtt 1.07Кб
08. Maximum-MZoYGBZTh-g.ar.vtt 684б
08. Maximum-MZoYGBZTh-g.en.vtt 599б
08. Maximum-MZoYGBZTh-g.es-ES.vtt 629б
08. Maximum-MZoYGBZTh-g.ja.vtt 589б
08. Maximum-MZoYGBZTh-g.mp4 2.67Мб
08. Maximum-MZoYGBZTh-g.pt-BR.vtt 736б
08. Maximum-MZoYGBZTh-g.zh-CN.vtt 522б
08. Medical Example 7.html 8.62Кб
08. Medical Example 7-cw_zgQbAWNU.ar.vtt 238б
08. Medical Example 7-cw_zgQbAWNU.en.vtt 167б
08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt 174б
08. Medical Example 7-cw_zgQbAWNU.it.vtt 171б
08. Medical Example 7-cw_zgQbAWNU.ja.vtt 187б
08. Medical Example 7-cw_zgQbAWNU.mp4 803.67Кб
08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt 183б
08. Medical Example 7-cw_zgQbAWNU.th.vtt 228б
08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt 152б
08. Medical Example 7-jPspIs-fNxg.ar.vtt 399б
08. Medical Example 7-jPspIs-fNxg.en.vtt 325б
08. Medical Example 7-jPspIs-fNxg.es-ES.vtt 350б
08. Medical Example 7-jPspIs-fNxg.it.vtt 314б
08. Medical Example 7-jPspIs-fNxg.ja.vtt 260б
08. Medical Example 7-jPspIs-fNxg.mp4 1.29Мб
08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt 293б
08. Medical Example 7-jPspIs-fNxg.th.vtt 548б
08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt 304б
08. Mini project Training an MLP on MNIST.html 10.96Кб
08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.en.vtt 3.72Кб
08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.mp4 3.56Мб
08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.pt-BR.vtt 4.03Кб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.en.vtt 1.76Кб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.mp4 6.42Мб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.pt-BR.vtt 1.98Кб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.zh-CN.vtt 1.43Кб
08. Non-Parametric Tests Part I.html 6.74Кб
08. Notebook + Quiz Interpret Results.html 15.31Кб
08. Notebook Knowledge Based.html 8.97Кб
08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt 6.62Кб
08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt 4.83Кб
08. Números inteiros e floats-MiJ1vfWp-Ts.mp4 15.41Мб
08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt 5.02Кб
08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt 4.26Кб
08. NumPy 4 V1-jeU7lLgyMms.en.vtt 8.00Кб
08. NumPy 4 V1-jeU7lLgyMms.mp4 9.80Мб
08. NumPy 4 V1-jeU7lLgyMms.pt-BR.vtt 8.41Кб
08. NumPy 4 V1-jeU7lLgyMms.zh-CN.vtt 7.24Кб
08. Operations in the Field.html 7.07Кб
08. Organizing your files (mkdir, mv).html 9.12Кб
08. Overview of The Expectation Maximization (EM) Algorithm.html 7.68Кб
08. Pandas 4 V1-eMHUn9v9dds.en.vtt 6.89Кб
08. Pandas 4 V1-eMHUn9v9dds.mp4 6.93Мб
08. Pandas 4 V1-eMHUn9v9dds.pt-BR.vtt 8.18Кб
08. Pandas 4 V1-eMHUn9v9dds.zh-CN.vtt 6.13Кб
08. PCA Properties-1oaaq-0wdB0.en.vtt 3.06Кб
08. PCA Properties-1oaaq-0wdB0.mp4 5.22Мб
08. PCA Properties-1oaaq-0wdB0.pt-BR.vtt 3.17Кб
08. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
08. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
08. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
08. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
08. Perceptrons as Logical Operators.html 19.23Кб
08. Perceptron Trick.html 9.37Кб
08. Plot Matrices.html 11.41Кб
08. Pre-Lab Student Admissions in Keras.html 13.65Кб
08. Py Part 6 V1-HiTih59dCWQ.en.vtt 7.76Кб
08. Py Part 6 V1-HiTih59dCWQ.mp4 15.94Мб
08. Py Part 6 V1-HiTih59dCWQ.pt-BR.vtt 7.95Кб
08. Python Probability Conclusion-4JYar5GykXk.ar.vtt 851б
08. Python Probability Conclusion-4JYar5GykXk.en.vtt 690б
08. Python Probability Conclusion-4JYar5GykXk.mp4 2.05Мб
08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt 769б
08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt 617б
08. Quick Fixes #2.html 7.87Кб
08. Quick Fixes #2-It6AEuSDQw0.ar.vtt 608б
08. Quick Fixes #2-It6AEuSDQw0.en.vtt 435б
08. Quick Fixes #2-It6AEuSDQw0.mp4 2.25Мб
08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt 453б
08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt 410б
08. Quiz Absolute and Square Trick.html 9.31Кб
08. Quiz Boolean Expressions for Conditions.html 16.85Кб
08. Quiz Latent Factors.html 10.27Кб
08. Quiz Primary - Foreign Key Relationship.html 13.51Кб
08. Quiz ROW_NUMBER RANK.html 8.40Кб
08. Quiz Types of Errors - Part I.html 11.04Кб
08. Running a Python Script.html 8.23Кб
08. Running A Python Script-vMKemwCderg.ar.vtt 2.98Кб
08. Running A Python Script-vMKemwCderg.en.vtt 2.23Кб
08. Running A Python Script-vMKemwCderg.mp4 2.55Мб
08. Running A Python Script-vMKemwCderg.pt-BR.vtt 2.54Кб
08. Running A Python Script-vMKemwCderg.zh-CN.vtt 2.13Кб
08. Saving and Loading Trained Networks.html 6.60Кб
08. Scripting with Raw Input.html 9.37Кб
08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt 3.88Кб
08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt 2.73Кб
08. Scripting With Raw Input-Fs9uLV2qfgI.mp4 5.25Мб
08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt 3.28Кб
08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt 2.49Кб
08. Self JOINs-tw_VzEGBOvI.ar.vtt 2.88Кб
08. Self JOINs-tw_VzEGBOvI.en.vtt 2.27Кб
08. Self JOINs-tw_VzEGBOvI.mp4 2.58Мб
08. Self JOINs-tw_VzEGBOvI.pt-BR.vtt 2.24Кб
08. Self JOINs-tw_VzEGBOvI.zh-CN.vtt 2.08Кб
08. Slicing ndarrays.html 16.25Кб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt 2.38Кб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4 6.09Мб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt 2.22Кб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt 2.21Кб
08. Solution Refactoring - Wine Quality.html 7.64Кб
08. Solutions More On Subqueries.html 7.77Кб
08. Solution SUM.html 9.92Кб
08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt 4.83Кб
08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt 3.67Кб
08. Standard Deviation Calculation-H5zA1A-XPoY.mp4 6.78Мб
08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt 3.93Кб
08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt 2.97Кб
08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt 3.13Кб
08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4 8.26Мб
08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt 3.31Кб
08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt 2.60Кб
08. Text + Quiz Types of Databases.html 12.60Кб
08. Tokenization.html 7.70Кб
08. Tokenization-4Ieotbeh4u8.en.vtt 2.89Кб
08. Tokenization-4Ieotbeh4u8.mp4 3.22Мб
08. Tokenization-4Ieotbeh4u8.pt-BR.vtt 3.28Кб
08. Tokenization-4Ieotbeh4u8.zh-CN.vtt 2.59Кб
08. Two Flips 1.html 8.79Кб
08. Two Flips 1-1txkcmxk3vU.ar.vtt 2.19Кб
08. Two Flips 1-1txkcmxk3vU.en.vtt 1.72Кб
08. Two Flips 1-1txkcmxk3vU.es-ES.vtt 1.79Кб
08. Two Flips 1-1txkcmxk3vU.hr.vtt 1.68Кб
08. Two Flips 1-1txkcmxk3vU.it.vtt 1.87Кб
08. Two Flips 1-1txkcmxk3vU.ja.vtt 1.62Кб
08. Two Flips 1-1txkcmxk3vU.mp4 4.01Мб
08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt 1.91Кб
08. Two Flips 1-1txkcmxk3vU.th.vtt 3.35Кб
08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt 1.45Кб
08. Two Flips 1-yUIz7SgUwJg.ar.vtt 663б
08. Two Flips 1-yUIz7SgUwJg.en.vtt 495б
08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt 535б
08. Two Flips 1-yUIz7SgUwJg.hr.vtt 530б
08. Two Flips 1-yUIz7SgUwJg.it.vtt 552б
08. Two Flips 1-yUIz7SgUwJg.ja.vtt 532б
08. Two Flips 1-yUIz7SgUwJg.mp4 3.42Мб
08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt 530б
08. Two Flips 1-yUIz7SgUwJg.th.vtt 1021б
08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt 516б
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.ar.vtt 3.21Кб
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.en.vtt 2.31Кб
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.mp4 2.55Мб
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.pt-BR.vtt 2.06Кб
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.zh-CN.vtt 2.16Кб
08. Using Pipeline.html 11.93Кб
08. Using Pipelines-mxFrS8qpZ6Y.en.vtt 4.35Кб
08. Using Pipelines-mxFrS8qpZ6Y.mp4 5.71Мб
08. Using Pipelines-mxFrS8qpZ6Y.pt-BR.vtt 4.77Кб
08. Video CONCAT.html 6.95Кб
08. Video Data Types (Continuous vs. Discrete).html 9.03Кб
08. Video Dummy Variables.html 9.20Кб
08. Video Elbow Method.html 7.81Кб
08. Video Introduction to Sampling Distributions Part III.html 9.16Кб
08. Video Know Your Audience.html 6.62Кб
08. Video PCA Properties.html 8.07Кб
08. Video Self JOINs.html 7.25Кб
08. Video Standard Deviation Calculation.html 9.31Кб
08. Video Statistical vs. Practical Significance.html 8.11Кб
08. Violin and Box Plot Practice.html 7.06Кб
08. Weighting the Models 2.html 8.87Кб
08. What Experts Say About Visual Encodings.html 7.68Кб
08. What Experts Say About Visual Encodings-98aog0eVcC4.ar.vtt 2.84Кб
08. What Experts Say About Visual Encodings-98aog0eVcC4.en.vtt 2.23Кб
08. What Experts Say About Visual Encodings-98aog0eVcC4.mp4 5.97Мб
08. What Experts Say About Visual Encodings-98aog0eVcC4.pt-BR.vtt 2.44Кб
08. What Experts Say About Visual Encodings-98aog0eVcC4.zh-CN.vtt 2.03Кб
08. What Should You Check.html 12.02Кб
08. When accuracy won't work.html 6.38Кб
08. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt 2.81Кб
08. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 2.15Мб
08. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt 2.79Кб
08. Whitespace-UxkIwcOczQQ.ar.vtt 3.96Кб
08. Whitespace-UxkIwcOczQQ.en.vtt 2.99Кб
08. Whitespace-UxkIwcOczQQ.mp4 20.96Мб
08. Whitespace-UxkIwcOczQQ.pt-BR.vtt 3.23Кб
08. Whitespace-UxkIwcOczQQ.zh-CN.vtt 2.63Кб
08. Why Neural Networks.html 8.42Кб
08. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38Кб
08. Why Neural Networks-zAkzOZntK6Y.mp4 982.27Кб
08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27Кб
08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18Кб
08. Work Experiences Accomplishments.html 8.96Кб
08. World Bank Data Dashboard [advanced version].html 7.54Кб
08. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01Кб
08. XOR Perceptron-TF83GfjYLdw.mp4 947.00Кб
08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1.00Кб
08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021б
09. [Solution] Independent Component Analysis.html 6.12Кб
09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt 2.88Кб
09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 2.22Мб
09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt 2.67Кб
09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.en.vtt 1.61Кб
09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.mp4 5.40Мб
09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.pt-BR.vtt 1.93Кб
09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.en.vtt 2.08Кб
09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.mp4 7.03Мб
09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.pt-BR.vtt 2.43Кб
09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.en.vtt 7.08Кб
09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.mp4 9.01Мб
09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.pt-BR.vtt 5.81Кб
09. Accessing Elements in Pandas DataFrames.html 29.43Кб
09. Advantages of Using Pipeline.html 10.43Кб
09. A Gaussian Class.html 15.02Кб
09. Aggregation 3.html 7.91Кб
09. Aggregation 3-tPSj6_m-0_M.ar.vtt 92б
09. Aggregation 3-tPSj6_m-0_M.en.vtt 86б
09. Aggregation 3-tPSj6_m-0_M.hr.vtt 83б
09. Aggregation 3-tPSj6_m-0_M.it.vtt 87б
09. Aggregation 3-tPSj6_m-0_M.ja.vtt 88б
09. Aggregation 3-tPSj6_m-0_M.mp4 220.29Кб
09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt 89б
09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt 84б
09. Aggregation 3-YkaVgZ-yFrM.ar.vtt 420б
09. Aggregation 3-YkaVgZ-yFrM.en.vtt 317б
09. Aggregation 3-YkaVgZ-yFrM.hr.vtt 319б
09. Aggregation 3-YkaVgZ-yFrM.it.vtt 307б
09. Aggregation 3-YkaVgZ-yFrM.ja.vtt 305б
09. Aggregation 3-YkaVgZ-yFrM.mp4 2.16Мб
09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt 349б
09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt 293б
09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3.00Кб
09. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68Мб
09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15Кб
09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48Кб
09. Arrangements.html 7.87Кб
09. Arrangements-GeINbOOYkF8.ar.vtt 2.27Кб
09. Arrangements-GeINbOOYkF8.en.vtt 1.63Кб
09. Arrangements-GeINbOOYkF8.es-ES.vtt 1.69Кб
09. Arrangements-GeINbOOYkF8.ja.vtt 1.70Кб
09. Arrangements-GeINbOOYkF8.mp4 15.95Мб
09. Arrangements-GeINbOOYkF8.pt-BR.vtt 1.92Кб
09. Arrangements-GeINbOOYkF8.zh-CN.vtt 1.36Кб
09. Arrangements-NRPcnpmFCg8.ar.vtt 656б
09. Arrangements-NRPcnpmFCg8.en.vtt 453б
09. Arrangements-NRPcnpmFCg8.es-ES.vtt 493б
09. Arrangements-NRPcnpmFCg8.ja.vtt 473б
09. Arrangements-NRPcnpmFCg8.mp4 2.07Мб
09. Arrangements-NRPcnpmFCg8.pt-BR.vtt 599б
09. Arrangements-NRPcnpmFCg8.zh-CN.vtt 408б
09. Bayesian Learning 2.html 6.27Кб
09. Boolean Indexing, Set Operations, and Sorting.html 13.22Кб
09. Build and Strengthen Your Network.html 9.87Кб
09. Business And Data Understanding - Part 2-iInjuIgBWIo.en.vtt 2.44Кб
09. Business And Data Understanding - Part 2-iInjuIgBWIo.mp4 6.79Мб
09. Business And Data Understanding - Part 2-iInjuIgBWIo.pt-BR.vtt 2.51Кб
09. Capstone-bq-H7M5BU3U.en.vtt 1.59Кб
09. Capstone-bq-H7M5BU3U.mp4 6.64Мб
09. Careers Team Content.html 5.98Кб
09. Chart Junk.html 7.19Кб
09. Chart Junk-3BTBEYOG2o8.ar.vtt 2.97Кб
09. Chart Junk-3BTBEYOG2o8.en.vtt 2.13Кб
09. Chart Junk-3BTBEYOG2o8.mp4 5.35Мб
09. Chart Junk-3BTBEYOG2o8.pt-BR.vtt 2.19Кб
09. Chart Junk-3BTBEYOG2o8.zh-CN.vtt 1.93Кб
09. Checking Bias.html 11.06Кб
09. Checking Bias-ppjNNY4DhPw.en.vtt 4.44Кб
09. Checking Bias-ppjNNY4DhPw.mp4 5.85Мб
09. Checking Bias-ppjNNY4DhPw.pt-BR.vtt 4.81Кб
09. Clustered Bar Charts.html 13.70Кб
09. Correlation Coefficient Quizzes.html 12.33Кб
09. Data Types Summary-T-KrQoAJUpI.ar.vtt 1.14Кб
09. Data Types Summary-T-KrQoAJUpI.en.vtt 828б
09. Data Types Summary-T-KrQoAJUpI.mp4 2.21Мб
09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt 919б
09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt 775б
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.en.vtt 3.16Кб
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.mp4 3.74Мб
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.pt-BR.vtt 3.36Кб
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.zh-CN.vtt 2.77Кб
09. DataVis L5C09 V1-xlZ9AMV6VUE.mp4 3.09Мб
09. DataVis L5C09 V1-xlZ9AMV6VUE.pt-BR.vtt 2.77Кб
09. Downloading (curl).html 8.22Кб
09. Efficient Code.html 7.74Кб
09. Entropy Formula 2.html 8.12Кб
09. Equivalent Diagram.html 9.09Кб
09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt 1.44Кб
09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt 1.14Кб
09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt 1.93Кб
09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt 1.18Кб
09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt 1.21Кб
09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt 1.08Кб
09. Equivalent Diagram-aUFWZ2uJuBE.mp4 7.38Мб
09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt 1.30Кб
09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt 1014б
09. Error Function.html 6.40Кб
09. Exercise HTML Div, Span, IDs, Classes.html 8.13Кб
09. Expectation Maximization Part 1.html 7.54Кб
09. Experiment II.html 7.36Кб
09. Experiment II-fq4eO7CybA4.en.vtt 1.08Кб
09. Experiment II-fq4eO7CybA4.mp4 2.31Мб
09. Experiment II-fq4eO7CybA4.pt-BR.vtt 1.29Кб
09. Experiment II-fq4eO7CybA4.zh-CN.vtt 987б
09. Experiment Sizing - Discussion.html 8.73Кб
09. Extracting Text Data.html 9.26Кб
09. False Negatives and Positives.html 8.72Кб
09. Feature Engineering.html 8.17Кб
09. Further Reading.html 5.76Кб
09. Gaussian Class-TVzNdFYyJIU.en.vtt 2.11Кб
09. Gaussian Class-TVzNdFYyJIU.mp4 6.04Мб
09. Gaussian Class-TVzNdFYyJIU.pt-BR.vtt 2.11Кб
09. Getting and Using Feedback.html 6.76Кб
09. Gradient Descent.html 7.55Кб
09. Gradient Descent-4s4x9h6AN5Y.en.vtt 5.61Кб
09. Gradient Descent-4s4x9h6AN5Y.mp4 4.25Мб
09. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt 5.23Кб
09. Grid Search in sklearn.html 7.56Кб
09. HC examples and applications.html 7.29Кб
09. Histogram Practice.html 6.82Кб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.en.vtt 2.10Кб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.mp4 8.40Мб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.pt-BR.vtt 2.42Кб
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.en.vtt 2.02Кб
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.mp4 4.22Мб
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.pt-BR.vtt 2.27Кб
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.zh-CN.vtt 1.74Кб
09. L5 091 Feature Engineering V2-jpMOSFMMga4.en.vtt 1.38Кб
09. L5 091 Feature Engineering V2-jpMOSFMMga4.mp4 2.16Мб
09. L5 091 Feature Engineering V2-jpMOSFMMga4.pt-BR.vtt 1.46Кб
09. L6 10 V1 V6-LoYT4NMSPGk.mp4 3.06Мб
09. L6 10 V1 V6-LoYT4NMSPGk.pt-BR.vtt 1.54Кб
09. Lab Student Admissions in Keras.html 7.98Кб
09. Linear Transformation and Matrices . Part 1.html 6.52Кб
09. Linear Transformations 1-99jYIxBRDww.en.vtt 5.54Кб
09. Linear Transformations 1-99jYIxBRDww.mp4 20.77Мб
09. Linear Transformations 1-99jYIxBRDww.pt-BR.vtt 5.81Кб
09. Linear Transformations 1-99jYIxBRDww.zh-CN.vtt 4.67Кб
09. Loading Data Sets with Torchvision.html 6.74Кб
09. Local Connectivity.html 7.59Кб
09. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95Кб
09. Local Connectivity-z9wiDg0w-Dc.mp4 12.02Мб
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29Кб
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62Кб
09. Local Minima.html 6.13Кб
09. Local Minima-gF_sW_nY-xw.en.vtt 1.14Кб
09. Local Minima-gF_sW_nY-xw.mp4 819.86Кб
09. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05Кб
09. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01Кб
09. Log Messages.html 7.02Кб
09. Maximum Value.html 7.69Кб
09. Maximum Value-rjpcSymYulE.ar.vtt 532б
09. Maximum Value-rjpcSymYulE.en.vtt 364б
09. Maximum Value-rjpcSymYulE.es-ES.vtt 389б
09. Maximum Value-rjpcSymYulE.ja.vtt 302б
09. Maximum Value-rjpcSymYulE.mp4 771.83Кб
09. Maximum Value-rjpcSymYulE.pt-BR.vtt 377б
09. Maximum Value-rjpcSymYulE.zh-CN.vtt 314б
09. Maximum Value-z_eElEkVOPY.ar.vtt 497б
09. Maximum Value-z_eElEkVOPY.en.vtt 387б
09. Maximum Value-z_eElEkVOPY.es-ES.vtt 367б
09. Maximum Value-z_eElEkVOPY.ja.vtt 304б
09. Maximum Value-z_eElEkVOPY.mp4 1.79Мб
09. Maximum Value-z_eElEkVOPY.pt-BR.vtt 422б
09. Maximum Value-z_eElEkVOPY.zh-CN.vtt 305б
09. Measures of Spread (Calculation and Units).html 10.08Кб
09. Medical Example 8.html 8.62Кб
09. Medical Example 8-7k5oAaZamCA.ar.vtt 516б
09. Medical Example 8-7k5oAaZamCA.en.vtt 416б
09. Medical Example 8-7k5oAaZamCA.es-ES.vtt 425б
09. Medical Example 8-7k5oAaZamCA.it.vtt 433б
09. Medical Example 8-7k5oAaZamCA.ja.vtt 390б
09. Medical Example 8-7k5oAaZamCA.mp4 2.04Мб
09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt 397б
09. Medical Example 8-7k5oAaZamCA.th.vtt 777б
09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt 380б
09. Medical Example 8-btGdX0ZpkNU.ar.vtt 899б
09. Medical Example 8-btGdX0ZpkNU.en.vtt 704б
09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt 728б
09. Medical Example 8-btGdX0ZpkNU.it.vtt 764б
09. Medical Example 8-btGdX0ZpkNU.ja.vtt 608б
09. Medical Example 8-btGdX0ZpkNU.mp4 3.50Мб
09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt 589б
09. Medical Example 8-btGdX0ZpkNU.th.vtt 1.17Кб
09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt 629б
09. MIN MAX-1ewVsgWUih8.ar.vtt 1.05Кб
09. MIN MAX-1ewVsgWUih8.en.vtt 824б
09. MIN MAX-1ewVsgWUih8.mp4 693.68Кб
09. MIN MAX-1ewVsgWUih8.pt-BR.vtt 847б
09. MIN MAX-1ewVsgWUih8.zh-CN.vtt 715б
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt 4.88Кб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4 12.34Мб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt 3.90Кб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt 4.42Кб
09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.en.vtt 3.40Кб
09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.mp4 2.85Мб
09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.pt-BR.vtt 3.47Кб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.en.vtt 1.98Кб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.mp4 9.16Мб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.pt-BR.vtt 1.99Кб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.zh-CN.vtt 1.63Кб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.en.vtt 7.81Кб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.mp4 32.58Мб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.pt-BR.vtt 7.90Кб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.zh-CN.vtt 6.74Кб
09. Model Diagnostics-XsYFAtzF6e4.en.vtt 1.31Кб
09. Model Diagnostics-XsYFAtzF6e4.mp4 7.48Мб
09. Model Diagnostics-XsYFAtzF6e4.pt-BR.vtt 1.37Кб
09. Model Diagnostics-XsYFAtzF6e4.zh-CN.vtt 1.14Кб
09. Non-Parametric Tests Part I - Solution.html 6.76Кб
09. Notebook + Quiz Sampling Distributions Python.html 15.06Кб
09. Notebook Tokenization.html 7.84Кб
09. NumPy 5 V1-vGjI-WTnEbY.en.vtt 4.20Кб
09. NumPy 5 V1-vGjI-WTnEbY.mp4 5.09Мб
09. NumPy 5 V1-vGjI-WTnEbY.pt-BR.vtt 4.42Кб
09. NumPy 5 V1-vGjI-WTnEbY.zh-CN.vtt 3.92Кб
09. Pandas 5 V1-lClsJnZn_7w.en.vtt 5.96Кб
09. Pandas 5 V1-lClsJnZn_7w.mp4 7.85Мб
09. Pandas 5 V1-lClsJnZn_7w.pt-BR.vtt 7.02Кб
09. Pandas 5 V1-lClsJnZn_7w.zh-CN.vtt 5.44Кб
09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
09. Perceptron Algorithm.html 13.01Кб
09. Perceptrons as Logical Operators.html 20.08Кб
09. Programming Environment Setup.html 8.58Кб
09. Programming Environment Setup-EKxDnCK0NAk.ar.vtt 6.17Кб
09. Programming Environment Setup-EKxDnCK0NAk.en.vtt 4.14Кб
09. Programming Environment Setup-EKxDnCK0NAk.mp4 7.42Мб
09. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt 4.89Кб
09. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt 3.93Кб
09. PyTorch - Part 7-hFu7GTfRWks.en.vtt 10.67Кб
09. PyTorch - Part 7-hFu7GTfRWks.mp4 14.62Мб
09. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt 10.86Кб
09. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt 8.56Кб
09. Quiz CONCAT.html 8.27Кб
09. Quiz Documentation.html 7.57Кб
09. Quiz How Does PCA Work.html 10.06Кб
09. Quiz Integers and Floats.html 12.14Кб
09. Quiz Scripting with Raw Input.html 10.00Кб
09. Quiz Self JOINs.html 8.63Кб
09. Recommendations 1 9 03362 V1-MwRSg5RASoc.en.vtt 13.49Кб
09. Recommendations 1 9 03362 V1-MwRSg5RASoc.mp4 20.16Мб
09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.en.vtt 7.54Кб
09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.mp4 12.57Мб
09. Screencast K-Means in Scikit Learn.html 6.97Кб
09. Screencast Solution Knowledge Based.html 9.42Кб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt 1.58Кб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4 1.80Мб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt 1.59Кб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt 1.35Кб
09. Solution Boolean Expressions for Conditions.html 11.22Кб
09. Solutions ROW_NUMBER RANK.html 8.23Кб
09. Solution Video More On Subqueries.html 7.59Кб
09. SQL Subquery Video-10pmKmTI_CA.en.vtt 8.76Кб
09. SQL Subquery Video-10pmKmTI_CA.mp4 10.75Мб
09. SQL Subquery Video-10pmKmTI_CA.pt-BR.vtt 8.58Кб
09. Starbucks Project Overview.html 8.73Кб
09. Statistical vs. Practical Significance.html 8.14Кб
09. SVD-t2XTuHq6-xc.en.vtt 6.63Кб
09. SVD-t2XTuHq6-xc.mp4 9.80Мб
09. SVM 07 Error Function V1-A1wbrcSYc1c.en.vtt 517б
09. SVM 07 Error Function V1-A1wbrcSYc1c.mp4 1.72Мб
09. SVM 07 Error Function V1-A1wbrcSYc1c.pt-BR.vtt 465б
09. SVM 07 Error Function V1-A1wbrcSYc1c.zh-CN.vtt 467б
09. Text + Quiz JOIN Revisited.html 10.97Кб
09. Text Dummy Variables.html 9.27Кб
09. Two Flips 2.html 8.67Кб
09. Two Flips 2-pT0FXiH_5nI.ar.vtt 207б
09. Two Flips 2-pT0FXiH_5nI.en.vtt 198б
09. Two Flips 2-pT0FXiH_5nI.hr.vtt 204б
09. Two Flips 2-pT0FXiH_5nI.it.vtt 213б
09. Two Flips 2-pT0FXiH_5nI.ja.vtt 194б
09. Two Flips 2-pT0FXiH_5nI.mp4 312.59Кб
09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt 186б
09. Two Flips 2-pT0FXiH_5nI.th.vtt 603б
09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt 196б
09. Two Flips 2-uhrL5fatt3E.ar.vtt 1.18Кб
09. Two Flips 2-uhrL5fatt3E.en.vtt 883б
09. Two Flips 2-uhrL5fatt3E.es-ES.vtt 948б
09. Two Flips 2-uhrL5fatt3E.hr.vtt 854б
09. Two Flips 2-uhrL5fatt3E.it.vtt 945б
09. Two Flips 2-uhrL5fatt3E.ja.vtt 887б
09. Two Flips 2-uhrL5fatt3E.mp4 3.00Мб
09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt 988б
09. Two Flips 2-uhrL5fatt3E.th.vtt 1.60Кб
09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt 787б
09. Types of Errors - Part II.html 10.33Кб
09. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt 3.11Кб
09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4 11.48Мб
09. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt 2.99Кб
09. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt 2.58Кб
09. Types Of Statements-vLvJbIz94C4.ar.vtt 1.97Кб
09. Types Of Statements-vLvJbIz94C4.en.vtt 1.49Кб
09. Types Of Statements-vLvJbIz94C4.mp4 3.64Мб
09. Types Of Statements-vLvJbIz94C4.pt-BR.vtt 1.71Кб
09. Types Of Statements-vLvJbIz94C4.zh-CN.vtt 1.32Кб
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.ar.vtt 1.27Кб
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.en.vtt 1.02Кб
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.mp4 806.43Кб
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.pt-BR.vtt 830б
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.zh-CN.vtt 892б
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.ar.vtt 4.00Кб
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.en.vtt 3.04Кб
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.mp4 3.16Мб
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.pt-BR.vtt 2.84Кб
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.zh-CN.vtt 2.77Кб
09. Vector Addition.html 6.75Кб
09. Video Business Data Understanding .html 11.51Кб
09. Video Data Types Summary.html 8.23Кб
09. Video MIN MAX.html 8.99Кб
09. Video Model Diagnostics + Performance Metrics.html 9.29Кб
09. Video Singular Value Decomposition.html 12.41Кб
09. Video Types of Statements.html 10.42Кб
09. Weighting the Models 3.html 5.84Кб
09. What's Ahead.html 5.65Кб
09. What's Ahead-2Hxy2Jlu8nk.en.vtt 1.20Кб
09. What's Ahead-2Hxy2Jlu8nk.mp4 4.30Мб
09. What's Ahead-2Hxy2Jlu8nk.pt-BR.vtt 1.25Кб
09. Who Is The Audience.html 10.50Кб
09. Why Neural Networks.html 7.56Кб
09. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38Кб
09. Why Neural Networks-zAkzOZntK6Y.mp4 982.27Кб
09. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27Кб
09. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18Кб
09. Writing READMEs with Walter.html 7.30Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt 1.50Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt 1.34Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 6.92Мб
09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt 1.22Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt 1.18Кб
09. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01Кб
09. XOR Perceptron-TF83GfjYLdw.mp4 947.00Кб
09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1.00Кб
09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021б
09. Your Udacity Professional Profile.html 7.57Кб
10. [Quiz] Hierarchical clustering.html 8.19Кб
10. 03 Optimizing Common Books V1-WF9n_19V08g.en.vtt 4.90Кб
10. 03 Optimizing Common Books V1-WF9n_19V08g.mp4 8.10Мб
10. 03 Optimizing Common Books V1-WF9n_19V08g.pt-BR.vtt 5.58Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.50Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.50Кб
10. 09 PCA V1-0RLDZWeq5JE.en.vtt 9.44Кб
10. 09 PCA V1-0RLDZWeq5JE.mp4 12.82Мб
10. 09 PCA V1-0RLDZWeq5JE.pt-BR.vtt 9.13Кб
10. Aggregates in Window Functions-Dxew5w3VF7k.ar.vtt 3.47Кб
10. Aggregates in Window Functions-Dxew5w3VF7k.en.vtt 2.55Кб
10. Aggregates in Window Functions-Dxew5w3VF7k.mp4 3.16Мб
10. Aggregates in Window Functions-Dxew5w3VF7k.pt-BR.vtt 2.45Кб
10. Aggregates in Window Functions-Dxew5w3VF7k.zh-CN.vtt 2.41Кб
10. ALIAS-viWHJaxWTvw.ar.vtt 1.87Кб
10. ALIAS-viWHJaxWTvw.en.vtt 1.19Кб
10. ALIAS-viWHJaxWTvw.mp4 1.25Мб
10. ALIAS-viWHJaxWTvw.pt-BR.vtt 1.11Кб
10. ALIAS-viWHJaxWTvw.zh-CN.vtt 1.11Кб
10. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt 2.82Кб
10. Answer False Negatives And Positives-KOytJL1lvgg.mp4 2.23Мб
10. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt 2.84Кб
10. AVG-diqCDztOL64.ar.vtt 1.82Кб
10. AVG-diqCDztOL64.en.vtt 1.43Кб
10. AVG-diqCDztOL64.mp4 975.39Кб
10. AVG-diqCDztOL64.pt-BR.vtt 1.38Кб
10. AVG-diqCDztOL64.zh-CN.vtt 1.21Кб
10. Bayesian Learning 3.html 6.56Кб
10. Binomial 1.html 8.00Кб
10. Binomial 1-07vOaYwecII.ar.vtt 1.05Кб
10. Binomial 1-07vOaYwecII.en.vtt 856б
10. Binomial 1-07vOaYwecII.es-ES.vtt 870б
10. Binomial 1-07vOaYwecII.ja.vtt 828б
10. Binomial 1-07vOaYwecII.mp4 6.26Мб
10. Binomial 1-07vOaYwecII.pt-BR.vtt 974б
10. Binomial 1-07vOaYwecII.zh-CN.vtt 751б
10. Binomial 1-RBfFHxEjsIU.ar.vtt 533б
10. Binomial 1-RBfFHxEjsIU.en.vtt 399б
10. Binomial 1-RBfFHxEjsIU.es-ES.vtt 424б
10. Binomial 1-RBfFHxEjsIU.ja.vtt 301б
10. Binomial 1-RBfFHxEjsIU.mp4 2.43Мб
10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt 427б
10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt 362б
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt 4.05Кб
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt 2.83Кб
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4 21.62Мб
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt 3.36Кб
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt 2.47Кб
10. Booleans, Comparison Operators, and Logical Operators.html 11.41Кб
10. Cancer Probabilities.html 11.07Кб
10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt 190б
10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt 152б
10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt 165б
10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt 174б
10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt 155б
10. Cancer Probabilities-7ZLe_JP5wRY.mp4 479.60Кб
10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt 216б
10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt 158б
10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt 615б
10. Cancer Probabilities-CMQBKuYjPBM.en.vtt 455б
10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt 868б
10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt 471б
10. Cancer Probabilities-CMQBKuYjPBM.it.vtt 456б
10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt 420б
10. Cancer Probabilities-CMQBKuYjPBM.mp4 2.85Мб
10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt 523б
10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt 408б
10. Case Study Build Pipeline.html 7.69Кб
10. Categorical Plot Practice.html 7.06Кб
10. Combining the Models.html 5.83Кб
10. Confusion Matrices.html 10.65Кб
10. Confusion Matrices-bEAaNv-CBQ4.ar.vtt 352б
10. Confusion Matrices-bEAaNv-CBQ4.en.vtt 302б
10. Confusion Matrices-bEAaNv-CBQ4.mp4 770.56Кб
10. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt 309б
10. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt 283б
10. Confusion Matrices-bgyN3RO2ICo.ar.vtt 1.88Кб
10. Confusion Matrices-bgyN3RO2ICo.en.vtt 1.48Кб
10. Confusion Matrices-bgyN3RO2ICo.mp4 7.59Мб
10. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt 1.49Кб
10. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt 1.41Кб
10. Convolutional Layers (Part 1).html 7.62Кб
10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.22Кб
10. Convolutional Layers-h5R_JvdUrUI.mp4 8.04Мб
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.57Кб
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.10Кб
10. CSS.html 16.08Кб
10. CSS-s_sdzHR9cs0.en.vtt 9.85Кб
10. CSS-s_sdzHR9cs0.mp4 15.91Мб
10. CSS-s_sdzHR9cs0.pt-BR.vtt 10.17Кб
10. Data Ink Ratio.html 7.07Кб
10. Data Ink Ratio-gW2FapuYV4A.ar.vtt 7.52Кб
10. Data Ink Ratio-gW2FapuYV4A.en.vtt 5.69Кб
10. Data Ink Ratio-gW2FapuYV4A.mp4 9.78Мб
10. Data Ink Ratio-gW2FapuYV4A.pt-BR.vtt 5.69Кб
10. Data Ink Ratio-gW2FapuYV4A.zh-CN.vtt 4.88Кб
10. Dealing with NaN.html 32.94Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
10. Dummy Variables.html 12.69Кб
10. Entropy Formula 3.html 7.26Кб
10. Entropy Formula-w73JTBVeyjE.en.vtt 2.93Кб
10. Entropy Formula-w73JTBVeyjE.mp4 8.00Мб
10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt 2.61Кб
10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt 2.54Кб
10. Ethics in Experimentation.html 15.03Кб
10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.en.vtt 2.11Кб
10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.mp4 4.76Мб
10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.en.vtt 1.58Кб
10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.mp4 4.53Мб
10. Ethics In Experimentation Pt3-_HTolKktaC4.en.vtt 2.42Кб
10. Ethics In Experimentation Pt3-_HTolKktaC4.mp4 7.83Мб
10. Exercise APIs.html 9.45Кб
10. Expectation Maximization Part 2.html 7.53Кб
10. Figures, Axes, and Subplots.html 18.53Кб
10. For Loops.html 14.21Кб
10. For Loops-UtX0PXSUCdY.ar.vtt 9.73Кб
10. For Loops-UtX0PXSUCdY.en.vtt 6.73Кб
10. For Loops-UtX0PXSUCdY.mp4 18.44Мб
10. For Loops-UtX0PXSUCdY.pt-BR.vtt 7.29Кб
10. For Loops-UtX0PXSUCdY.zh-CN.vtt 6.20Кб
10. Gender Bias Revisited.html 8.23Кб
10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt 312б
10. Gender Bias Revisited-4YY-hmqSz30.en.vtt 246б
10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt 252б
10. Gender Bias Revisited-4YY-hmqSz30.it.vtt 239б
10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt 236б
10. Gender Bias Revisited-4YY-hmqSz30.mp4 1.21Мб
10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt 218б
10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt 232б
10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt 1.61Кб
10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt 1.19Кб
10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt 1.11Кб
10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt 1.28Кб
10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt 1.14Кб
10. Gender Bias Revisited-dOa4Cl0wM0s.mp4 7.49Мб
10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt 1.08Кб
10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt 1.00Кб
10. Grid Search Lab.html 6.41Кб
10. How Much is Too Much.html 7.63Кб
10. How the Gaussian Class Works.html 8.01Кб
10. How The Gaussian Class Works-N-5I0d1zJHI.en.vtt 5.25Кб
10. How The Gaussian Class Works-N-5I0d1zJHI.mp4 8.09Мб
10. How The Gaussian Class Works-N-5I0d1zJHI.pt-BR.vtt 4.83Кб
10. ICA Applications.html 6.72Кб
10. Interview with Art - Part 2.html 7.05Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt 2.82Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt 2.16Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 13.17Мб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt 2.40Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt 2.07Кб
10. Jupyter-qiYDWFLyXvg.ar.vtt 3.41Кб
10. Jupyter-qiYDWFLyXvg.en.vtt 2.70Кб
10. Jupyter-qiYDWFLyXvg.mp4 7.12Мб
10. Jupyter-qiYDWFLyXvg.pt-BR.vtt 2.41Кб
10. Jupyter-qiYDWFLyXvg.zh-CN.vtt 2.64Кб
10. L6 131 Lesson Summary V1-t6ss31RZF34.mp4 3.46Мб
10. L6 131 Lesson Summary V1-t6ss31RZF34.pt-BR.vtt 1.42Кб
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.en.vtt 4.16Кб
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.mp4 9.87Мб
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.pt-BR.vtt 4.07Кб
10. Lesson Summary.html 5.78Кб
10. Linear Transformation and Matrices. Part 2.html 6.38Кб
10. Linear Transformations 2-imtEd8M6__s.en.vtt 4.92Кб
10. Linear Transformations 2-imtEd8M6__s.mp4 13.49Мб
10. Linear Transformations 2-imtEd8M6__s.pt-BR.vtt 5.20Кб
10. Linear Transformations 2-imtEd8M6__s.zh-CN.vtt 4.29Кб
10. Logging.html 7.17Кб
10. Manipulating ndarrays.html 7.25Кб
10. Mean Absolute Error.html 7.56Кб
10. Mean Absolute Error-vLKiY0Ehors.en.vtt 3.52Кб
10. Mean Absolute Error-vLKiY0Ehors.mp4 2.57Мб
10. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt 3.30Кб
10. Meet the Careers Team.html 7.13Кб
10. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.63Кб
10. Meet the Careers Team-cuKecPpZ7PM.mp4 10.12Мб
10. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.83Кб
10. Metric - Enrollment Rate.html 9.72Кб
10. Minimum.html 8.47Кб
10. Minimum-MEbJxfw3NVs.ar.vtt 886б
10. Minimum-MEbJxfw3NVs.en.vtt 715б
10. Minimum-MEbJxfw3NVs.es-ES.vtt 741б
10. Minimum-MEbJxfw3NVs.ja.vtt 627б
10. Minimum-MEbJxfw3NVs.mp4 3.51Мб
10. Minimum-MEbJxfw3NVs.pt-BR.vtt 699б
10. Minimum-MEbJxfw3NVs.zh-CN.vtt 579б
10. Minimum-tiv8VKPL7jg.ar.vtt 518б
10. Minimum-tiv8VKPL7jg.en.vtt 357б
10. Minimum-tiv8VKPL7jg.es-ES.vtt 357б
10. Minimum-tiv8VKPL7jg.ja.vtt 310б
10. Minimum-tiv8VKPL7jg.mp4 1.69Мб
10. Minimum-tiv8VKPL7jg.pt-BR.vtt 373б
10. Minimum-tiv8VKPL7jg.zh-CN.vtt 325б
10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.en.vtt 2.50Кб
10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.mp4 2.65Мб
10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.pt-BR.vtt 2.43Кб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.en.vtt 6.98Кб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.mp4 26.30Мб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.pt-BR.vtt 6.94Кб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.zh-CN.vtt 5.98Кб
10. More Personalized Recommendations-9l8mi7i6iW4.en.vtt 2.09Кб
10. More Personalized Recommendations-9l8mi7i6iW4.mp4 6.89Мб
10. Non-Parametric Tests Part II.html 6.74Кб
10. Notebook SVD Practice.html 8.13Кб
10. Notebook Your Turn.html 7.42Кб
10. Optimizing - Common Books.html 7.43Кб
10. Outro.html 5.52Кб
10. Pandas 6 V1-GS1kj04XQcM.en.vtt 6.34Кб
10. Pandas 6 V1-GS1kj04XQcM.mp4 7.87Мб
10. Pandas 6 V1-GS1kj04XQcM.pt-BR.vtt 7.49Кб
10. Pandas 6 V1-GS1kj04XQcM.zh-CN.vtt 5.63Кб
10. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt 1.55Кб
10. Parting Words Of Encouragement-sFF_WOnpsXM.mp4 4.65Мб
10. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt 1.68Кб
10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
10. Perceptron Trick.html 11.34Кб
10. Perceptron Trick.html 12.20Кб
10. Precision and Recall.html 6.75Кб
10. Py Part 8 V1-3eqn5sgCOsY.en.vtt 12.79Кб
10. Py Part 8 V1-3eqn5sgCOsY.mp4 24.88Мб
10. Py Part 8 V1-3eqn5sgCOsY.pt-BR.vtt 13.51Кб
10. Py Part 8 V1-3eqn5sgCOsY.zh-CN.vtt 10.69Кб
10. Quiz Subquery Mania.html 8.75Кб
10. Quiz Types of Errors - Part II(a).html 13.37Кб
10. Random Restart.html 6.14Кб
10. Random Restart-idyBBCzXiqg.en.vtt 466б
10. Random Restart-idyBBCzXiqg.mp4 394.99Кб
10. Random Restart-idyBBCzXiqg.pt-BR.vtt 478б
10. Random Restart-idyBBCzXiqg.zh-CN.vtt 419б
10. Reaching Out on LinkedIn.html 8.61Кб
10. Screencast PCA.html 7.74Кб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt 3.21Кб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4 9.33Мб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt 3.00Кб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt 2.74Кб
10. Solution Documentation.html 7.34Кб
10. Solutions CONCAT.html 8.11Кб
10. Solution Scripting with Raw Input.html 8.23Кб
10. Solutions Self JOINs.html 7.90Кб
10. Starbucks Project Workspace.html 6.60Кб
10. Statements.html 11.38Кб
10. Stop Word Removal.html 7.42Кб
10. Stop Word Removal-WAU_Ij0GJbw.en.vtt 1.59Кб
10. Stop Word Removal-WAU_Ij0GJbw.mp4 1.96Мб
10. Stop Word Removal-WAU_Ij0GJbw.pt-BR.vtt 1.79Кб
10. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt 1.40Кб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.en.vtt 2.81Кб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.mp4 7.03Мб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.pt-BR.vtt 2.47Кб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.zh-CN.vtt 2.45Кб
10. Text + Quiz Data Types (Ordinal vs. Nominal).html 14.74Кб
10. Text Introduction to the Standard Deviation and Variance.html 12.19Кб
10. Text Recap.html 9.47Кб
10. Text Sampling Distribution Notes.html 9.91Кб
10. The C Parameter.html 6.41Кб
10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.en.vtt 1.04Кб
10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.mp4 2.66Мб
10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.pt-BR.vtt 1.04Кб
10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.en.vtt 855б
10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.mp4 2.75Мб
10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.pt-BR.vtt 902б
10. Total Probability.html 6.68Кб
10. Total Probability-YSYpzFR4k1I.ar.vtt 2.48Кб
10. Total Probability-YSYpzFR4k1I.en.vtt 1.90Кб
10. Total Probability-YSYpzFR4k1I.es-ES.vtt 1.98Кб
10. Total Probability-YSYpzFR4k1I.it.vtt 1.99Кб
10. Total Probability-YSYpzFR4k1I.ja.vtt 1.59Кб
10. Total Probability-YSYpzFR4k1I.mp4 11.54Мб
10. Total Probability-YSYpzFR4k1I.pt-BR.vtt 1.80Кб
10. Total Probability-YSYpzFR4k1I.th.vtt 3.38Кб
10. Total Probability-YSYpzFR4k1I.zh-CN.vtt 1.75Кб
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt 1.66Кб
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4 7.87Мб
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt 1.81Кб
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt 1.37Кб
10. Training Optimization.html 7.56Кб
10. Training Optimization-UiGKhx9pUYc.en.vtt 824б
10. Training Optimization-UiGKhx9pUYc.mp4 2.96Мб
10. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874б
10. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840б
10. Transfer Learning.html 6.68Кб
10. Two Flips 3.html 9.45Кб
10. Two Flips 3-3NSPqjp6pFY.ar.vtt 547б
10. Two Flips 3-3NSPqjp6pFY.en.vtt 432б
10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt 473б
10. Two Flips 3-3NSPqjp6pFY.hr.vtt 469б
10. Two Flips 3-3NSPqjp6pFY.it.vtt 435б
10. Two Flips 3-3NSPqjp6pFY.ja.vtt 397б
10. Two Flips 3-3NSPqjp6pFY.mp4 1.12Мб
10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt 496б
10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt 379б
10. Two Flips 3-uimwo-puQWY.ar.vtt 254б
10. Two Flips 3-uimwo-puQWY.en.vtt 210б
10. Two Flips 3-uimwo-puQWY.hr.vtt 197б
10. Two Flips 3-uimwo-puQWY.it.vtt 210б
10. Two Flips 3-uimwo-puQWY.ja.vtt 194б
10. Two Flips 3-uimwo-puQWY.mp4 920.84Кб
10. Two Flips 3-uimwo-puQWY.pt-BR.vtt 219б
10. Two Flips 3-uimwo-puQWY.th.vtt 359б
10. Two Flips 3-uimwo-puQWY.zh-CN.vtt 177б
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.ar.vtt 2.34Кб
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.en.vtt 1.70Кб
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.mp4 1.31Мб
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.pt-BR.vtt 1.64Кб
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.zh-CN.vtt 1.56Кб
10. Validity, Bias, and Ethics - Discussion.html 8.17Кб
10. Vectors- Quiz 2.html 7.83Кб
10. Video Aggregates in Window Functions.html 7.68Кб
10. Video Alias.html 8.75Кб
10. Video AVG.html 8.88Кб
10. Video Gathering Wrangling.html 11.68Кб
10. Video More Personalized Recommendations.html 9.05Кб
10. Video Three Steps to Captivate Your Audience.html 6.74Кб
10. Video Traditional Confidence Intervals.html 8.89Кб
10. Video What Defines A Line.html 8.48Кб
10. Viewing files (cat, less).html 7.42Кб
10. What are Jupyter notebooks.html 13.16Кб
10. What Defines A Line-lTqwhsSNP2c.en.vtt 2.55Кб
10. What Defines A Line-lTqwhsSNP2c.mp4 3.32Мб
10. What Defines A Line-lTqwhsSNP2c.pt-BR.vtt 2.96Кб
10. What Defines A Line-lTqwhsSNP2c.zh-CN.vtt 2.22Кб
10. Words of Encouragement.html 5.61Кб
11. [Solution] Grid Search Lab.html 6.43Кб
11. 06 Precision SC V1-q2wVorBfefU.en.vtt 2.69Кб
11. 06 Precision SC V1-q2wVorBfefU.mp4 2.24Мб
11. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt 2.64Кб
11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.en.vtt 5.80Кб
11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.mp4 9.82Мб
11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.pt-BR.vtt 5.73Кб
11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.en.vtt 2.06Кб
11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.mp4 4.41Мб
11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.pt-BR.vtt 2.28Кб
11. Access Your Career Portal.html 7.03Кб
11. AdaBoost in sklearn.html 7.09Кб
11. Additional Plot Practice.html 6.30Кб
11. Analyze Data.html 9.94Кб
11. Arithmetic operations and Broadcasting.html 17.27Кб
11. A SMART Mnemonic for Experiment Design.html 6.94Кб
11. Binomial 2.html 8.00Кб
11. Binomial 2-d4LWnxyvrTQ.ar.vtt 265б
11. Binomial 2-d4LWnxyvrTQ.en.vtt 222б
11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt 238б
11. Binomial 2-d4LWnxyvrTQ.ja.vtt 197б
11. Binomial 2-d4LWnxyvrTQ.mp4 1.06Мб
11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt 246б
11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt 182б
11. Binomial 2-Uy7b3aMPnEY.ar.vtt 202б
11. Binomial 2-Uy7b3aMPnEY.en.vtt 165б
11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt 170б
11. Binomial 2-Uy7b3aMPnEY.ja.vtt 190б
11. Binomial 2-Uy7b3aMPnEY.mp4 1.86Мб
11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt 284б
11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt 150б
11. Boost Your Visibility.html 7.86Кб
11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.en.vtt 1.34Кб
11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.mp4 4.88Мб
11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.pt-BR.vtt 1.49Кб
11. CAST-LbyOq4ofLng.ar.vtt 3.88Кб
11. CAST-LbyOq4ofLng.en.vtt 2.89Кб
11. CAST-LbyOq4ofLng.mp4 3.61Мб
11. CAST-LbyOq4ofLng.pt-BR.vtt 3.19Кб
11. CAST-LbyOq4ofLng.zh-CN.vtt 2.57Кб
11. Choosing a Plot for Discrete Data.html 10.93Кб
11. Code Review.html 6.58Кб
11. Commit messages best practices.html 9.35Кб
11. Confusion Matrix Practice 1.html 10.77Кб
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt 218б
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt 182б
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4 569.00Кб
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt 177б
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt 160б
11. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt 387б
11. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt 292б
11. Confusion Matrix Practice 1-obhHCeHpysw.mp4 1.06Мб
11. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt 307б
11. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt 256б
11. Convolutional Layers (Part 2).html 8.39Кб
11. Convolutional Layers-RnM1D-XI--8.en.vtt 9.99Кб
11. Convolutional Layers-RnM1D-XI--8.mp4 17.05Мб
11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt 11.00Кб
11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt 8.71Кб
11. Dangers of Statistics.html 6.06Кб
11. Dangers Of Statistics-UYZXqP562qg.ar.vtt 1.07Кб
11. Dangers Of Statistics-UYZXqP562qg.en.vtt 754б
11. Dangers Of Statistics-UYZXqP562qg.mp4 2.50Мб
11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt 802б
11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt 707б
11. Data Types (Continuous vs. Discrete).html 9.67Кб
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.en.vtt 3.33Кб
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.mp4 3.15Мб
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.pt-BR.vtt 3.55Кб
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.zh-CN.vtt 2.76Кб
11. DBSCAN.html 6.99Кб
11. Design Integrity.html 8.80Кб
11. Design Integrity-y72_fVFtqlY.ar.vtt 5.50Кб
11. Design Integrity-y72_fVFtqlY.en.vtt 4.22Кб
11. Design Integrity-y72_fVFtqlY.mp4 6.48Мб
11. Design Integrity-y72_fVFtqlY.pt-BR.vtt 4.24Кб
11. Design Integrity-y72_fVFtqlY.zh-CN.vtt 3.78Кб
11. Dog Breed Classifier Overview.html 6.88Кб
11. Dummy Variable Interpretation-TxP_TD0kbOo.en.vtt 4.30Кб
11. Dummy Variable Interpretation-TxP_TD0kbOo.mp4 13.37Мб
11. Dummy Variable Interpretation-TxP_TD0kbOo.pt-BR.vtt 4.21Кб
11. Dummy Variable Interpretation-TxP_TD0kbOo.zh-CN.vtt 3.77Кб
11. Early Stopping.html 7.55Кб
11. Errors and Exceptions.html 8.72Кб
11. Errors And Exceptions-DmthSiy2d0U.ar.vtt 3.67Кб
11. Errors And Exceptions-DmthSiy2d0U.en.vtt 2.78Кб
11. Errors And Exceptions-DmthSiy2d0U.mp4 3.39Мб
11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt 3.03Кб
11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt 2.60Кб
11. Exercise Code the Gaussian Class.html 8.35Кб
11. Exercise CSS.html 8.08Кб
11. Faceting.html 12.08Кб
11. How To Break Into The Field-0-Y39LZ80VE.en.vtt 6.63Кб
11. How To Break Into The Field-0-Y39LZ80VE.mp4 8.49Мб
11. How To Break Into The Field-0-Y39LZ80VE.pt-BR.vtt 5.94Кб
11. Installing Jupyter Notebook.html 6.69Кб
11. Introduction To Notation-ISkBSUVH49M.ar.vtt 1.45Кб
11. Introduction To Notation-ISkBSUVH49M.en.vtt 1.10Кб
11. Introduction To Notation-ISkBSUVH49M.mp4 3.24Мб
11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt 1.22Кб
11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt 982б
11. Intro To Collab Filtering-wGq7dUgJpsc.en.vtt 1.02Кб
11. Intro To Collab Filtering-wGq7dUgJpsc.mp4 1.33Мб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.en.vtt 1.02Кб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.mp4 3.30Мб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.pt-BR.vtt 1.21Кб
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt 2.18Кб
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4 7.99Мб
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt 2.68Кб
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt 1.93Кб
11. L4 111 Faceting V2-oUYRqI6wFGw.en.vtt 2.35Кб
11. L4 111 Faceting V2-oUYRqI6wFGw.mp4 4.63Мб
11. L4 111 Faceting V2-oUYRqI6wFGw.pt-BR.vtt 2.69Кб
11. L4 111 Faceting V2-oUYRqI6wFGw.zh-CN.vtt 2.00Кб
11. Lambda Expressions.html 8.30Кб
11. Linear Transformation and Matrices. Part 3.html 6.19Кб
11. Linear Transformations 3-g_yTyRwMzXU.en.vtt 5.12Кб
11. Linear Transformations 3-g_yTyRwMzXU.mp4 20.09Мб
11. Linear Transformations 3-g_yTyRwMzXU.pt-BR.vtt 5.21Кб
11. Linear Transformations 3-g_yTyRwMzXU.zh-CN.vtt 4.51Кб
11. Manipulate a DataFrame.html 10.29Кб
11. Mean Squared Error.html 7.56Кб
11. Mean Squared Error-MRyxmZDngI4.en.vtt 2.49Кб
11. Mean Squared Error-MRyxmZDngI4.mp4 1.83Мб
11. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt 2.26Кб
11. Metric - Average Reading Duration.html 7.48Кб
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt 2.58Кб
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4 3.32Мб
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt 3.07Кб
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt 2.14Кб
11. Minimum Value.html 7.68Кб
11. Minimum Value-LconwqN7hJs.ar.vtt 463б
11. Minimum Value-LconwqN7hJs.en.vtt 358б
11. Minimum Value-LconwqN7hJs.es-ES.vtt 388б
11. Minimum Value-LconwqN7hJs.ja.vtt 323б
11. Minimum Value-LconwqN7hJs.mp4 893.30Кб
11. Minimum Value-LconwqN7hJs.pt-BR.vtt 332б
11. Minimum Value-LconwqN7hJs.zh-CN.vtt 316б
11. Minimum Value-LNzmJUj8K8w.ar.vtt 152б
11. Minimum Value-LNzmJUj8K8w.en.vtt 130б
11. Minimum Value-LNzmJUj8K8w.es-ES.vtt 141б
11. Minimum Value-LNzmJUj8K8w.ja.vtt 118б
11. Minimum Value-LNzmJUj8K8w.mp4 661.10Кб
11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt 171б
11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt 113б
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt 6.47Кб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4 5.14Мб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt 6.23Кб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt 5.56Кб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.en.vtt 6.58Кб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.mp4 19.97Мб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.pt-BR.vtt 5.79Кб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.zh-CN.vtt 6.11Кб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.en.vtt 3.18Кб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.mp4 19.74Мб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.pt-BR.vtt 2.95Кб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.zh-CN.vtt 2.88Кб
11. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32Кб
11. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.90Мб
11. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52Кб
11. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65Кб
11. Naive Bayes Algorithm 1.html 7.66Кб
11. Non-Parametric Tests Part II - Solution.html 6.76Кб
11. Notebook PCA - Your Turn.html 7.36Кб
11. Notebook Stop Words.html 7.83Кб
11. NumPy 6 V1-wtLRuGK0kW4.en.vtt 5.58Кб
11. NumPy 6 V1-wtLRuGK0kW4.mp4 6.61Мб
11. NumPy 6 V1-wtLRuGK0kW4.pt-BR.vtt 5.81Кб
11. NumPy 6 V1-wtLRuGK0kW4.zh-CN.vtt 4.90Кб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
11. Perceptron Algorithm.html 14.99Кб
11. Perceptron Algorithm.html 15.85Кб
11. Polynomial Kernel 1.html 6.43Кб
11. Practice For Loops.html 10.59Кб
11. Precision.html 7.99Кб
11. Probability Given Test.html 10.47Кб
11. Probability Given Test-41HCYR-NW-w.ar.vtt 524б
11. Probability Given Test-41HCYR-NW-w.en.vtt 370б
11. Probability Given Test-41HCYR-NW-w.es-ES.vtt 412б
11. Probability Given Test-41HCYR-NW-w.ja.vtt 350б
11. Probability Given Test-41HCYR-NW-w.mp4 2.56Мб
11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt 501б
11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt 298б
11. Probability Given Test-omC0zbJyzUY.ar.vtt 1000б
11. Probability Given Test-omC0zbJyzUY.en.vtt 790б
11. Probability Given Test-omC0zbJyzUY.es-ES.vtt 757б
11. Probability Given Test-omC0zbJyzUY.ja.vtt 716б
11. Probability Given Test-omC0zbJyzUY.mp4 6.72Мб
11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt 899б
11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt 609б
11. Quiz Aggregates in Window Functions.html 16.60Кб
11. Quiz Booleans, Comparison Operators, and Logical Operators.html 11.37Кб
11. Quiz Do You Know Your Entropy.html 6.65Кб
11. Quiz JOIN Questions Part I.html 12.87Кб
11. Quiz MIN, MAX, AVG.html 9.65Кб
11. Quiz Optimizing - Common Books.html 7.63Кб
11. Quiz Types of Errors - Part II(b).html 21.64Кб
11. Quiz What Defines A Line - Notation Quiz.html 14.52Кб
11. Recommendations 2 10 0424 V1-x-End5px36M.en.vtt 2.31Кб
11. Recommendations 2 10 0424 V1-x-End5px36M.mp4 3.50Мб
11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.en.vtt 5.36Кб
11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.mp4 10.32Мб
11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.en.vtt 7.09Кб
11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.mp4 10.62Мб
11. Removing things (rm, rmdir).html 8.18Кб
11. Scalar by Vector Multiplication.html 6.63Кб
11. Screencast Dummy Variables.html 8.04Кб
11. Screencast How To Break Into the Field.html 10.55Кб
11. Screencast Solution.html 7.93Кб
11. Screencast SVD Practice Solution.html 8.91Кб
11. ScreenCast Traditional Confidence Interval Methods.html 7.99Кб
11. SELECT FROM Statements-urOYuuav4BY.ar.vtt 4.45Кб
11. SELECT FROM Statements-urOYuuav4BY.en.vtt 3.34Кб
11. SELECT FROM Statements-urOYuuav4BY.mp4 5.07Мб
11. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt 3.65Кб
11. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt 3.08Кб
11. SMART Mnemonic-B0Bnxyu2aKM.en.vtt 1.60Кб
11. SMART Mnemonic-B0Bnxyu2aKM.mp4 4.55Мб
11. Solution Build Pipeline.html 9.09Кб
11. Solution Subquery Mania.html 17.27Кб
11. Subquery Solution Video-Y6S3S0LsMrw.ar.vtt 15.96Кб
11. Subquery Solution Video-Y6S3S0LsMrw.en.vtt 12.65Кб
11. Subquery Solution Video-Y6S3S0LsMrw.mp4 17.26Мб
11. Subquery Solution Video-Y6S3S0LsMrw.pt-BR.vtt 13.37Кб
11. Subquery Solution Video-Y6S3S0LsMrw.zh-CN.vtt 10.74Кб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.en.vtt 2.98Кб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.mp4 7.08Мб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.pt-BR.vtt 2.65Кб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.zh-CN.vtt 2.80Кб
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt 3.28Кб
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4 3.89Мб
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt 3.00Кб
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt 2.70Кб
11. Transfer Learning Solution.html 6.18Кб
11. Transform.html 10.42Кб
11. Transform Walk Through-i9_0kHCCCCE.en.vtt 1.19Кб
11. Transform Walk Through-i9_0kHCCCCE.mp4 1.42Мб
11. Transform Walk Through-i9_0kHCCCCE.pt-BR.vtt 1.26Кб
11. Two Coins 1.html 8.59Кб
11. Two Coins 1-QIQBb4nLsHc.ar.vtt 847б
11. Two Coins 1-QIQBb4nLsHc.en.vtt 655б
11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt 729б
11. Two Coins 1-QIQBb4nLsHc.it.vtt 702б
11. Two Coins 1-QIQBb4nLsHc.ja.vtt 717б
11. Two Coins 1-QIQBb4nLsHc.mp4 4.61Мб
11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt 688б
11. Two Coins 1-QIQBb4nLsHc.th.vtt 1.54Кб
11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt 616б
11. Two Coins 1-SYnYIjLpbjE.ar.vtt 286б
11. Two Coins 1-SYnYIjLpbjE.en.vtt 245б
11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt 258б
11. Two Coins 1-SYnYIjLpbjE.it.vtt 240б
11. Two Coins 1-SYnYIjLpbjE.ja.vtt 237б
11. Two Coins 1-SYnYIjLpbjE.mp4 1.42Мб
11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt 285б
11. Two Coins 1-SYnYIjLpbjE.th.vtt 415б
11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt 244б
11. Two Flips 4.html 8.68Кб
11. Two Flips 4-bNoS6LQEFrI.ar.vtt 900б
11. Two Flips 4-bNoS6LQEFrI.en.vtt 715б
11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt 748б
11. Two Flips 4-bNoS6LQEFrI.hr.vtt 690б
11. Two Flips 4-bNoS6LQEFrI.it.vtt 742б
11. Two Flips 4-bNoS6LQEFrI.ja.vtt 623б
11. Two Flips 4-bNoS6LQEFrI.mp4 2.98Мб
11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt 728б
11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt 658б
11. Two Flips 4-rRPwknIDuI0.ar.vtt 303б
11. Two Flips 4-rRPwknIDuI0.en.vtt 247б
11. Two Flips 4-rRPwknIDuI0.es-ES.vtt 252б
11. Two Flips 4-rRPwknIDuI0.hr.vtt 216б
11. Two Flips 4-rRPwknIDuI0.it.vtt 248б
11. Two Flips 4-rRPwknIDuI0.ja.vtt 216б
11. Two Flips 4-rRPwknIDuI0.mp4 663.40Кб
11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt 209б
11. Two Flips 4-rRPwknIDuI0.th.vtt 423б
11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt 228б
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.ar.vtt 2.03Кб
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.en.vtt 1.59Кб
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.mp4 1.74Мб
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.pt-BR.vtt 1.35Кб
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.zh-CN.vtt 1.47Кб
11. UNION 1-APRpwqFpGwI.ar.vtt 2.23Кб
11. UNION 1-APRpwqFpGwI.en.vtt 1.64Кб
11. UNION 1-APRpwqFpGwI.mp4 1.38Мб
11. UNION 1-APRpwqFpGwI.pt-BR.vtt 1.54Кб
11. UNION 1-APRpwqFpGwI.zh-CN.vtt 1.50Кб
11. UNION 2-so5zydnbYEg.ar.vtt 942б
11. UNION 2-so5zydnbYEg.en.vtt 682б
11. UNION 2-so5zydnbYEg.mp4 825.59Кб
11. UNION 2-so5zydnbYEg.pt-BR.vtt 737б
11. UNION 2-so5zydnbYEg.zh-CN.vtt 643б
11. UNION 3-oVGmi4zBOT8.ar.vtt 1.32Кб
11. UNION 3-oVGmi4zBOT8.en.vtt 940б
11. UNION 3-oVGmi4zBOT8.mp4 1.82Мб
11. UNION 3-oVGmi4zBOT8.pt-BR.vtt 917б
11. UNION 3-oVGmi4zBOT8.zh-CN.vtt 869б
11. UNION Motivation-0eRr2K8lo-I.ar.vtt 902б
11. UNION Motivation-0eRr2K8lo-I.en.vtt 650б
11. UNION Motivation-0eRr2K8lo-I.mp4 2.59Мб
11. UNION Motivation-0eRr2K8lo-I.pt-BR.vtt 653б
11. UNION Motivation-0eRr2K8lo-I.zh-CN.vtt 616б
11. Vanishing Gradient.html 6.17Кб
11. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46Кб
11. Vanishing Gradient-W_JJm_5syFw.mp4 1.32Мб
11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56Кб
11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24Кб
11. Video CAST.html 8.75Кб
11. Video First Catch Their Eye.html 6.74Кб
11. Video Introduction to Notation.html 8.68Кб
11. Video SELECT FROM.html 10.79Кб
11. Video UNION.html 9.91Кб
11. Video Ways to Recommend Collaborative Filtering.html 8.39Кб
11. Video Why the Standard Deviation.html 9.06Кб
11. Visual Example of EM Progress.html 7.53Кб
11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt 2.14Кб
11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt 1.60Кб
11. Why the Standard Deviation-XlTBvjQ2t8w.mp4 6.54Мб
11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt 1.61Кб
11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt 1.30Кб
12. 07 Recall SC V1-0n5wUZiefkQ.en.vtt 3.05Кб
12. 07 Recall SC V1-0n5wUZiefkQ.mp4 2.15Мб
12. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt 2.79Кб
12. 11 PCA 1 Solution V1-u0rJRmubQ44.en.vtt 10.65Кб
12. 11 PCA 1 Solution V1-u0rJRmubQ44.mp4 20.23Мб
12. 11 PCA 1 Solution V1-u0rJRmubQ44.pt-BR.vtt 10.19Кб
12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.en.vtt 1.74Кб
12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.mp4 3.09Мб
12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.pt-BR.vtt 2.06Кб
12. 14 Screencast JavaScript V2-vgXUKgsT_48.en.vtt 7.92Кб
12. 14 Screencast JavaScript V2-vgXUKgsT_48.mp4 9.67Мб
12. 14 Screencast JavaScript V2-vgXUKgsT_48.pt-BR.vtt 7.39Кб
12. Adaptation of Univariate Plots.html 14.16Кб
12. Analyzing Multiple Metrics.html 11.91Кб
12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.en.vtt 1.22Кб
12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.mp4 1.95Мб
12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.en.vtt 1.84Кб
12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.mp4 2.12Мб
12. Bad Visual Quizzes (Part I).html 12.31Кб
12. Binomial 3.html 7.83Кб
12. Binomial 3-Jp2xJOtNQZ0.ar.vtt 819б
12. Binomial 3-Jp2xJOtNQZ0.en.vtt 628б
12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt 665б
12. Binomial 3-Jp2xJOtNQZ0.ja.vtt 572б
12. Binomial 3-Jp2xJOtNQZ0.mp4 4.67Мб
12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt 694б
12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt 554б
12. Binomial 3-YIELbuet-ZE.ar.vtt 1.85Кб
12. Binomial 3-YIELbuet-ZE.en.vtt 1.27Кб
12. Binomial 3-YIELbuet-ZE.es-ES.vtt 1.27Кб
12. Binomial 3-YIELbuet-ZE.ja.vtt 1.15Кб
12. Binomial 3-YIELbuet-ZE.mp4 7.14Мб
12. Binomial 3-YIELbuet-ZE.pt-BR.vtt 1.46Кб
12. Binomial 3-YIELbuet-ZE.zh-CN.vtt 1.06Кб
12. Combining Data.html 9.55Кб
12. Combining Data From Different Sources-IfMydJvU37M.en.vtt 2.17Кб
12. Combining Data From Different Sources-IfMydJvU37M.mp4 4.53Мб
12. Combining Data From Different Sources-IfMydJvU37M.pt-BR.vtt 2.35Кб
12. Common Table Expressions-qtEKO7B8bXQ.ar.vtt 1.95Кб
12. Common Table Expressions-qtEKO7B8bXQ.en.vtt 1.41Кб
12. Common Table Expressions-qtEKO7B8bXQ.mp4 5.23Мб
12. Common Table Expressions-qtEKO7B8bXQ.pt-BR.vtt 1.80Кб
12. Common Table Expressions-qtEKO7B8bXQ.zh-CN.vtt 1.24Кб
12. Conclusions-yMRRXDKb428.en.vtt 1.80Кб
12. Conclusions-yMRRXDKb428.mp4 5.12Мб
12. Confusion Matrix Practice 2.html 10.77Кб
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt 535б
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt 394б
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4 1.17Мб
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt 405б
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt 366б
12. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt 402б
12. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt 319б
12. Confusion Matrix Practice 2-XN1eS7boCNg.mp4 1.03Мб
12. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt 344б
12. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt 335б
12. Creating ndarrays with Broadcasting.html 7.13Кб
12. DataVis L3 11 V1-C8DGwJa_adA.en.vtt 1.38Кб
12. DataVis L3 11 V1-C8DGwJa_adA.mp4 1.32Мб
12. DataVis L3 11 V1-C8DGwJa_adA.pt-BR.vtt 1.36Кб
12. DataVis L3 11 V1-C8DGwJa_adA.zh-CN.vtt 1.22Кб
12. Data Vis L4 C12 V2-aJncRqqJUYI.en.vtt 2.28Кб
12. Data Vis L4 C12 V2-aJncRqqJUYI.mp4 2.13Мб
12. Data Vis L4 C12 V2-aJncRqqJUYI.pt-BR.vtt 2.29Кб
12. Data Vis L4 C12 V2-aJncRqqJUYI.zh-CN.vtt 1.88Кб
12. DBSCAN implementation.html 6.72Кб
12. Descriptive Statistics, Outliers and Axis Limits.html 9.69Кб
12. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15Кб
12. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01Мб
12. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16Кб
12. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02Кб
12. Dog Breed Workspace.html 6.58Кб
12. Draw Conclusions.html 7.47Кб
12. Errors and Exceptions.html 11.98Кб
12. How Does K-Means Work-pL-pMCDgJuw.en.vtt 2.26Кб
12. How Does K-Means Work-pL-pMCDgJuw.mp4 3.54Мб
12. How Does K-Means Work-pL-pMCDgJuw.pt-BR.vtt 2.34Кб
12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt 3.17Кб
12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt 2.34Кб
12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4 3.98Мб
12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt 2.56Кб
12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt 2.07Кб
12. JavaScript.html 15.10Кб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.en.vtt 2.34Кб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.mp4 4.95Мб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.pt-BR.vtt 2.23Кб
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.en.vtt 2.95Кб
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.mp4 4.60Мб
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.pt-BR.vtt 3.38Кб
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.zh-CN.vtt 2.49Кб
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.en.vtt 2.22Кб
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.mp4 4.18Мб
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.pt-BR.vtt 2.48Кб
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.zh-CN.vtt 1.95Кб
12. L5 121 Lesson Summary V1-SOBCduyymkQ.en.vtt 1.77Кб
12. L5 121 Lesson Summary V1-SOBCduyymkQ.mp4 4.35Мб
12. L5 121 Lesson Summary V1-SOBCduyymkQ.pt-BR.vtt 1.89Кб
12. Launching the notebook server.html 11.58Кб
12. Lesson Conclusion.html 5.82Кб
12. Lesson Summary.html 5.77Кб
12. Linear Transformation Quiz Answers.html 12.21Кб
12. Loading Data into a Pandas DataFrame.html 35.19Кб
12. Magic Methods.html 8.51Кб
12. Magic Methods in Code-oDuXThOqans.en.vtt 4.09Кб
12. Magic Methods in Code-oDuXThOqans.mp4 4.36Мб
12. Magic Methods in Code-oDuXThOqans.pt-BR.vtt 3.77Кб
12. Metric - Average Classroom Time.html 10.66Кб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt 1.74Кб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4 1.41Мб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt 1.70Кб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt 1.50Кб
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.en.vtt 842б
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.mp4 3.63Мб
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.pt-BR.vtt 786б
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.zh-CN.vtt 769б
12. More Spam Classifying.html 6.25Кб
12. Multiclass Entropy.html 8.71Кб
12. Naive Bayes Algorithm 2.html 6.30Кб
12. Non-Linear Regions.html 7.54Кб
12. Non-Linear Regions.html 8.40Кб
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77Кб
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77Кб
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33Мб
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33Мб
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51Кб
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51Кб
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57Кб
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57Кб
12. Normalizer.html 6.17Кб
12. Normalizer.html 9.97Кб
12. Normalizer-G9yQ_URDrDQ.ar.vtt 144б
12. Normalizer-G9yQ_URDrDQ.en.vtt 129б
12. Normalizer-G9yQ_URDrDQ.es-ES.vtt 138б
12. Normalizer-G9yQ_URDrDQ.ja.vtt 132б
12. Normalizer-G9yQ_URDrDQ.mp4 603.29Кб
12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt 125б
12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt 129б
12. Normalizer-mQ_IjrtmmAk.ar.vtt 2.43Кб
12. Normalizer-mQ_IjrtmmAk.en.vtt 1.92Кб
12. Normalizer-mQ_IjrtmmAk.es-ES.vtt 2.01Кб
12. Normalizer-mQ_IjrtmmAk.ja.vtt 1.76Кб
12. Normalizer-mQ_IjrtmmAk.mp4 7.25Мб
12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt 2.10Кб
12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt 1.61Кб
12. Normalizer-W5i-gRAvZxs.ar.vtt 163б
12. Normalizer-W5i-gRAvZxs.en.vtt 136б
12. Normalizer-W5i-gRAvZxs.es-ES.vtt 140б
12. Normalizer-W5i-gRAvZxs.ja.vtt 134б
12. Normalizer-W5i-gRAvZxs.mp4 754.47Кб
12. Normalizer-W5i-gRAvZxs.pt-BR.vtt 162б
12. Normalizer-W5i-gRAvZxs.zh-CN.vtt 123б
12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt 1.99Кб
12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt 1.59Кб
12. Notation Parameters vs. Statistics-webref_dLrA.mp4 6.33Мб
12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt 1.71Кб
12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt 1.27Кб
12. Notebook + Quiz Dummy Variables.html 18.40Кб
12. Notebook + Quiz How To Break Into the Field.html 11.05Кб
12. Other Activation Functions.html 6.53Кб
12. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68Кб
12. Other Activation Functions-kA-1vUt6cvQ.mp4 2.30Мб
12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55Кб
12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34Кб
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt 2.22Кб
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4 6.30Мб
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt 2.17Кб
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt 1.75Кб
12. Pandas 7 V1-ruTYp-twXO0.en.vtt 5.40Кб
12. Pandas 7 V1-ruTYp-twXO0.mp4 8.09Мб
12. Pandas 7 V1-ruTYp-twXO0.pt-BR.vtt 6.50Кб
12. Pandas 7 V1-ruTYp-twXO0.zh-CN.vtt 4.77Кб
12. Part-of-Speech Tagging.html 7.99Кб
12. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt 1.67Кб
12. Part-of-Speech Tagging-WFEu8bXI5OA.mp4 2.15Мб
12. Part-of-Speech Tagging-WFEu8bXI5OA.pt-BR.vtt 1.99Кб
12. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt 1.48Кб
12. Picture First, Title Second.html 7.48Кб
12. Pipelines and Feature Unions.html 8.06Кб
12. Polynomial Kernel 2.html 7.60Кб
12. Putting It All Together.html 6.42Кб
12. Questions to Ask Yourself When Conducting a Code Review.html 7.58Кб
12. Quiz CAST.html 10.14Кб
12. Quiz Expectation Maximization.html 7.46Кб
12. Quiz Lambda Expressions.html 9.45Кб
12. Quiz Mean Absolute Squared Errors.html 7.87Кб
12. Quiz What Defines A Line - Line Basics Quiz.html 9.66Кб
12. Quizzes UNION.html 12.53Кб
12. Recall.html 8.15Кб
12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt 678б
12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt 501б
12. Reflect on your commit messages-_0AHmKkfjTo.mp4 3.03Мб
12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt 538б
12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt 473б
12. Reflect on your commit messages.html 7.66Кб
12. Regularization.html 8.59Кб
12. Screencast PCA Solution.html 7.80Кб
12. Searching and pipes (grep, wc).html 8.23Кб
12. Solution Booleans, Comparison and Logical Operators.html 9.29Кб
12. Solution For Loops Practice.html 8.89Кб
12. Solution Optimizing - Common Books.html 7.63Кб
12. Solutions Aggregates in Window Functions.html 8.28Кб
12. Solutions JOIN Questions Part I.html 9.44Кб
12. Solutions MIN, MAX, AVG.html 10.85Кб
12. Stride and Padding.html 7.59Кб
12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.41Кб
12. Stride and Padding-0r9o8hprDXQ.mp4 7.98Мб
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.55Кб
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.74Кб
12. Subqueries Using WITH-IszTmDKyKHI.ar.vtt 1.85Кб
12. Subqueries Using WITH-IszTmDKyKHI.en.vtt 1.39Кб
12. Subqueries Using WITH-IszTmDKyKHI.mp4 1.84Мб
12. Subqueries Using WITH-IszTmDKyKHI.pt-BR.vtt 1.60Кб
12. Subqueries Using WITH-IszTmDKyKHI.zh-CN.vtt 1.20Кб
12. SVD Practice Takeaways-2er0HUDum7k.en.vtt 2.39Кб
12. SVD Practice Takeaways-2er0HUDum7k.mp4 4.02Мб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.en.vtt 4.16Кб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.mp4 9.69Мб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.pt-BR.vtt 3.29Кб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.zh-CN.vtt 3.70Кб
12. Text Recap + Next Steps.html 6.45Кб
12. Two Coins 2.html 8.49Кб
12. Two Coins 2-hoVOT8qcQ7c.ar.vtt 2.12Кб
12. Two Coins 2-hoVOT8qcQ7c.en.vtt 1.61Кб
12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt 1.72Кб
12. Two Coins 2-hoVOT8qcQ7c.it.vtt 1.76Кб
12. Two Coins 2-hoVOT8qcQ7c.ja.vtt 1.68Кб
12. Two Coins 2-hoVOT8qcQ7c.mp4 10.92Мб
12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt 1.53Кб
12. Two Coins 2-hoVOT8qcQ7c.th.vtt 3.25Кб
12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt 1.55Кб
12. Two Coins 2-tI0J14yQr1s.ar.vtt 1.04Кб
12. Two Coins 2-tI0J14yQr1s.en.vtt 798б
12. Two Coins 2-tI0J14yQr1s.es-ES.vtt 837б
12. Two Coins 2-tI0J14yQr1s.it.vtt 832б
12. Two Coins 2-tI0J14yQr1s.ja.vtt 819б
12. Two Coins 2-tI0J14yQr1s.mp4 4.52Мб
12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt 702б
12. Two Coins 2-tI0J14yQr1s.th.vtt 1.64Кб
12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt 713б
12. Two Flips 5.html 8.79Кб
12. Two Flips 5-G28YyiGFGWA.ar.vtt 437б
12. Two Flips 5-G28YyiGFGWA.en.vtt 349б
12. Two Flips 5-G28YyiGFGWA.es-ES.vtt 366б
12. Two Flips 5-G28YyiGFGWA.hr.vtt 383б
12. Two Flips 5-G28YyiGFGWA.it.vtt 382б
12. Two Flips 5-G28YyiGFGWA.ja.vtt 370б
12. Two Flips 5-G28YyiGFGWA.mp4 2.15Мб
12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt 377б
12. Two Flips 5-G28YyiGFGWA.th.vtt 654б
12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt 348б
12. Two Flips 5-HB8b7sZQFGs.ar.vtt 650б
12. Two Flips 5-HB8b7sZQFGs.en.vtt 549б
12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt 566б
12. Two Flips 5-HB8b7sZQFGs.hr.vtt 575б
12. Two Flips 5-HB8b7sZQFGs.it.vtt 598б
12. Two Flips 5-HB8b7sZQFGs.ja.vtt 527б
12. Two Flips 5-HB8b7sZQFGs.mp4 990.87Кб
12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt 516б
12. Two Flips 5-HB8b7sZQFGs.th.vtt 729б
12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt 558б
12. Types Of Collaborative Filtering-fZhkWHHP6SM.en.vtt 1.72Кб
12. Types Of Collaborative Filtering-fZhkWHHP6SM.mp4 3.90Мб
12. Types of Errors - Part III.html 10.44Кб
12. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt 2.90Кб
12. Types Of Errors - Part III-Z-srkCPsdaM.mp4 3.94Мб
12. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt 2.94Кб
12. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt 2.54Кб
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.ar.vtt 4.81Кб
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.en.vtt 3.74Кб
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.mp4 3.10Мб
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.pt-BR.vtt 3.42Кб
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.zh-CN.vtt 3.52Кб
12. Up Next.html 7.40Кб
12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt 2.80Кб
12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt 1.91Кб
12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4 5.31Мб
12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt 2.14Кб
12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt 1.59Кб
12. Vectors Quiz 3.html 8.99Кб
12. Video + Quiz Collaborative Filtering Content Based Recs.html 11.55Кб
12. Video How Does K-Means Work.html 8.02Кб
12. Video Important Final Points.html 10.62Кб
12. Video Introduction to Summary Statistics.html 8.36Кб
12. Video Notation for Parameters vs. Statistics.html 11.78Кб
12. Video Other Language Associated with Confidence Intervals.html 8.25Кб
12. Video SVD Practice Takeaways.html 8.08Кб
12. Video WITH.html 8.09Кб
12. Your First Queries in SQL Workspace.html 15.46Кб
12. Your Udacity Professional Profile.html 7.85Кб
1200px-linear-regression.svg.png 38.24Кб
13. [Lab] DBSCAN.html 6.86Кб
13. 08 F1 Score SC V1-TRzBeL07fSg.en.vtt 7.93Кб
13. 08 F1 Score SC V1-TRzBeL07fSg.mp4 6.05Мб
13. 08 F1 Score SC V1-TRzBeL07fSg.pt-BR.vtt 7.39Кб
13. 12 Interpret PCA Results V1-ZX6EACfsZbc.en.vtt 4.71Кб
13. 12 Interpret PCA Results V1-ZX6EACfsZbc.mp4 5.07Мб
13. 12 Interpret PCA Results V1-ZX6EACfsZbc.pt-BR.vtt 4.61Кб
13. 14 How Does KMeans Work V1-y7yZyyHgyYU.en.vtt 3.53Кб
13. 14 How Does KMeans Work V1-y7yZyyHgyYU.mp4 4.39Мб
13. 14 How Does KMeans Work V1-y7yZyyHgyYU.pt-BR.vtt 3.66Кб
13. Advanced Standard Deviation and Variance.html 12.41Кб
13. Aliases for Multiple Window Functions-RWe03bULYnM.ar.vtt 1008б
13. Aliases for Multiple Window Functions-RWe03bULYnM.en.vtt 826б
13. Aliases for Multiple Window Functions-RWe03bULYnM.mp4 2.29Мб
13. Aliases for Multiple Window Functions-RWe03bULYnM.pt-BR.vtt 829б
13. Aliases for Multiple Window Functions-RWe03bULYnM.zh-CN.vtt 787б
13. Bad Visual Quizzes (Part II).html 12.60Кб
13. Batch vs Stochastic Gradient Descent.html 6.29Кб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64Кб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95Мб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63Кб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.10Кб
13. Binomial 4.html 7.83Кб
13. Binomial 4-lPrKmvckG4E.ar.vtt 1.39Кб
13. Binomial 4-lPrKmvckG4E.en.vtt 1.12Кб
13. Binomial 4-lPrKmvckG4E.es-ES.vtt 1.11Кб
13. Binomial 4-lPrKmvckG4E.ja.vtt 1.08Кб
13. Binomial 4-lPrKmvckG4E.mp4 2.95Мб
13. Binomial 4-lPrKmvckG4E.pt-BR.vtt 1.48Кб
13. Binomial 4-lPrKmvckG4E.zh-CN.vtt 966б
13. Binomial 4-mvJUNYfHngY.ar.vtt 654б
13. Binomial 4-mvJUNYfHngY.en.vtt 479б
13. Binomial 4-mvJUNYfHngY.es-ES.vtt 502б
13. Binomial 4-mvJUNYfHngY.ja.vtt 403б
13. Binomial 4-mvJUNYfHngY.mp4 2.75Мб
13. Binomial 4-mvJUNYfHngY.pt-BR.vtt 500б
13. Binomial 4-mvJUNYfHngY.zh-CN.vtt 403б
13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt 3.11Кб
13. Calculating the Mean-1nzZxmJ8xvU.en.vtt 2.36Кб
13. Calculating the Mean-1nzZxmJ8xvU.mp4 5.46Мб
13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt 2.56Кб
13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt 2.12Кб
13. Case Study in Python.html 17.64Кб
13. Convolutional Layers in Keras.html 11.95Кб
13. DataVis L3 12 V2-fo0VIbQRBJk.en.vtt 2.95Кб
13. DataVis L3 12 V2-fo0VIbQRBJk.mp4 3.05Мб
13. DataVis L3 12 V2-fo0VIbQRBJk.pt-BR.vtt 3.11Кб
13. DataVis L3 12 V2-fo0VIbQRBJk.zh-CN.vtt 2.60Кб
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.en.vtt 3.69Кб
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.mp4 3.75Мб
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.pt-BR.vtt 3.90Кб
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.zh-CN.vtt 3.08Кб
13. Draw Conclusions - Discussion.html 6.99Кб
13. Dummy Variables Recap-r7Lek8rsIcg.en.vtt 1.67Кб
13. Dummy Variables Recap-r7Lek8rsIcg.mp4 10.07Мб
13. Dummy Variables Recap-r7Lek8rsIcg.pt-BR.vtt 1.78Кб
13. Dummy Variables Recap-r7Lek8rsIcg.zh-CN.vtt 1.39Кб
13. Early Stopping.html 8.62Кб
13. Early Stopping-taIJZMNwRsI.en.vtt 2.47Кб
13. Early Stopping-taIJZMNwRsI.mp4 5.19Мб
13. Error Functions.html 7.52Кб
13. Error Functions.html 8.38Кб
13. Error Functions-YfUUunxWIJw.en.vtt 790б
13. Error Functions-YfUUunxWIJw.en.vtt 790б
13. Error Functions-YfUUunxWIJw.mp4 3.54Мб
13. Error Functions-YfUUunxWIJw.mp4 3.54Мб
13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804б
13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804б
13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739б
13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739б
13. Exercise Code Magic Methods.html 8.34Кб
13. Exercise Combining Data.html 9.46Кб
13. Exercise JavaScript.html 8.09Кб
13. F1 Score.html 7.40Кб
13. Filling in a Confusion Matrix.html 11.06Кб
13. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt 582б
13. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt 449б
13. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4 1.17Мб
13. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt 478б
13. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt 378б
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt 675б
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt 491б
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4 2.03Мб
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt 529б
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt 425б
13. Fitting A Regression Line-xQob80zrT3s.en.vtt 3.03Кб
13. Fitting A Regression Line-xQob80zrT3s.mp4 5.37Мб
13. Fitting A Regression Line-xQob80zrT3s.pt-BR.vtt 3.39Кб
13. Fitting A Regression Line-xQob80zrT3s.zh-CN.vtt 2.62Кб
13. Formula Summary.html 6.22Кб
13. Formula Summary-zqo1RJEHT_0.ar.vtt 2.60Кб
13. Formula Summary-zqo1RJEHT_0.en.vtt 2.05Кб
13. Formula Summary-zqo1RJEHT_0.es-ES.vtt 2.13Кб
13. Formula Summary-zqo1RJEHT_0.ja.vtt 1.86Кб
13. Formula Summary-zqo1RJEHT_0.mp4 12.55Мб
13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt 2.21Кб
13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt 1.61Кб
13. Getting Set Up for the Mini-Project.html 6.61Кб
13. Getting Set Up for the Mini-Project.html 6.69Кб
13. GMM Implementation.html 7.45Кб
13. GROUP BY-9vb67TF4WV0.ar.vtt 3.98Кб
13. GROUP BY-9vb67TF4WV0.en.vtt 3.12Кб
13. GROUP BY-9vb67TF4WV0.mp4 5.72Мб
13. GROUP BY-9vb67TF4WV0.pt-BR.vtt 3.35Кб
13. GROUP BY-9vb67TF4WV0.zh-CN.vtt 2.83Кб
13. Handling Errors.html 11.26Кб
13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt 2.89Кб
13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt 2.04Кб
13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4 3.15Мб
13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt 2.31Кб
13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt 1.94Кб
13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt 4.30Кб
13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt 2.97Кб
13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4 4.24Мб
13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt 3.39Кб
13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt 2.82Кб
13. How to Break Into the Field Solution-Db_2Lmwo4EY.en.vtt 15.30Кб
13. How to Break Into the Field Solution-Db_2Lmwo4EY.mp4 24.54Мб
13. How to Break Into the Field Solution-Db_2Lmwo4EY.pt-BR.vtt 14.46Кб
13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.en.vtt 1.50Кб
13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.mp4 4.42Мб
13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.pt-BR.vtt 1.43Кб
13. L3 121 Scales And Transformations V3-PE53ga2bOME.en.vtt 4.05Кб
13. L3 121 Scales And Transformations V3-PE53ga2bOME.mp4 4.85Мб
13. L3 121 Scales And Transformations V3-PE53ga2bOME.pt-BR.vtt 4.46Кб
13. L3 121 Scales And Transformations V3-PE53ga2bOME.zh-CN.vtt 3.46Кб
13. L4 131 Line Plots V1-kSntEWPuOa0.en.vtt 1.96Кб
13. L4 131 Line Plots V1-kSntEWPuOa0.mp4 3.82Мб
13. L4 131 Line Plots V1-kSntEWPuOa0.pt-BR.vtt 2.42Кб
13. L4 131 Line Plots V1-kSntEWPuOa0.zh-CN.vtt 1.72Кб
13. Line Plots.html 17.00Кб
13. Measuring SImilarity-G_Y6IPmp7Xs.en.vtt 3.01Кб
13. Measuring SImilarity-G_Y6IPmp7Xs.mp4 4.84Мб
13. Metric - Completion Rate.html 9.72Кб
13. Minimizing Error Functions.html 9.59Кб
13. Minimizing Error Functions-RbT2TXN_6tY.en.vtt 4.50Кб
13. Minimizing Error Functions-RbT2TXN_6tY.mp4 3.85Мб
13. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt 4.58Кб
13. MLND Outro-sFvMBncQjr8.en.vtt 514б
13. MLND Outro-sFvMBncQjr8.mp4 2.05Мб
13. MLND Outro-sFvMBncQjr8.pt-BR.vtt 533б
13. MLND Outro-sFvMBncQjr8.zh-CN.vtt 437б
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt 771б
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4 2.16Мб
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt 723б
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt 727б
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.en.vtt 635б
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.mp4 2.98Мб
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.pt-BR.vtt 694б
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.zh-CN.vtt 561б
13. Motivation for Other JOINs-3qdv1Ojc9Og.ar.vtt 2.63Кб
13. Motivation for Other JOINs-3qdv1Ojc9Og.en.vtt 1.90Кб
13. Motivation for Other JOINs-3qdv1Ojc9Og.mp4 5.32Мб
13. Motivation for Other JOINs-3qdv1Ojc9Og.pt-BR.vtt 1.67Кб
13. Motivation for Other JOINs-3qdv1Ojc9Og.zh-CN.vtt 1.70Кб
13. Named Entity Recognition.html 7.46Кб
13. Named Entity Recognition-QUQu2nsE7vE.en.vtt 1.10Кб
13. Named Entity Recognition-QUQu2nsE7vE.mp4 1.17Мб
13. Named Entity Recognition-QUQu2nsE7vE.pt-BR.vtt 1.25Кб
13. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt 1.00Кб
13. Normalizing Probability.html 10.92Кб
13. Normalizing Probability-V_Gqm42WodI.ar.vtt 481б
13. Normalizing Probability-V_Gqm42WodI.en.vtt 353б
13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt 390б
13. Normalizing Probability-V_Gqm42WodI.ja.vtt 332б
13. Normalizing Probability-V_Gqm42WodI.mp4 2.17Мб
13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt 440б
13. Normalizing Probability-V_Gqm42WodI.th.vtt 717б
13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt 320б
13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt 1.59Кб
13. Normalizing Probability-yYqN9Mf4jqw.en.vtt 1.11Кб
13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt 1.23Кб
13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt 1.16Кб
13. Normalizing Probability-yYqN9Mf4jqw.mp4 9.25Мб
13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt 1.35Кб
13. Normalizing Probability-yYqN9Mf4jqw.th.vtt 2.05Кб
13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt 962б
13. Notebook interface.html 10.30Кб
13. One Head 1.html 8.76Кб
13. One Head 1-lHuZpDkfwq8.ar.vtt 717б
13. One Head 1-lHuZpDkfwq8.en.vtt 553б
13. One Head 1-lHuZpDkfwq8.es-ES.vtt 575б
13. One Head 1-lHuZpDkfwq8.hr.vtt 539б
13. One Head 1-lHuZpDkfwq8.it.vtt 618б
13. One Head 1-lHuZpDkfwq8.ja.vtt 584б
13. One Head 1-lHuZpDkfwq8.mp4 3.66Мб
13. One Head 1-lHuZpDkfwq8.pt-BR.vtt 642б
13. One Head 1-lHuZpDkfwq8.th.vtt 970б
13. One Head 1-lHuZpDkfwq8.zh-CN.vtt 495б
13. One Head 1-T4A5uyqesjo.ar.vtt 845б
13. One Head 1-T4A5uyqesjo.en.vtt 617б
13. One Head 1-T4A5uyqesjo.es-ES.vtt 656б
13. One Head 1-T4A5uyqesjo.hr.vtt 599б
13. One Head 1-T4A5uyqesjo.it.vtt 656б
13. One Head 1-T4A5uyqesjo.ja.vtt 597б
13. One Head 1-T4A5uyqesjo.mp4 1.51Мб
13. One Head 1-T4A5uyqesjo.pt-BR.vtt 705б
13. One Head 1-T4A5uyqesjo.th.vtt 1.08Кб
13. One Head 1-T4A5uyqesjo.zh-CN.vtt 577б
13. Other Language Associated with Confidence Intervals.html 10.58Кб
13. Outro.html 5.94Кб
13. Participating in open source projects.html 7.40Кб
13. Participating in open source projects-OxL-gMTizUA.ar.vtt 768б
13. Participating in open source projects-OxL-gMTizUA.en.vtt 476б
13. Participating in open source projects-OxL-gMTizUA.mp4 2.77Мб
13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt 551б
13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt 438б
13. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt 1.55Кб
13. Parting Words Of Encouragement-sFF_WOnpsXM.mp4 4.65Мб
13. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt 1.68Кб
13. Polynomial Kernel 3.html 6.43Кб
13. Quiz Bayes Rule .html 5.98Кб
13. Quiz For Loops.html 16.29Кб
13. Quiz Information Gain.html 8.96Кб
13. Quiz Notation.html 12.03Кб
13. Quiz Optimizing - Holiday Gifts.html 7.63Кб
13. Quiz Types of Errors - Part III.html 15.06Кб
13. Recap Additional Resources.html 8.28Кб
13. Regularization 2.html 7.52Кб
13. Regularization-ndYnUrx8xvs.en.vtt 8.07Кб
13. Regularization-ndYnUrx8xvs.mp4 7.57Мб
13. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78Кб
13. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96Кб
13. Scales and Transformations.html 15.31Кб
13. Screencast + Text How Does K-Means Work.html 7.60Кб
13. Screencast How to Break Into the Field Solution.html 11.55Кб
13. Screencast Interpret PCA Results.html 7.85Кб
13. Shell and environment variables.html 7.95Кб
13. Solution Lambda Expressions.html 7.17Кб
13. Solutions CAST.html 7.69Кб
13. Solutions UNION.html 7.85Кб
13. Solution Your First Queries.html 10.39Кб
13. Strings.html 12.14Кб
13. Strings-ySZDrs-nNqg.ar.vtt 7.20Кб
13. Strings-ySZDrs-nNqg.en.vtt 5.20Кб
13. Strings-ySZDrs-nNqg.mp4 17.26Мб
13. Strings-ySZDrs-nNqg.pt-BR.vtt 5.59Кб
13. Strings-ySZDrs-nNqg.zh-CN.vtt 4.77Кб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.en.vtt 10.29Кб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.mp4 26.81Мб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.pt-BR.vtt 8.21Кб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.zh-CN.vtt 8.71Кб
13. Text + Quiz WITH vs. Subquery.html 10.85Кб
13. Text SVD Closed Form Solution.html 11.93Кб
13. Tips for Conducting a Code Review.html 10.19Кб
13. Two Coins 3.html 8.54Кб
13. Two Coins 3-GO6kbL3QRBE.ar.vtt 1.45Кб
13. Two Coins 3-GO6kbL3QRBE.en.vtt 1.03Кб
13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt 1.11Кб
13. Two Coins 3-GO6kbL3QRBE.it.vtt 1.12Кб
13. Two Coins 3-GO6kbL3QRBE.ja.vtt 841б
13. Two Coins 3-GO6kbL3QRBE.mp4 5.36Мб
13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt 1002б
13. Two Coins 3-GO6kbL3QRBE.th.vtt 1.84Кб
13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt 1004б
13. Two Coins 3-JIWv5fU3GLA.ar.vtt 2.47Кб
13. Two Coins 3-JIWv5fU3GLA.en.vtt 2.02Кб
13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt 2.10Кб
13. Two Coins 3-JIWv5fU3GLA.it.vtt 2.11Кб
13. Two Coins 3-JIWv5fU3GLA.ja.vtt 1.85Кб
13. Two Coins 3-JIWv5fU3GLA.mp4 12.85Мб
13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt 1.83Кб
13. Two Coins 3-JIWv5fU3GLA.th.vtt 3.52Кб
13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt 1.79Кб
13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.en.vtt 2.94Кб
13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.mp4 2.01Мб
13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.pt-BR.vtt 2.81Кб
13. Using Feature Union.html 12.24Кб
13. Using Feature Unions-QmE6CMGar1U.en.vtt 3.41Кб
13. Using Feature Unions-QmE6CMGar1U.mp4 4.56Мб
13. Using Feature Unions-QmE6CMGar1U.pt-BR.vtt 3.79Кб
13. Vectors Quiz Answers.html 7.13Кб
13. Video + Text Measuring Similarity.html 9.34Кб
13. Video Aliases for Multiple Window Functions.html 8.04Кб
13. Video Dummy Variables Recap.html 8.56Кб
13. Video Fitting A Regression Line.html 7.89Кб
13. Video GROUP BY.html 9.63Кб
13. Video Measures of Center (Mean).html 9.80Кб
13. Video More Advice.html 6.70Кб
13. Video Motivation for Other JOINs.html 8.08Кб
13. Words of Encouragement.html 5.89Кб
14. [Lab Solution] DBSCAN.html 6.88Кб
14. [Optional] Iterators and Generators.html 9.12Кб
14. [Optional] Notebook + Quiz Other Encodings.html 13.09Кб
14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.en.vtt 4.03Кб
14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.mp4 2.68Мб
14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.pt-BR.vtt 3.72Кб
14. 13 Inheritance Example V1-uWT-HIHBjv0.en.vtt 1.93Кб
14. 13 Inheritance Example V1-uWT-HIHBjv0.mp4 2.00Мб
14. 13 Inheritance Example V1-uWT-HIHBjv0.pt-BR.vtt 1.91Кб
14. 14 Funk SVD-H8gdwXy_npI.en.vtt 6.58Кб
14. 14 Funk SVD-H8gdwXy_npI.mp4 10.66Мб
14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.en.vtt 1.84Кб
14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.mp4 5.26Мб
14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.pt-BR.vtt 2.16Кб
14. Additional Plot Practice.html 7.05Кб
14. Analyzing Multiple Metrics.html 6.94Кб
14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt 572б
14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4 2.25Мб
14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt 780б
14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt 499б
14. Binomial 5.html 7.83Кб
14. Binomial 5-8jcCGD986jk.ar.vtt 396б
14. Binomial 5-8jcCGD986jk.en.vtt 342б
14. Binomial 5-8jcCGD986jk.es-ES.vtt 355б
14. Binomial 5-8jcCGD986jk.ja.vtt 371б
14. Binomial 5-8jcCGD986jk.mp4 2.51Мб
14. Binomial 5-8jcCGD986jk.pt-BR.vtt 473б
14. Binomial 5-8jcCGD986jk.zh-CN.vtt 296б
14. Binomial 5-yof0QiP2mzk.ar.vtt 303б
14. Binomial 5-yof0QiP2mzk.en.vtt 219б
14. Binomial 5-yof0QiP2mzk.es-ES.vtt 219б
14. Binomial 5-yof0QiP2mzk.ja.vtt 212б
14. Binomial 5-yof0QiP2mzk.mp4 1.01Мб
14. Binomial 5-yof0QiP2mzk.pt-BR.vtt 254б
14. Binomial 5-yof0QiP2mzk.zh-CN.vtt 212б
14. Bootcamps-l2tYmee3kxo.en.vtt 7.16Кб
14. Bootcamps-l2tYmee3kxo.mp4 10.17Мб
14. Bootcamps-l2tYmee3kxo.pt-BR.vtt 6.87Кб
14. Bootstrap Library.html 9.03Кб
14. Bootstrap Library-KsrqjguHWUI.en.vtt 18.08Кб
14. Bootstrap Library-KsrqjguHWUI.mp4 26.36Мб
14. Bootstrap Library-KsrqjguHWUI.pt-BR.vtt 16.37Кб
14. Building a Spam Classifier.html 7.27Кб
14. Case Study Add Feature Union.html 7.70Кб
14. Central Limit Theorem.html 10.21Кб
14. Central Limit Theorem-36KLIHioAvA.ar.vtt 982б
14. Central Limit Theorem-36KLIHioAvA.en.vtt 682б
14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt 775б
14. Central Limit Theorem-36KLIHioAvA.ja.vtt 661б
14. Central Limit Theorem-36KLIHioAvA.mp4 3.67Мб
14. Central Limit Theorem-36KLIHioAvA.pl.vtt 715б
14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt 684б
14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt 765б
14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt 582б
14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt 1.34Кб
14. Central Limit Theorem-9I8ysrRlmbA.en.vtt 1.04Кб
14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt 1.16Кб
14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt 957б
14. Central Limit Theorem-9I8ysrRlmbA.mp4 5.02Мб
14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt 1.05Кб
14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt 913б
14. Cleaning Data.html 9.06Кб
14. COALESCE-86vgu-ECBCQ.ar.vtt 2.04Кб
14. COALESCE-86vgu-ECBCQ.en.vtt 1.47Кб
14. COALESCE-86vgu-ECBCQ.mp4 2.26Мб
14. COALESCE-86vgu-ECBCQ.pt-BR.vtt 1.75Кб
14. COALESCE-86vgu-ECBCQ.zh-CN.vtt 1.33Кб
14. Common Types of Hypothesis Tests.html 10.86Кб
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt 2.57Кб
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4 10.80Мб
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt 2.45Кб
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt 2.18Кб
14. Conclusion.html 5.98Кб
14. Conclusion.html 6.03Кб
14. Conclusion-2G6x3oQnjy4.en.vtt 865б
14. Conclusion-2G6x3oQnjy4.mp4 2.33Мб
14. Conclusion-XiR_37bYA84.ar.vtt 894б
14. Conclusion-XiR_37bYA84.en.vtt 675б
14. Conclusion-XiR_37bYA84.mp4 1.96Мб
14. Conclusion-XiR_37bYA84.pt-BR.vtt 692б
14. Conclusion-XiR_37bYA84.zh-CN.vtt 616б
14. Confusion Matrix False Alarms.html 10.80Кб
14. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt 683б
14. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt 534б
14. Confusion Matrix False Alarms-611qWzIxGmU.mp4 2.57Мб
14. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt 567б
14. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt 505б
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt 1.79Кб
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt 1.20Кб
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4 4.66Мб
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt 1.29Кб
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt 1.03Кб
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt 1.58Кб
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4 3.36Мб
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt 1.56Кб
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt 1.37Кб
14. Disease Test 1.html 10.85Кб
14. Disease Test 1-05upwXtARuo.ar.vtt 829б
14. Disease Test 1-05upwXtARuo.en.vtt 633б
14. Disease Test 1-05upwXtARuo.es-ES.vtt 679б
14. Disease Test 1-05upwXtARuo.ja.vtt 621б
14. Disease Test 1-05upwXtARuo.mp4 2.81Мб
14. Disease Test 1-05upwXtARuo.pt-BR.vtt 680б
14. Disease Test 1-05upwXtARuo.th.vtt 1.16Кб
14. Disease Test 1-05upwXtARuo.zh-CN.vtt 572б
14. Disease Test 1-qDGSvvabN18.ar.vtt 963б
14. Disease Test 1-qDGSvvabN18.en.vtt 734б
14. Disease Test 1-qDGSvvabN18.es-ES.vtt 682б
14. Disease Test 1-qDGSvvabN18.ja.vtt 730б
14. Disease Test 1-qDGSvvabN18.mp4 3.62Мб
14. Disease Test 1-qDGSvvabN18.pt-BR.vtt 753б
14. Disease Test 1-qDGSvvabN18.th.vtt 1.19Кб
14. Disease Test 1-qDGSvvabN18.zh-CN.vtt 708б
14. Dropout.html 7.47Кб
14. Dropout-Ty6K6YiGdBs.en.vtt 4.71Кб
14. Dropout-Ty6K6YiGdBs.mp4 4.22Мб
14. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66Кб
14. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06Кб
14. Early Stopping - Solution.html 6.73Кб
14. Error Functions-jfKShxGAbok.en.vtt 9.45Кб
14. Error Functions-jfKShxGAbok.en.vtt 9.45Кб
14. Error Functions-jfKShxGAbok.mp4 7.21Мб
14. Error Functions-jfKShxGAbok.mp4 7.21Мб
14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14Кб
14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14Кб
14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35Кб
14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35Кб
14. F-beta Score.html 11.00Кб
14. Formatting Best Practices.html 13.40Кб
14. GMM Examples Applications.html 8.44Кб
14. How Does K-Means Work.html 10.70Кб
14. Information Gain-k9iZL53PAmw.en.vtt 3.35Кб
14. Information Gain-k9iZL53PAmw.mp4 9.24Мб
14. Information Gain-k9iZL53PAmw.pt-BR.vtt 2.81Кб
14. Information Gain-k9iZL53PAmw.zh-CN.vtt 2.90Кб
14. Inheritance.html 10.10Кб
14. Inheritance-1gsrxUwPI40.en.vtt 2.64Кб
14. Inheritance-1gsrxUwPI40.mp4 3.52Мб
14. Inheritance-1gsrxUwPI40.pt-BR.vtt 2.44Кб
14. Interview with Art - Part 3.html 7.05Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt 5.33Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt 4.10Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 25.04Мб
14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt 4.56Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt 3.67Кб
14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt 3.42Кб
14. Iterators And Generators-tYH8X4Zeh-0.en.vtt 2.67Кб
14. Iterators And Generators-tYH8X4Zeh-0.mp4 18.95Мб
14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt 2.97Кб
14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt 2.42Кб
14. JOINs-CxuHtd1Daqk.ar.vtt 3.08Кб
14. JOINs-CxuHtd1Daqk.en.vtt 2.32Кб
14. JOINs-CxuHtd1Daqk.mp4 3.09Мб
14. JOINs-CxuHtd1Daqk.pt-BR.vtt 2.41Кб
14. JOINs-CxuHtd1Daqk.zh-CN.vtt 2.03Кб
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.en.vtt 671б
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.mp4 2.06Мб
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.pt-BR.vtt 841б
14. Learning Rate Decay.html 6.15Кб
14. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12Кб
14. Learning Rate-TwJ8aSZoh2U.mp4 927.05Кб
14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26Кб
14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020б
14. Lesson Conclusion.html 5.88Кб
14. Log-loss Error Function.html 9.19Кб
14. Log-loss Error Function.html 10.04Кб
14. Markdown cells.html 10.41Кб
14. Mean vs Total Error.html 8.86Кб
14. Measures of Center (Mean).html 10.69Кб
14. Mini-Project Mean Normalization and Data Separation.html 6.80Кб
14. Mini-Project Statistics From Stock Data.html 6.68Кб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.en.vtt 6.50Кб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.mp4 31.64Мб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.pt-BR.vtt 6.43Кб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.zh-CN.vtt 5.62Кб
14. More Advice.html 7.64Кб
14. Notebook Interpretation.html 7.36Кб
14. Notebook Measuring Similarity.html 8.98Кб
14. Notebook POS and NER.html 7.83Кб
14. One Head 2.html 9.65Кб
14. One Head 2-64EjAbqrtmo.ar.vtt 640б
14. One Head 2-64EjAbqrtmo.en.vtt 508б
14. One Head 2-64EjAbqrtmo.es-ES.vtt 480б
14. One Head 2-64EjAbqrtmo.hr.vtt 453б
14. One Head 2-64EjAbqrtmo.it.vtt 504б
14. One Head 2-64EjAbqrtmo.ja.vtt 417б
14. One Head 2-64EjAbqrtmo.mp4 1.04Мб
14. One Head 2-64EjAbqrtmo.pt-BR.vtt 547б
14. One Head 2-64EjAbqrtmo.th.vtt 1015б
14. One Head 2-64EjAbqrtmo.zh-CN.vtt 422б
14. One Head 2-JHx3ucNS9f4.ar.vtt 445б
14. One Head 2-JHx3ucNS9f4.en.vtt 342б
14. One Head 2-JHx3ucNS9f4.es-ES.vtt 393б
14. One Head 2-JHx3ucNS9f4.hr.vtt 312б
14. One Head 2-JHx3ucNS9f4.it.vtt 375б
14. One Head 2-JHx3ucNS9f4.ja.vtt 357б
14. One Head 2-JHx3ucNS9f4.mp4 2.26Мб
14. One Head 2-JHx3ucNS9f4.pt-BR.vtt 354б
14. One Head 2-JHx3ucNS9f4.th.vtt 677б
14. One Head 2-JHx3ucNS9f4.zh-CN.vtt 323б
14. Other JOINs-4edRxFmWUEw.ar.vtt 5.96Кб
14. Other JOINs-4edRxFmWUEw.en.vtt 4.27Кб
14. Other JOINs-4edRxFmWUEw.mp4 7.51Мб
14. Other JOINs-4edRxFmWUEw.pt-BR.vtt 3.79Кб
14. Other JOINs-4edRxFmWUEw.zh-CN.vtt 3.79Кб
14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt 1.37Кб
14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt 1.04Кб
14. Other Sampling Distributions-Bxl0DonzX8c.mp4 4.18Мб
14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt 1.28Кб
14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt 964б
14. Performance Tuning Motivation-aY4_uYWEuoE.ar.vtt 1.28Кб
14. Performance Tuning Motivation-aY4_uYWEuoE.en.vtt 976б
14. Performance Tuning Motivation-aY4_uYWEuoE.mp4 3.60Мб
14. Performance Tuning Motivation-aY4_uYWEuoE.pt-BR.vtt 972б
14. Performance Tuning Motivation-aY4_uYWEuoE.zh-CN.vtt 852б
14. Practice Handling Input Errors.html 10.01Кб
14. Quiz Aliases for Multiple Window Functions.html 11.20Кб
14. Quiz Applied Standard Deviation and Variance.html 14.47Кб
14. Quiz Dimensionality.html 16.33Кб
14. Quiz GROUP BY.html 10.78Кб
14. Quiz Strings.html 15.63Кб
14. Quiz WITH.html 9.18Кб
14. RBF Kernel 1.html 6.39Кб
14. Scales and Transformations Practice.html 6.85Кб
14. Screencast Bootcamps.html 10.44Кб
14. Solution For Loops Quiz.html 10.27Кб
14. Solution Information Gain.html 7.50Кб
14. Solution Optimizing - Holiday Gifts.html 7.64Кб
14. Startup files (.bash_profile).html 6.87Кб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.en.vtt 7.45Кб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.mp4 18.60Мб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.pt-BR.vtt 6.21Кб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.zh-CN.vtt 6.40Кб
14. Text The Regression Closed Form Solution.html 9.11Кб
14. Two Coins 4.html 8.57Кб
14. Two Coins 4-9R44IyZ-aQI.ar.vtt 1.69Кб
14. Two Coins 4-9R44IyZ-aQI.en.vtt 1.35Кб
14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt 1.34Кб
14. Two Coins 4-9R44IyZ-aQI.it.vtt 1.38Кб
14. Two Coins 4-9R44IyZ-aQI.ja.vtt 1.10Кб
14. Two Coins 4-9R44IyZ-aQI.mp4 8.19Мб
14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt 1.17Кб
14. Two Coins 4-9R44IyZ-aQI.th.vtt 2.20Кб
14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt 1.27Кб
14. Two Coins 4-cDub-OOrIRE.ar.vtt 1.01Кб
14. Two Coins 4-cDub-OOrIRE.en.vtt 789б
14. Two Coins 4-cDub-OOrIRE.es-ES.vtt 845б
14. Two Coins 4-cDub-OOrIRE.it.vtt 837б
14. Two Coins 4-cDub-OOrIRE.ja.vtt 805б
14. Two Coins 4-cDub-OOrIRE.mp4 4.81Мб
14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt 761б
14. Two Coins 4-cDub-OOrIRE.th.vtt 1.37Кб
14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt 752б
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.ar.vtt 5.14Кб
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.en.vtt 4.03Кб
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.mp4 3.12Мб
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.pt-BR.vtt 3.41Кб
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.zh-CN.vtt 3.82Кб
14. Using Color.html 7.17Кб
14. Using Color-6bAedqD3ilw.en.vtt 4.68Кб
14. Using Color-6bAedqD3ilw.mp4 8.47Мб
14. Using Color-6bAedqD3ilw.pt-BR.vtt 4.88Кб
14. Using Color-6bAedqD3ilw.zh-CN.vtt 4.23Кб
14. Video COALESCE.html 7.05Кб
14. Video Correct Interpretations of Confidence Intervals.html 8.13Кб
14. Video FunkSVD.html 12.08Кб
14. Video LEFT and RIGHT JOINs.html 9.10Кб
14. Video Other Sampling Distributions.html 8.71Кб
14. Video Performance Tuning Motivation.html 7.04Кб
15. [Optional] Quiz Iterators and Generators.html 9.49Кб
15. 14 Interpretation Solution V1-wU2duZa0ds0.en.vtt 6.44Кб
15. 14 Interpretation Solution V1-wU2duZa0ds0.mp4 9.16Мб
15. 14 Interpretation Solution V1-wU2duZa0ds0.pt-BR.vtt 6.35Кб
15. Binomial 6.html 7.83Кб
15. Binomial 6-CQHRYIU6v9Q.ar.vtt 473б
15. Binomial 6-CQHRYIU6v9Q.en.vtt 340б
15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt 327б
15. Binomial 6-CQHRYIU6v9Q.ja.vtt 298б
15. Binomial 6-CQHRYIU6v9Q.mp4 1.73Мб
15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt 401б
15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt 307б
15. Binomial 6-n_OrWrZ8tKY.ar.vtt 706б
15. Binomial 6-n_OrWrZ8tKY.en.vtt 540б
15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt 538б
15. Binomial 6-n_OrWrZ8tKY.ja.vtt 531б
15. Binomial 6-n_OrWrZ8tKY.mp4 4.45Мб
15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt 691б
15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt 460б
15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.en.vtt 1.08Кб
15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.mp4 3.07Мб
15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.pt-BR.vtt 1.26Кб
15. Cluster Analysis Process.html 7.50Кб
15. Code cells.html 6.96Кб
15. Conclusions-3IFF1GzUq0Y.en.vtt 1.46Кб
15. Conclusions-3IFF1GzUq0Y.mp4 3.99Мб
15. Confusion Matrix for Eigenfaces.html 11.45Кб
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt 196б
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt 174б
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4 513.65Кб
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt 170б
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt 157б
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt 3.27Кб
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt 2.26Кб
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4 14.57Мб
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt 2.42Кб
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt 2.01Кб
15. Controlling the shell prompt ($PS1).html 7.30Кб
15. Correct Interpretations of Confidence Intervals.html 9.29Кб
15. DBSCAN examples applications.html 7.19Кб
15. Designing for Color Blindness.html 7.57Кб
15. Designing for Color Blindness-k4iTzS7t2U4.ar.vtt 2.30Кб
15. Designing for Color Blindness-k4iTzS7t2U4.en.vtt 1.67Кб
15. Designing for Color Blindness-k4iTzS7t2U4.mp4 4.89Мб
15. Designing for Color Blindness-k4iTzS7t2U4.pt-BR.vtt 1.70Кб
15. Designing for Color Blindness-k4iTzS7t2U4.zh-CN.vtt 1.52Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.70Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.70Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35Мб
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35Мб
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67Кб
15. Discrete vs Continuous.html 9.80Кб
15. Discrete vs Continuous.html 10.66Кб
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551б
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551б
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26Мб
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26Мб
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584б
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584б
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481б
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481б
15. Disease Test 2.html 10.25Кб
15. Disease Test 2-FQM7i07EqGo.ar.vtt 325б
15. Disease Test 2-FQM7i07EqGo.en.vtt 268б
15. Disease Test 2-FQM7i07EqGo.es-ES.vtt 272б
15. Disease Test 2-FQM7i07EqGo.ja.vtt 296б
15. Disease Test 2-FQM7i07EqGo.mp4 1.49Мб
15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt 262б
15. Disease Test 2-FQM7i07EqGo.th.vtt 398б
15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt 241б
15. Disease Test 2-GsneDVJB75E.ar.vtt 158б
15. Disease Test 2-GsneDVJB75E.en.vtt 142б
15. Disease Test 2-GsneDVJB75E.es-ES.vtt 155б
15. Disease Test 2-GsneDVJB75E.ja.vtt 184б
15. Disease Test 2-GsneDVJB75E.mp4 747.61Кб
15. Disease Test 2-GsneDVJB75E.pt-BR.vtt 149б
15. Disease Test 2-GsneDVJB75E.th.vtt 178б
15. Disease Test 2-GsneDVJB75E.zh-CN.vtt 149б
15. Documentation.html 7.82Кб
15. Exercise Bootstrap.html 8.09Кб
15. Exercise Cleaning Data.html 9.46Кб
15. Exercise Inheritance with Clothing.html 8.35Кб
15. Fitting A Regression Line In Python-0CiMDbEUeS4.en.vtt 2.02Кб
15. Fitting A Regression Line In Python-0CiMDbEUeS4.mp4 2.10Мб
15. Fitting A Regression Line In Python-0CiMDbEUeS4.pt-BR.vtt 2.10Кб
15. Fitting A Regression Line In Python-0CiMDbEUeS4.zh-CN.vtt 1.78Кб
15. Homework 1 Final Quiz on Measures Spread.html 13.78Кб
15. Is That The Optimal Solution-g5aPtCpBNmw.en.vtt 2.20Кб
15. Is That The Optimal Solution-g5aPtCpBNmw.mp4 4.31Мб
15. Is That The Optimal Solution-g5aPtCpBNmw.pt-BR.vtt 2.47Кб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.en.vtt 1.51Кб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.mp4 4.38Мб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.pt-BR.vtt 1.75Кб
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.en.vtt 1.78Кб
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.mp4 3.63Мб
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.pt-BR.vtt 2.13Кб
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.zh-CN.vtt 1.50Кб
15. L4 151 Lesson Summary V1-5igqM44KEmw.en.vtt 2.13Кб
15. L4 151 Lesson Summary V1-5igqM44KEmw.mp4 5.39Мб
15. L4 151 Lesson Summary V1-5igqM44KEmw.pt-BR.vtt 2.65Кб
15. L4 151 Lesson Summary V1-5igqM44KEmw.zh-CN.vtt 1.85Кб
15. Lesson Conclusion.html 6.05Кб
15. Lesson Summary.html 6.79Кб
15. Lesson Summary.html 7.01Кб
15. LIMIT Statement-cCPHNNhBgpQ.ar.vtt 2.56Кб
15. LIMIT Statement-cCPHNNhBgpQ.en.vtt 1.82Кб
15. LIMIT Statement-cCPHNNhBgpQ.mp4 5.62Мб
15. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt 2.11Кб
15. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt 1.59Кб
15. Local Minima.html 7.50Кб
15. Local Minima-gF_sW_nY-xw.en.vtt 1.14Кб
15. Local Minima-gF_sW_nY-xw.mp4 819.86Кб
15. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05Кб
15. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01Кб
15. Maximizing Information Gain.html 6.88Кб
15. Maximizing Information Gain-3FgJOpKfdY8.en.vtt 4.00Кб
15. Maximizing Information Gain-3FgJOpKfdY8.mp4 13.14Мб
15. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt 3.34Кб
15. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt 3.69Кб
15. Mini-batch Gradient Descent.html 9.18Кб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.en.vtt 4.50Кб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.mp4 17.78Мб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.pt-BR.vtt 4.37Кб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.zh-CN.vtt 3.98Кб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.en.vtt 4.27Кб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.mp4 11.70Мб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.pt-BR.vtt 4.37Кб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.zh-CN.vtt 3.71Кб
15. Momentum.html 6.10Кб
15. Momentum-r-rYz_PEWC8.en.vtt 2.50Кб
15. Momentum-r-rYz_PEWC8.mp4 2.14Мб
15. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.70Кб
15. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21Кб
15. More on Performance Tuning-ZK1FvNH10Ag.ar.vtt 4.13Кб
15. More on Performance Tuning-ZK1FvNH10Ag.en.vtt 3.03Кб
15. More on Performance Tuning-ZK1FvNH10Ag.mp4 11.79Мб
15. More on Performance Tuning-ZK1FvNH10Ag.pt-BR.vtt 2.80Кб
15. More on Performance Tuning-ZK1FvNH10Ag.zh-CN.vtt 2.68Кб
15. Notebook Implementing FunkSVD.html 8.14Кб
15. One Of Three 1.html 8.85Кб
15. One Of Three 1-bDCXSxkochE.ar.vtt 1.50Кб
15. One Of Three 1-bDCXSxkochE.en.vtt 1.15Кб
15. One Of Three 1-bDCXSxkochE.es-ES.vtt 1.17Кб
15. One Of Three 1-bDCXSxkochE.hr.vtt 1.12Кб
15. One Of Three 1-bDCXSxkochE.it.vtt 1.17Кб
15. One Of Three 1-bDCXSxkochE.ja.vtt 1.13Кб
15. One Of Three 1-bDCXSxkochE.mp4 9.02Мб
15. One Of Three 1-bDCXSxkochE.pt-BR.vtt 1.35Кб
15. One Of Three 1-bDCXSxkochE.th.vtt 2.73Кб
15. One Of Three 1-bDCXSxkochE.zh-CN.vtt 964б
15. One Of Three 1-rxfHfjy9Mm4.ar.vtt 411б
15. One Of Three 1-rxfHfjy9Mm4.en.vtt 307б
15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt 318б
15. One Of Three 1-rxfHfjy9Mm4.hr.vtt 305б
15. One Of Three 1-rxfHfjy9Mm4.it.vtt 315б
15. One Of Three 1-rxfHfjy9Mm4.ja.vtt 301б
15. One Of Three 1-rxfHfjy9Mm4.mp4 2.08Мб
15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt 335б
15. One Of Three 1-rxfHfjy9Mm4.th.vtt 772б
15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt 280б
15. Participating in open source projects 2.html 7.15Кб
15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt 2.16Кб
15. Participating in open source projects 2-elZCLxVvJrY.en.vtt 1.46Кб
15. Participating in open source projects 2-elZCLxVvJrY.mp4 3.30Мб
15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt 1.69Кб
15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt 1.30Кб
15. Performance Tuning 1-5mVfYZ_bfRo.ar.vtt 4.64Кб
15. Performance Tuning 1-5mVfYZ_bfRo.en.vtt 3.17Кб
15. Performance Tuning 1-5mVfYZ_bfRo.mp4 4.25Мб
15. Performance Tuning 1-5mVfYZ_bfRo.pt-BR.vtt 3.18Кб
15. Performance Tuning 1-5mVfYZ_bfRo.zh-CN.vtt 2.87Кб
15. Pooling Layers.html 7.85Кб
15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.40Кб
15. Pooling Layers-OkkIZNs7Cyc.mp4 5.82Мб
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.81Кб
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.64Кб
15. Potential Problems-lGwB6YRThbI.en.vtt 2.35Кб
15. Potential Problems-lGwB6YRThbI.mp4 14.42Мб
15. Potential Problems-lGwB6YRThbI.pt-BR.vtt 2.42Кб
15. Potential Problems-lGwB6YRThbI.zh-CN.vtt 1.92Кб
15. Quiz Analyzing Multiple Metrics.html 9.29Кб
15. Quiz Bootcamp Takeaways.html 18.12Кб
15. Quiz COALESCE.html 9.50Кб
15. Quiz Match Inputs To Outputs.html 12.99Кб
15. Quiz More Hypothesis Testing Practice.html 15.63Кб
15. RBF Kernel 2.html 6.39Кб
15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.en.vtt 6.86Кб
15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.mp4 8.80Мб
15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.en.vtt 6.33Кб
15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.mp4 9.21Мб
15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.en.vtt 3.54Кб
15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.mp4 4.92Мб
15. ROC Curve.html 6.41Кб
15. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66Кб
15. ROC Curve-2Iw5TiGzJI4.mp4 6.66Мб
15. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12Кб
15. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.30Кб
15. Screencast Fitting A Regression Line in Python.html 7.95Кб
15. Screencast Interpretation Solution.html 7.86Кб
15. Screencast Solution Measuring Similarity.html 9.93Кб
15. Solution Add Feature Union.html 9.41Кб
15. Solution Handling Input Errors.html 7.99Кб
15. Solutions Aliases for Multiple Window Functions.html 8.75Кб
15. Solutions GROUP BY.html 11.20Кб
15. Solution Strings.html 9.58Кб
15. Solutions WITH.html 11.89Кб
15. Spam Classifier - Workspace.html 6.60Кб
15. Stemming and Lemmatization.html 7.48Кб
15. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt 4.77Кб
15. Stemming And Lemmatization-7Gjf81u5hmw.mp4 4.93Мб
15. Stemming And Lemmatization-7Gjf81u5hmw.pt-BR.vtt 5.02Кб
15. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt 4.26Кб
15. Summary.html 6.14Кб
15. Summary.html 6.56Кб
15. Summary-VP-PMcgqhc8.ar.vtt 2.04Кб
15. Summary-VP-PMcgqhc8.en.vtt 1.42Кб
15. Summary-VP-PMcgqhc8.es-ES.vtt 1.41Кб
15. Summary-VP-PMcgqhc8.ja.vtt 1.27Кб
15. Summary-VP-PMcgqhc8.mp4 6.71Мб
15. Summary-VP-PMcgqhc8.pt-BR.vtt 1.57Кб
15. Summary-VP-PMcgqhc8.zh-CN.vtt 1.13Кб
15. Summary-yepMH9VswI8.ar.vtt 3.47Кб
15. Summary-yepMH9VswI8.en.vtt 2.66Кб
15. Summary-yepMH9VswI8.es-ES.vtt 2.84Кб
15. Summary-yepMH9VswI8.it.vtt 2.87Кб
15. Summary-yepMH9VswI8.ja.vtt 2.36Кб
15. Summary-yepMH9VswI8.mp4 15.78Мб
15. Summary-yepMH9VswI8.pt-BR.vtt 2.44Кб
15. Summary-yepMH9VswI8.th.vtt 4.60Кб
15. Summary-yepMH9VswI8.zh-CN.vtt 2.43Кб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.en.vtt 1.27Кб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.mp4 5.06Мб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.pt-BR.vtt 1.13Кб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.zh-CN.vtt 1.13Кб
15. Text Other JOIN Notes.html 8.29Кб
15. The Median-WlT3eeW0rb0.ar.vtt 3.19Кб
15. The Median-WlT3eeW0rb0.en.vtt 2.48Кб
15. The Median-WlT3eeW0rb0.mp4 3.81Мб
15. The Median-WlT3eeW0rb0.pt-BR.vtt 2.63Кб
15. The Median-WlT3eeW0rb0.zh-CN.vtt 1.98Кб
15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt 1.75Кб
15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt 1.40Кб
15. Two Useful Theorems-jQ5i7CALdRQ.mp4 4.16Мб
15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt 1.45Кб
15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt 1.18Кб
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.ar.vtt 3.95Кб
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.en.vtt 2.89Кб
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.mp4 3.73Мб
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.pt-BR.vtt 2.23Кб
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.zh-CN.vtt 2.71Кб
15. Video + Quiz Performance Tuning 1.html 10.50Кб
15. Video End With A Call To Action.html 6.76Кб
15. Video Is that the Optimal Solution.html 7.57Кб
15. Video LIMIT.html 10.48Кб
15. Video Measures of Center (Median).html 9.60Кб
15. Video Potential Problems.html 7.99Кб
15. Video Two Useful Theorems - Law of Large Numbers.html 10.12Кб
16. [Optional] Solution Iterators and Generators.html 7.73Кб
16. [Optional] Text Linear Model Assumptions.html 14.32Кб
16. [Quiz] DBSCAN.html 8.09Кб
16. 04 Inline Comments V1--G6yg3Xhl8I.en.vtt 2.38Кб
16. 04 Inline Comments V1--G6yg3Xhl8I.mp4 3.54Мб
16. 04 Inline Comments V1--G6yg3Xhl8I.pt-BR.vtt 2.87Кб
16. 18 Screencast Plotly V2-QsmOW1jNeio.en.vtt 11.64Кб
16. 18 Screencast Plotly V2-QsmOW1jNeio.mp4 14.79Мб
16. 18 Screencast Plotly V2-QsmOW1jNeio.pt-BR.vtt 10.82Кб
16. Accessing Error Messages.html 8.51Кб
16. Aliases.html 6.74Кб
16. Binomial Conclusion.html 6.29Кб
16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt 3.89Кб
16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt 2.92Кб
16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4 10.23Мб
16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt 3.26Кб
16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt 2.46Кб
16. Building Dictionaries.html 13.57Кб
16. Calculating Information Gain on a Dataset.html 8.00Кб
16. Cluster Validation.html 7.45Кб
16. Comparing Row to Previous Row-Z_x5ZJyDZog.ar.vtt 2.38Кб
16. Comparing Row to Previous Row-Z_x5ZJyDZog.en.vtt 1.81Кб
16. Comparing Row to Previous Row-Z_x5ZJyDZog.mp4 2.87Мб
16. Comparing Row to Previous Row-Z_x5ZJyDZog.pt-BR.vtt 1.88Кб
16. Comparing Row to Previous Row-Z_x5ZJyDZog.zh-CN.vtt 1.64Кб
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt 906б
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4 3.70Мб
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt 962б
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt 742б
16. Creating Custom Transformers.html 11.28Кб
16. Creating Custom Transformers-TBxUCQdXRjY.en.vtt 2.46Кб
16. Creating Custom Transformers-TBxUCQdXRjY.mp4 3.57Мб
16. Creating Custom Transformers-TBxUCQdXRjY.pt-BR.vtt 2.84Кб
16. Disease Test 3.html 10.24Кб
16. Disease Test 3-a61GPGk-Qy4.ar.vtt 222б
16. Disease Test 3-a61GPGk-Qy4.en.vtt 214б
16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt 217б
16. Disease Test 3-a61GPGk-Qy4.ja.vtt 300б
16. Disease Test 3-a61GPGk-Qy4.mp4 1.61Мб
16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt 212б
16. Disease Test 3-a61GPGk-Qy4.th.vtt 299б
16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt 218б
16. Disease Test 3-PfEYA6z-19w.ar.vtt 129б
16. Disease Test 3-PfEYA6z-19w.en.vtt 104б
16. Disease Test 3-PfEYA6z-19w.es-ES.vtt 107б
16. Disease Test 3-PfEYA6z-19w.ja.vtt 122б
16. Disease Test 3-PfEYA6z-19w.mp4 423.73Кб
16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt 99б
16. Disease Test 3-PfEYA6z-19w.th.vtt 130б
16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt 113б
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01Мб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01Мб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37Кб
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59Кб
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59Кб
16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95Мб
16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95Мб
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52Кб
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52Кб
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.30Кб
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.30Кб
16. Drawing Conclusions.html 7.54Кб
16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt 1.27Кб
16. Drawing Conclusions-s-4ghG9vrGQ.mp4 4.51Мб
16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt 1.53Кб
16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt 1.06Кб
16. End With A Call To Action.html 9.27Кб
16. Error Functions Around the World.html 6.27Кб
16. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17Кб
16. Error Functions Around the World-34AAcTECu2A.mp4 1.73Мб
16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08Кб
16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06Кб
16. Exercise Data Types.html 9.46Кб
16. Extra Kernel Density Estimation.html 10.67Кб
16. Extra Q-Q Plots.html 17.88Кб
16. Feature Scaling-rpTVp7C8AXo.en.vtt 1.27Кб
16. Feature Scaling-rpTVp7C8AXo.mp4 4.23Мб
16. Feature Scaling-rpTVp7C8AXo.pt-BR.vtt 1.47Кб
16. GROUP BY Part II-0HQ-TshNNQA.ar.vtt 1.69Кб
16. GROUP BY Part II-0HQ-TshNNQA.en.vtt 1.38Кб
16. GROUP BY Part II-0HQ-TshNNQA.mp4 1.31Мб
16. GROUP BY Part II-0HQ-TshNNQA.pt-BR.vtt 1.42Кб
16. GROUP BY Part II-0HQ-TshNNQA.zh-CN.vtt 1.21Кб
16. How Do We Choose Between Hypotheses.html 10.90Кб
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt 1.07Кб
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4 3.92Мб
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt 1.03Кб
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt 887б
16. How Do We Interpret Results-eLk0XGGMaCE.en.vtt 2.61Кб
16. How Do We Interpret Results-eLk0XGGMaCE.mp4 3.67Мб
16. How Do We Interpret Results-eLk0XGGMaCE.pt-BR.vtt 2.94Кб
16. How Do We Interpret Results-eLk0XGGMaCE.zh-CN.vtt 2.14Кб
16. How Many Schroeders.html 9.98Кб
16. How Many Schroeders-jO81hfubpXY.en.vtt 142б
16. How Many Schroeders-jO81hfubpXY.mp4 558.47Кб
16. How Many Schroeders-jO81hfubpXY.pt-BR.vtt 155б
16. How Many Schroeders-jO81hfubpXY.zh-CN.vtt 150б
16. How Many Schroeders-T2dveKB64Ho.ar.vtt 248б
16. How Many Schroeders-T2dveKB64Ho.en.vtt 178б
16. How Many Schroeders-T2dveKB64Ho.mp4 787.82Кб
16. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt 167б
16. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt 142б
16. Identifying Recommendations-P60qvS_OTMg.en.vtt 2.39Кб
16. Identifying Recommendations-P60qvS_OTMg.mp4 5.96Мб
16. Inheritance Gaussian Class-XS4LQn1VA3U.en.vtt 2.91Кб
16. Inheritance Gaussian Class-XS4LQn1VA3U.mp4 3.47Мб
16. Inheritance Gaussian Class-XS4LQn1VA3U.pt-BR.vtt 2.84Кб
16. Inheritance Probability Distribution.html 8.02Кб
16. In-line Comments.html 8.07Кб
16. Keyboard shortcuts.html 6.81Кб
16. LEFT and RIGHT JOIN.html 17.80Кб
16. Max Pooling Layers in Keras.html 10.75Кб
16. Measures of Center (Median).html 9.95Кб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.en.vtt 2.12Кб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.mp4 5.85Мб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.pt-BR.vtt 2.28Кб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.zh-CN.vtt 1.76Кб
16. Notebook + Quiz Job Satisfaction.html 11.02Кб
16. Notebook + Quiz Law of Large Numbers.html 10.08Кб
16. Notebook Stemming and Lemmatization.html 7.86Кб
16. One Of Three 2.html 8.74Кб
16. One Of Three 2-27Ed1GI4j84.ar.vtt 1.26Кб
16. One Of Three 2-27Ed1GI4j84.en.vtt 964б
16. One Of Three 2-27Ed1GI4j84.es-ES.vtt 967б
16. One Of Three 2-27Ed1GI4j84.hr.vtt 925б
16. One Of Three 2-27Ed1GI4j84.it.vtt 969б
16. One Of Three 2-27Ed1GI4j84.ja.vtt 949б
16. One Of Three 2-27Ed1GI4j84.mp4 11.22Мб
16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt 1.29Кб
16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt 908б
16. One Of Three 2-gGgqTGZ9TKg.ar.vtt 1.22Кб
16. One Of Three 2-gGgqTGZ9TKg.en.vtt 997б
16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt 971б
16. One Of Three 2-gGgqTGZ9TKg.hr.vtt 956б
16. One Of Three 2-gGgqTGZ9TKg.it.vtt 994б
16. One Of Three 2-gGgqTGZ9TKg.ja.vtt 952б
16. One Of Three 2-gGgqTGZ9TKg.mp4 5.49Мб
16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt 1.01Кб
16. One Of Three 2-gGgqTGZ9TKg.th.vtt 2.00Кб
16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt 912б
16. Outro.html 6.15Кб
16. Performance Tuning 2-arMtEhSoq7E.ar.vtt 2.67Кб
16. Performance Tuning 2-arMtEhSoq7E.en.vtt 1.95Кб
16. Performance Tuning 2-arMtEhSoq7E.mp4 3.11Мб
16. Performance Tuning 2-arMtEhSoq7E.pt-BR.vtt 1.90Кб
16. Performance Tuning 2-arMtEhSoq7E.zh-CN.vtt 1.77Кб
16. Plotly.html 10.25Кб
16. Quiz LIMIT.html 12.39Кб
16. Quiz Mini-Batch Gradient Descent.html 14.44Кб
16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495б
16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495б
16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73Мб
16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73Мб
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501б
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501б
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548б
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548б
16. RBF Kernel 3.html 6.39Кб
16. Recommendations 2 16 1051320 V1-_4N6h82szWo.en.vtt 10.97Кб
16. Recommendations 2 16 1051320 V1-_4N6h82szWo.mp4 18.88Мб
16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.en.vtt 4.87Кб
16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.mp4 7.12Мб
16. Screencast Implementing FunkSVD.html 8.41Кб
16. Shape, Size, and other Tools-fzEliHW3ZLM.ar.vtt 4.64Кб
16. Shape, Size, and other Tools-fzEliHW3ZLM.en.vtt 3.47Кб
16. Shape, Size, and other Tools-fzEliHW3ZLM.mp4 5.91Мб
16. Shape, Size, and other Tools-fzEliHW3ZLM.pt-BR.vtt 3.75Кб
16. Shape, Size, and other Tools-fzEliHW3ZLM.zh-CN.vtt 3.06Кб
16. Shape, Size, Other Tools.html 9.38Кб
16. Sklearn Practice (Classification).html 6.90Кб
16. Softmax.html 11.86Кб
16. Softmax.html 12.72Кб
16. Solutions COALESCE.html 8.96Кб
16. Starring interesting repositories.html 8.45Кб
16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt 542б
16. Starring interesting repositories-U3FUxkm1MxI.en.vtt 419б
16. Starring interesting repositories-U3FUxkm1MxI.mp4 2.45Мб
16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt 460б
16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt 392б
16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt 812б
16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt 634б
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 3.46Мб
16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt 705б
16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt 556б
16. Subquery Conclusion-TUYvx2K9-5k.ar.vtt 727б
16. Subquery Conclusion-TUYvx2K9-5k.en.vtt 527б
16. Subquery Conclusion-TUYvx2K9-5k.mp4 2.61Мб
16. Subquery Conclusion-TUYvx2K9-5k.pt-BR.vtt 686б
16. Subquery Conclusion-TUYvx2K9-5k.zh-CN.vtt 446б
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.en.vtt 3.53Кб
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.mp4 9.26Мб
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.pt-BR.vtt 2.75Кб
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.zh-CN.vtt 2.99Кб
16. Text Measures of Center and Spread Summary.html 11.79Кб
16. Text Summary.html 7.06Кб
16. Text What Are EigenValues EigenVectors.html 8.30Кб
16. Type and Type Conversion.html 10.32Кб
16. Type Type Conversion-yN6Fam_vZrU.ar.vtt 4.36Кб
16. Type Type Conversion-yN6Fam_vZrU.en.vtt 3.19Кб
16. Type Type Conversion-yN6Fam_vZrU.mp4 9.40Мб
16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt 3.67Кб
16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt 2.95Кб
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.ar.vtt 3.69Кб
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.en.vtt 2.73Кб
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.mp4 2.46Мб
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.pt-BR.vtt 2.19Кб
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.zh-CN.vtt 2.37Кб
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt 2.64Кб
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4 2.48Мб
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt 2.72Кб
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt 2.30Кб
16. Vanishing Gradient.html 7.54Кб
16. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46Кб
16. Vanishing Gradient-W_JJm_5syFw.mp4 1.32Мб
16. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56Кб
16. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24Кб
16. Video Comparing a Row to Previous Row.html 21.49Кб
16. Video Confidence Intervals Hypothesis Tests.html 7.29Кб
16. Video Feature Scaling.html 7.95Кб
16. Video GROUP BY Part II.html 9.37Кб
16. Video How to Interpret the Results.html 8.39Кб
16. Video Identifying Recommendations.html 9.85Кб
16. Video Performance Tuning 2.html 6.97Кб
16. Video Subquery Conclusion.html 7.44Кб
17. [Optional] Generator Expressions.html 6.76Кб
17. 05 Docstrings V1-_gapemxsRJY.en.vtt 1.71Кб
17. 05 Docstrings V1-_gapemxsRJY.mp4 1.66Мб
17. 05 Docstrings V1-_gapemxsRJY.pt-BR.vtt 1.99Кб
17. Absolute Error vs Squared Error.html 11.26Кб
17. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt 831б
17. Absolute Vs Squared Error-csvdjaqt1GM.mp4 660.25Кб
17. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt 793б
17. Case Study Create Custom Transformer.html 7.72Кб
17. CNNs for Image Classification.html 10.61Кб
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.37Кб
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 18.16Мб
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.21Кб
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 9.72Кб
17. Data Cleaning Conclusion-KkHqnvD9BWY.ar.vtt 731б
17. Data Cleaning Conclusion-KkHqnvD9BWY.en.vtt 497б
17. Data Cleaning Conclusion-KkHqnvD9BWY.mp4 2.11Мб
17. Data Cleaning Conclusion-KkHqnvD9BWY.pt-BR.vtt 602б
17. Data Cleaning Conclusion-KkHqnvD9BWY.zh-CN.vtt 440б
17. Demo Inheritance Probability Distributions.html 8.37Кб
17. Disease Test 4.html 10.24Кб
17. Disease Test 4-UERKMwmkAsM.ar.vtt 161б
17. Disease Test 4-UERKMwmkAsM.en.vtt 120б
17. Disease Test 4-UERKMwmkAsM.es-ES.vtt 129б
17. Disease Test 4-UERKMwmkAsM.ja.vtt 126б
17. Disease Test 4-UERKMwmkAsM.mp4 753.05Кб
17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt 123б
17. Disease Test 4-UERKMwmkAsM.th.vtt 205б
17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt 116б
17. Disease Test 4-ztkKTrMZHXg.ar.vtt 96б
17. Disease Test 4-ztkKTrMZHXg.en.vtt 95б
17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt 101б
17. Disease Test 4-ztkKTrMZHXg.ja.vtt 110б
17. Disease Test 4-ztkKTrMZHXg.mp4 284.83Кб
17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt 94б
17. Disease Test 4-ztkKTrMZHXg.th.vtt 152б
17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt 98б
17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt 983б
17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 692.80Кб
17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt 956б
17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt 1.00Кб
17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 873.14Кб
17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt 970б
17. Docstrings.html 9.11Кб
17. Even Roll.html 8.80Кб
17. Even Roll-DrnAR4SqlEE.ar.vtt 1.05Кб
17. Even Roll-DrnAR4SqlEE.en.vtt 826б
17. Even Roll-DrnAR4SqlEE.es-ES.vtt 850б
17. Even Roll-DrnAR4SqlEE.hr.vtt 792б
17. Even Roll-DrnAR4SqlEE.it.vtt 866б
17. Even Roll-DrnAR4SqlEE.ja.vtt 872б
17. Even Roll-DrnAR4SqlEE.mp4 5.70Мб
17. Even Roll-DrnAR4SqlEE.pt-BR.vtt 914б
17. Even Roll-DrnAR4SqlEE.th.vtt 1.69Кб
17. Even Roll-DrnAR4SqlEE.zh-CN.vtt 676б
17. Even Roll-M3L0a5V4Nf0.ar.vtt 684б
17. Even Roll-M3L0a5V4Nf0.en.vtt 558б
17. Even Roll-M3L0a5V4Nf0.es-ES.vtt 611б
17. Even Roll-M3L0a5V4Nf0.hr.vtt 517б
17. Even Roll-M3L0a5V4Nf0.it.vtt 571б
17. Even Roll-M3L0a5V4Nf0.ja.vtt 596б
17. Even Roll-M3L0a5V4Nf0.mp4 3.94Мб
17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt 597б
17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt 538б
17. Exercise Parsing Dates.html 9.46Кб
17. Exercise Plotly.html 8.08Кб
17. External Validation Indices.html 7.74Кб
17. Extra Swarm Plots.html 8.99Кб
17. Extra Waffle Plots.html 16.88Кб
17. Feature Scaling Example--Axyt0bPCT0.en.vtt 1.60Кб
17. Feature Scaling Example--Axyt0bPCT0.mp4 1.99Мб
17. Feature Scaling Example--Axyt0bPCT0.pt-BR.vtt 1.78Кб
17. Funk SVD Review-nc3GMIrISHE.en.vtt 729б
17. Funk SVD Review-nc3GMIrISHE.mp4 1.78Мб
17. Good Visual.html 9.60Кб
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.en.vtt 1.67Кб
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.mp4 4.21Мб
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.pt-BR.vtt 1.90Кб
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.zh-CN.vtt 1.38Кб
17. How Many Schroeder Predictions.html 10.23Кб
17. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt 747б
17. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt 575б
17. How Many Schroeder Predictions-n7gp8USw0Jw.mp4 2.50Мб
17. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt 563б
17. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt 490б
17. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt 319б
17. How Many Schroeder Predictions-r8stm2et_hI.en.vtt 277б
17. How Many Schroeder Predictions-r8stm2et_hI.mp4 765.63Кб
17. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt 281б
17. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt 251б
17. Hyperparameters.html 12.60Кб
17. Iterating Through Dictionaries with For Loops.html 11.30Кб
17. Job Satisfaction-OjCNMhWlYh8.en.vtt 9.77Кб
17. Job Satisfaction-OjCNMhWlYh8.mp4 15.49Мб
17. Job Satisfaction-OjCNMhWlYh8.pt-BR.vtt 9.49Кб
17. Keep learning!.html 7.30Кб
17. Magic keywords.html 10.80Кб
17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt 861б
17. Measures of Center - The Mode-NE81NZgECqg.en.vtt 653б
17. Measures of Center - The Mode-NE81NZgECqg.mp4 954.56Кб
17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt 629б
17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt 613б
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.en.vtt 6.29Кб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.mp4 23.18Мб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.pt-BR.vtt 5.84Кб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.zh-CN.vtt 5.35Кб
17. Multicollinearity VIFs-wbtrXMusDe8.en.vtt 5.70Кб
17. Multicollinearity VIFs-wbtrXMusDe8.mp4 17.52Мб
17. Multicollinearity VIFs-wbtrXMusDe8.pt-BR.vtt 5.38Кб
17. Multicollinearity VIFs-wbtrXMusDe8.zh-CN.vtt 4.93Кб
17. Next Steps.html 7.48Кб
17. Notebook Collaborative Filtering.html 8.98Кб
17. One-Hot Encoding.html 7.53Кб
17. One-Hot Encoding.html 8.38Кб
17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23Кб
17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23Кб
17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65Мб
17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65Мб
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03Кб
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03Кб
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02Кб
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02Кб
17. Other Activation Functions.html 7.90Кб
17. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68Кб
17. Other Activation Functions-kA-1vUt6cvQ.mp4 2.30Мб
17. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55Кб
17. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34Кб
17. Other Important Information-LF-CWF-1mX4.en.vtt 1.93Кб
17. Other Important Information-LF-CWF-1mX4.mp4 4.52Мб
17. Other Important Information-LF-CWF-1mX4.pt-BR.vtt 2.08Кб
17. Performance Tuning 3-hIAE8W6x5O8.ar.vtt 2.15Кб
17. Performance Tuning 3-hIAE8W6x5O8.en.vtt 1.52Кб
17. Performance Tuning 3-hIAE8W6x5O8.mp4 1.39Мб
17. Performance Tuning 3-hIAE8W6x5O8.pt-BR.vtt 1.50Кб
17. Performance Tuning 3-hIAE8W6x5O8.zh-CN.vtt 1.46Кб
17. Quiz Comparing a Row to Previous Row.html 9.29Кб
17. Quiz Difficulties in AB Testing.html 14.75Кб
17. Quiz GROUP BY Part II.html 10.03Кб
17. Quiz Type and Type Conversion.html 15.77Кб
17. Reading and Writing Files.html 12.83Кб
17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt 6.33Кб
17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt 4.90Кб
17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4 5.92Мб
17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt 5.51Кб
17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt 4.55Кб
17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt 2.43Кб
17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt 1.73Кб
17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4 1.91Мб
17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt 2.00Кб
17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt 1.60Кб
17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt 3.29Кб
17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt 2.47Кб
17. Reading And Writing Files-w-ZG6DMkVi4.mp4 10.81Мб
17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt 2.81Кб
17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt 2.21Кб
17. Regression Metrics.html 6.48Кб
17. Regression-Metrics-906P4BPnl9A.en-US.vtt 4.23Кб
17. Regression-Metrics-906P4BPnl9A.mp4 3.35Мб
17. Regression-Metrics-906P4BPnl9A.pt-BR.vtt 3.93Кб
17. Regression-Metrics-906P4BPnl9A.zh-CN.vtt 3.62Кб
17. Screencast Job Satisfaction.html 11.44Кб
17. Screencast Multicollinearity VIFs.html 8.90Кб
17. Shape of Distributions-UnN99AAYf8k.ar.vtt 4.11Кб
17. Shape of Distributions-UnN99AAYf8k.en.vtt 2.94Кб
17. Shape of Distributions-UnN99AAYf8k.mp4 3.17Мб
17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt 2.94Кб
17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt 2.30Кб
17. Simulating From the Null-sL2yJtHZd8Y.en.vtt 3.31Кб
17. Simulating From the Null-sL2yJtHZd8Y.mp4 3.75Мб
17. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt 3.27Кб
17. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt 2.70Кб
17. Solutions LEFT and RIGHT JOIN .html 13.48Кб
17. Solutions LIMIT.html 10.33Кб
17. Summary-zKYEvRd2XmI.en.vtt 1.11Кб
17. Summary-zKYEvRd2XmI.mp4 977.95Кб
17. Summary-zKYEvRd2XmI.pt-BR.vtt 1.25Кб
17. Summary-zKYEvRd2XmI.zh-CN.vtt 984б
17. SVMs in sklearn.html 15.00Кб
17. Text Processing Summary.html 7.38Кб
17. Text Recap + Next Steps.html 7.76Кб
17. Text Recap + Next Steps.html 10.98Кб
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt 1.07Кб
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt 818б
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4 2.73Мб
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt 944б
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt 670б
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.ar.vtt 1.52Кб
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.en.vtt 1.16Кб
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.mp4 3.40Мб
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.pt-BR.vtt 920б
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.zh-CN.vtt 1.05Кб
17. Video + Text Recap.html 7.76Кб
17. Video Does the Line Fit the Data Well.html 8.35Кб
17. Video Feature Scaling Example.html 7.81Кб
17. Video FunkSVD Review.html 7.47Кб
17. Video Measures of Center (Mode).html 9.19Кб
17. Video Other Important Information.html 6.67Кб
17. Video Performance Tuning 3.html 6.96Кб
17. Video Shape.html 10.38Кб
17. Video Simulating from the Null.html 9.93Кб
17. Video Two Useful Theorems - Central Limit Theorem.html 9.70Кб
17. Video When to Use PCA.html 7.76Кб
17. When to Use PCA-arSP83-CM6w.en.vtt 1.23Кб
17. When to Use PCA-arSP83-CM6w.mp4 3.21Мб
17. When to Use PCA-arSP83-CM6w.pt-BR.vtt 1.48Кб
18. 17 PCA Recap V1-Egz3-noHCmg.en.vtt 1.34Кб
18. 17 PCA Recap V1-Egz3-noHCmg.mp4 3.87Мб
18. 17 PCA Recap V1-Egz3-noHCmg.pt-BR.vtt 1.50Кб
18. Advanced OOP Topics.html 9.01Кб
18. Batch vs Stochastic Gradient Descent.html 7.67Кб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64Кб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95Мб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63Кб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.10Кб
18. Classifying Chavez Correctly 1.html 10.23Кб
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt 662б
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt 536б
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4 1.49Мб
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt 533б
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt 451б
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt 726б
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt 513б
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4 1.88Мб
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt 488б
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt 467б
18. CNNs in Keras Practical Example.html 9.37Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.39Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 8.71Мб
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.12Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.78Кб
18. Conclusion.html 6.67Кб
18. Conclusion.html 7.34Кб
18. Conclusion-qmGjRpMVBz8.en.vtt 586б
18. Conclusion-qmGjRpMVBz8.mp4 2.14Мб
18. Conclusion-qmGjRpMVBz8.pt-BR.vtt 745б
18. Conclusion-qmGjRpMVBz8.zh-CN.vtt 504б
18. Conclusion-QRnLr7pwHyk.ar.vtt 953б
18. Conclusion-QRnLr7pwHyk.en.vtt 763б
18. Conclusion-QRnLr7pwHyk.mp4 4.48Мб
18. Conclusion-QRnLr7pwHyk.pt-BR.vtt 746б
18. Conclusion-QRnLr7pwHyk.zh-CN.vtt 724б
18. Converting notebooks.html 7.93Кб
18. Data in the Real World-HmipezTjTDY.ar.vtt 2.08Кб
18. Data in the Real World-HmipezTjTDY.en.vtt 1.58Кб
18. Data in the Real World-HmipezTjTDY.mp4 3.77Мб
18. Data in the Real World-HmipezTjTDY.pt-BR.vtt 1.71Кб
18. Data in the Real World-HmipezTjTDY.zh-CN.vtt 1.39Кб
18. Decision Trees in sklearn.html 15.83Кб
18. Disease Test 5.html 10.53Кб
18. Disease Test 5-4qW7a5E74No.ar.vtt 122б
18. Disease Test 5-4qW7a5E74No.en.vtt 110б
18. Disease Test 5-4qW7a5E74No.es-ES.vtt 120б
18. Disease Test 5-4qW7a5E74No.ja.vtt 123б
18. Disease Test 5-4qW7a5E74No.mp4 390.91Кб
18. Disease Test 5-4qW7a5E74No.pt-BR.vtt 122б
18. Disease Test 5-4qW7a5E74No.th.vtt 160б
18. Disease Test 5-4qW7a5E74No.zh-CN.vtt 111б
18. Disease Test 5-nUxwwMNKIYo.ar.vtt 670б
18. Disease Test 5-nUxwwMNKIYo.en.vtt 470б
18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt 471б
18. Disease Test 5-nUxwwMNKIYo.ja.vtt 525б
18. Disease Test 5-nUxwwMNKIYo.mp4 3.59Мб
18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt 620б
18. Disease Test 5-nUxwwMNKIYo.th.vtt 779б
18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt 431б
18. Doubles.html 8.70Кб
18. Doubles-fkUyTJNbdzU.ar.vtt 1.97Кб
18. Doubles-fkUyTJNbdzU.en.vtt 1.42Кб
18. Doubles-fkUyTJNbdzU.es-ES.vtt 1.45Кб
18. Doubles-fkUyTJNbdzU.hr.vtt 1.36Кб
18. Doubles-fkUyTJNbdzU.it.vtt 1.42Кб
18. Doubles-fkUyTJNbdzU.ja.vtt 1.39Кб
18. Doubles-fkUyTJNbdzU.mp4 11.26Мб
18. Doubles-fkUyTJNbdzU.pt-BR.vtt 1.53Кб
18. Doubles-fkUyTJNbdzU.th.vtt 2.56Кб
18. Doubles-fkUyTJNbdzU.zh-CN.vtt 1.28Кб
18. Doubles-On_Guw8wac8.ar.vtt 765б
18. Doubles-On_Guw8wac8.en.vtt 569б
18. Doubles-On_Guw8wac8.es-ES.vtt 608б
18. Doubles-On_Guw8wac8.hr.vtt 565б
18. Doubles-On_Guw8wac8.it.vtt 625б
18. Doubles-On_Guw8wac8.ja.vtt 594б
18. Doubles-On_Guw8wac8.mp4 3.65Мб
18. Doubles-On_Guw8wac8.pt-BR.vtt 598б
18. Doubles-On_Guw8wac8.th.vtt 1.04Кб
18. Doubles-On_Guw8wac8.zh-CN.vtt 531б
18. Extra Rug and Strip Plots.html 9.78Кб
18. Feature Extraction.html 7.83Кб
18. Feature Extraction-UgENzCmfFWE.en.vtt 3.82Кб
18. Feature Extraction-UgENzCmfFWE.mp4 3.47Мб
18. Feature Extraction-UgENzCmfFWE.pt-BR.vtt 4.24Кб
18. Feature Extraction-UgENzCmfFWE.zh-CN.vtt 3.34Кб
18. It Is Not Always About ML-ECqflypBU7M.en.vtt 1.71Кб
18. It Is Not Always About ML-ECqflypBU7M.mp4 6.54Мб
18. It Is Not Always About ML-ECqflypBU7M.pt-BR.vtt 1.96Кб
18. Joining Subqueries-rxy-fE5GeLY.ar.vtt 4.60Кб
18. Joining Subqueries-rxy-fE5GeLY.en.vtt 3.25Кб
18. Joining Subqueries-rxy-fE5GeLY.mp4 8.92Мб
18. Joining Subqueries-rxy-fE5GeLY.pt-BR.vtt 3.19Кб
18. Joining Subqueries-rxy-fE5GeLY.zh-CN.vtt 2.97Кб
18. JOINs and Filtering-aI1kbDDNs4w.ar.vtt 5.01Кб
18. JOINs and Filtering-aI1kbDDNs4w.en.vtt 3.54Кб
18. JOINs and Filtering-aI1kbDDNs4w.mp4 5.89Мб
18. JOINs and Filtering-aI1kbDDNs4w.pt-BR.vtt 3.08Кб
18. JOINs and Filtering-aI1kbDDNs4w.zh-CN.vtt 3.21Кб
18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.mp4 3.00Мб
18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.pt-BR.vtt 1.38Кб
18. L4 The Back End V2-Esl0NL63S2c.en.vtt 2.38Кб
18. L4 The Back End V2-Esl0NL63S2c.mp4 5.29Мб
18. L4 The Back End V2-Esl0NL63S2c.pt-BR.vtt 2.73Кб
18. Lesson Summary.html 6.42Кб
18. Linear Regression in scikit-learn.html 17.33Кб
18. Matching Encodings.html 9.07Кб
18. Matching Encodings-398xRMnhjGk.en.vtt 2.90Кб
18. Matching Encodings-398xRMnhjGk.mp4 7.99Мб
18. Matching Encodings-398xRMnhjGk.pt-BR.vtt 3.17Кб
18. Maximum Likelihood.html 9.90Кб
18. Maximum Likelihood.html 10.76Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75Мб
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75Мб
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85Мб
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85Мб
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67Кб
18. Measures of Center (Mode).html 15.13Кб
18. Multicollinearity VIFs-uiF3UcDWwPI.en.vtt 1.99Кб
18. Multicollinearity VIFs-uiF3UcDWwPI.mp4 11.32Мб
18. Multicollinearity VIFs-uiF3UcDWwPI.pt-BR.vtt 2.13Кб
18. Multicollinearity VIFs-uiF3UcDWwPI.zh-CN.vtt 1.74Кб
18. Notebook + Quiz Central Limit Theorem.html 12.26Кб
18. Notebook + Quiz How to Interpret the Results.html 11.27Кб
18. Notebook + Quiz Simulating from the Null.html 19.15Кб
18. Notebook Feature Scaling Example.html 7.45Кб
18. Notebook How Are We Doing.html 8.13Кб
18. ORDER BY Statement-wqj2As31LqI.ar.vtt 2.58Кб
18. ORDER BY Statement-wqj2As31LqI.en.vtt 1.93Кб
18. ORDER BY Statement-wqj2As31LqI.mp4 2.46Мб
18. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt 2.11Кб
18. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt 1.79Кб
18. Project Documentation.html 8.30Кб
18. Quiz Adjusted Rand Index.html 7.90Кб
18. Quiz Iterating Through Dictionaries.html 13.91Кб
18. Quiz Reading and Writing Files.html 16.72Кб
18. Recap Additional Resources.html 10.05Кб
18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.en.vtt 4.19Кб
18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.mp4 6.34Мб
18. Recommendations 1 17a 23313044 V1-pcaaBWbe34Y.mp4 7.83Мб
18. Recommendations 1 17a 4422330 V1-DJfwhP_vvh4.mp4 8.36Мб
18. Recommendations 1 17b 15022032 V1-N9ytffw5AMg.mp4 7.95Мб
18. Recommendations 1 17b 5451216 V1-lf2Q0AE5esk.mp4 7.25Мб
18. Screencast Solution Collaborative Filtering.html 10.49Кб
18. Sklearn Practice (Regression).html 6.89Кб
18. Solution Create Custom Transformer.html 9.95Кб
18. Solutions Comparing a Row to Previous Row.html 8.40Кб
18. Solutions GROUP BY Part II.html 10.65Кб
18. Solution Type and Type Conversion.html 9.04Кб
18. Text Recap.html 7.78Кб
18. The Backend.html 10.21Кб
18. Video It Is Not Always About ML.html 12.67Кб
18. Video JOINing Subqueries.html 8.71Кб
18. Video JOINs and Filtering.html 7.80Кб
18. Video Multicollinearity VIFs.html 10.25Кб
18. Video ORDER BY.html 10.58Кб
18. Video Recap.html 6.80Кб
18. Video The Shape For Data In The World.html 9.71Кб
19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.en.vtt 1.58Кб
19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.mp4 5.75Мб
19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.pt-BR.vtt 2.02Кб
19. Bag of Words.html 7.38Кб
19. Bag Of Words-A7M1z8yLl0w.en.vtt 4.72Кб
19. Bag Of Words-A7M1z8yLl0w.mp4 4.01Мб
19. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt 5.04Кб
19. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt 4.13Кб
19. Classifying Chavez Correctly 2.html 10.37Кб
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt 665б
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt 468б
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt 482б
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4 1.18Мб
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt 482б
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt 399б
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt 471б
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt 382б
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4 886.38Кб
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt 406б
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt 352б
19. Conclusion-_ATzG6khLdk.en.vtt 927б
19. Conclusion-_ATzG6khLdk.mp4 2.90Мб
19. Conclusion-_ATzG6khLdk.pt-BR.vtt 988б
19. Congratulations!-_FPpbuuW-1o.ar.vtt 1009б
19. Congratulations!-_FPpbuuW-1o.en.vtt 781б
19. Congratulations!-_FPpbuuW-1o.mp4 3.05Мб
19. Congratulations!-_FPpbuuW-1o.pt-BR.vtt 620б
19. Congratulations!-_FPpbuuW-1o.zh-CN.vtt 741б
19. Creating a slideshow.html 8.76Кб
19. Disease Test 6.html 10.54Кб
19. Disease Test 6-cdFrLeXIkZU.ar.vtt 341б
19. Disease Test 6-cdFrLeXIkZU.en.vtt 241б
19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt 260б
19. Disease Test 6-cdFrLeXIkZU.ja.vtt 241б
19. Disease Test 6-cdFrLeXIkZU.mp4 1.21Мб
19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt 269б
19. Disease Test 6-cdFrLeXIkZU.th.vtt 441б
19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt 214б
19. Disease Test 6-OdVAt79eQak.ar.vtt 1.07Кб
19. Disease Test 6-OdVAt79eQak.en.vtt 772б
19. Disease Test 6-OdVAt79eQak.en-GB.vtt 1.26Кб
19. Disease Test 6-OdVAt79eQak.es-ES.vtt 777б
19. Disease Test 6-OdVAt79eQak.ja.vtt 813б
19. Disease Test 6-OdVAt79eQak.mp4 7.08Мб
19. Disease Test 6-OdVAt79eQak.pt-BR.vtt 937б
19. Disease Test 6-OdVAt79eQak.zh-CN.vtt 675б
19. DISTINCT-YDJEHkgKORY.ar.vtt 1.76Кб
19. DISTINCT-YDJEHkgKORY.en.vtt 1.29Кб
19. DISTINCT-YDJEHkgKORY.mp4 1.09Мб
19. DISTINCT-YDJEHkgKORY.pt-BR.vtt 1.28Кб
19. DISTINCT-YDJEHkgKORY.zh-CN.vtt 1.14Кб
19. Documentation.html 9.45Кб
19. Exercise Matching Encodings.html 9.47Кб
19. Extra Stacked Plots.html 16.19Кб
19. Further Learning.html 6.72Кб
19. Higher Dimensions.html 7.55Кб
19. Higher Dimensions--UvpQV1qmiE.en.vtt 2.94Кб
19. Higher Dimensions--UvpQV1qmiE.mp4 2.65Мб
19. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt 2.78Кб
19. Internal Validation Indices.html 7.81Кб
19. Introduction to Percentiles-t7SX2ZEdxKA.ar.vtt 1.02Кб
19. Introduction to Percentiles-t7SX2ZEdxKA.en.vtt 782б
19. Introduction to Percentiles-t7SX2ZEdxKA.mp4 3.14Мб
19. Introduction to Percentiles-t7SX2ZEdxKA.pt-BR.vtt 792б
19. Introduction to Percentiles-t7SX2ZEdxKA.zh-CN.vtt 701б
19. Learning Rate Decay.html 7.52Кб
19. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12Кб
19. Learning Rate-TwJ8aSZoh2U.mp4 927.05Кб
19. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26Кб
19. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020б
19. Maximizing Probabilities.html 9.37Кб
19. Maximizing Probabilities.html 10.23Кб
19. Mini project CNNs in Keras.html 8.48Кб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.en.vtt 10.24Кб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.mp4 40.74Мб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.pt-BR.vtt 9.62Кб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.zh-CN.vtt 9.04Кб
19. Notebook + Quiz Central Limit Theorem - Part II.html 12.23Кб
19. Notebook + Quiz Multicollinearity VIFs.html 13.71Кб
19. Notebook + Quiz Regression - Your Turn - Part I.html 11.15Кб
19. Notebook Feature Scaling.html 7.43Кб
19. Notebook Mini-Project.html 7.35Кб
19. Organizing Code Into Modules-AARS10U5bbo.en.vtt 4.71Кб
19. Organizing Code Into Modules-AARS10U5bbo.mp4 4.49Мб
19. Organizing Code Into Modules-AARS10U5bbo.pt-BR.vtt 4.86Кб
19. Organizing into Modules.html 9.64Кб
19. Pipelines and Grid Search.html 8.44Кб
19. Probability Conclusion.html 6.55Кб
19. Probability Conclusion-dsVKoXymYDU.ar.vtt 2.00Кб
19. Probability Conclusion-dsVKoXymYDU.en.vtt 1.50Кб
19. Probability Conclusion-dsVKoXymYDU.mp4 5.26Мб
19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt 1.70Кб
19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt 1.27Кб
19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918б
19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918б
19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02Мб
19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02Мб
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947б
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947б
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813б
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813б
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.30Кб
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.30Кб
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86Мб
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86Мб
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28Кб
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28Кб
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07Кб
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07Кб
19. Quiz Last Check.html 12.36Кб
19. Quiz ORDER BY.html 11.32Кб
19. Quiz Shape and Outliers (What's the Impact).html 12.24Кб
19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.en.vtt 5.64Кб
19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.mp4 8.66Мб
19. Recommendations 1 17b 26423140 V1-uNQHtPrfi4o.mp4 5.71Мб
19. Recommendations 1 17b 31423505 V1-A0uOjClDnW8.mp4 6.46Мб
19. Recommendations 1 17b 36044330 V1-b5gFe8Ij-g0.mp4 8.99Мб
19. Recommendations 2 18 0435 V1-oRhrOShUM6w.en.vtt 3.74Кб
19. Recommendations 2 18 0435 V1-oRhrOShUM6w.mp4 4.97Мб
19. Recommendations 2 18 11442204 V1-8kdRNQnqSGA.mp4 13.06Мб
19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.en.vtt 5.94Кб
19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.mp4 8.46Мб
19. Screencast How Are We Doing.html 8.78Кб
19. Screencast Solutions for Collaborative Filtering.html 10.10Кб
19. Solution Iterating Through Dictionaries.html 9.28Кб
19. Solution Reading and Writing Files.html 8.84Кб
19. String Methods.html 13.11Кб
19. String Methods-Bv7CAxVOONs.ar.vtt 4.57Кб
19. String Methods-Bv7CAxVOONs.en.vtt 3.38Кб
19. String Methods-Bv7CAxVOONs.mp4 23.75Мб
19. String Methods-Bv7CAxVOONs.pt-BR.vtt 3.62Кб
19. String Methods-Bv7CAxVOONs.zh-CN.vtt 3.07Кб
19. Text Recap.html 15.31Кб
19. The Data Science Process Modeling-bzR6HQBn5CA.en.vtt 1.93Кб
19. The Data Science Process Modeling-bzR6HQBn5CA.mp4 3.76Мб
19. The Data Science Process Modeling-bzR6HQBn5CA.pt-BR.vtt 2.12Кб
19. The Web.html 7.68Кб
19. The World Wide Web-Rxn-zCyg_iA.en.vtt 1.40Кб
19. The World Wide Web-Rxn-zCyg_iA.mp4 2.04Мб
19. The World Wide Web-Rxn-zCyg_iA.pt-BR.vtt 1.42Кб
19. Titanic Survival Model with Decision Trees.html 7.27Кб
19. Video Conclusion.html 6.91Кб
19. Video DISTINCT.html 8.98Кб
19. Video Introduction to Percentiles.html 7.65Кб
19. Video SQL Completion Congratulations.html 6.96Кб
19. Video The Data Science Process - Modeling.html 12.08Кб
19. Video What is Notation.html 10.42Кб
19. What is a p-value Anyway.html 11.14Кб
19. What Is A P-value Anyway-eU6pUZjqviA.en.vtt 4.05Кб
19. What Is A P-value Anyway-eU6pUZjqviA.mp4 7.27Мб
19. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt 4.18Кб
19. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt 3.35Кб
19. What is Notation-MaHV5cKfcmE.ar.vtt 2.00Кб
19. What is Notation-MaHV5cKfcmE.en.vtt 1.49Кб
19. What is Notation-MaHV5cKfcmE.mp4 4.82Мб
19. What is Notation-MaHV5cKfcmE.pt-BR.vtt 1.71Кб
19. What is Notation-MaHV5cKfcmE.zh-CN.vtt 1.43Кб
20. [Solution] Titanic Survival Model.html 7.25Кб
20. 02 TF-IDF-LYYWIrWbBq4.en.vtt 2.80Кб
20. 02 TF-IDF-LYYWIrWbBq4.mp4 2.53Мб
20. 02 TF-IDF-LYYWIrWbBq4.pt-BR.vtt 3.07Кб
20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.en.vtt 5.28Кб
20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.mp4 7.83Мб
20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.pt-BR.vtt 4.94Кб
20. 22 Screencast Flask V2-i_U3O-7cymk.en.vtt 6.58Кб
20. 22 Screencast Flask V2-i_U3O-7cymk.mp4 7.11Мб
20. 22 Screencast Flask V2-i_U3O-7cymk.pt-BR.vtt 7.09Кб
20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.en.vtt 1.90Кб
20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.mp4 3.24Мб
20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.pt-BR.vtt 2.19Кб
20. Bayes Rule Summary.html 8.69Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt 3.79Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt 2.58Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt 2.68Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt 2.63Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.mp4 16.86Мб
20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt 3.17Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt 4.73Кб
20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt 2.25Кб
20. Calculating the p-value-_W3Jg7jQ8jI.en.vtt 3.60Кб
20. Calculating the p-value-_W3Jg7jQ8jI.mp4 3.64Мб
20. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt 3.59Кб
20. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt 2.86Кб
20. Content Based Recommendations-pnGHpB77Mys.en.vtt 2.06Кб
20. Content Based Recommendations-pnGHpB77Mys.mp4 4.70Мб
20. Cross-Entropy 1.html 7.77Кб
20. Cross-Entropy 1.html 8.63Кб
20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81Кб
20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81Кб
20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22Мб
20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22Мб
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.00Кб
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.00Кб
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11Кб
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11Кб
20. Demo Modularized Code.html 8.33Кб
20. Extra Ridgeline Plots.html 14.61Кб
20. Flask.html 13.32Кб
20. Image Augmentation in Keras.html 9.42Кб
20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.22Кб
20. Image Augmentation in Keras-odStujZq3GY.mp4 10.26Мб
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.49Кб
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.02Кб
20. Importing Files-qjeSn6zZbR0.ar.vtt 8.71Кб
20. Importing Files-qjeSn6zZbR0.en.vtt 6.47Кб
20. Importing Files-qjeSn6zZbR0.mp4 11.41Мб
20. Importing Files-qjeSn6zZbR0.pt-BR.vtt 7.35Кб
20. Importing Files-qjeSn6zZbR0.zh-CN.vtt 6.19Кб
20. Importing Local Scripts.html 11.40Кб
20. Interactions And Higher Order Terms-AOfXMiJgo48.en.vtt 1.23Кб
20. Interactions And Higher Order Terms-AOfXMiJgo48.mp4 8.33Мб
20. Interactions And Higher Order Terms-AOfXMiJgo48.pt-BR.vtt 1.35Кб
20. Interactions And Higher Order Terms-AOfXMiJgo48.zh-CN.vtt 1.01Кб
20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.en.vtt 603б
20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.mp4 1.78Мб
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.en.vtt 867б
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.mp4 2.94Мб
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.pt-BR.vtt 995б
20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt 3.04Кб
20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4 10.89Мб
20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt 3.43Кб
20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt 2.81Кб
20. Mini-Project Solution.html 7.35Кб
20. Missing Data - Overview.html 10.16Кб
20. Multiple Linear Regression.html 13.88Кб
20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt 6.20Кб
20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt 4.68Кб
20. Notation for Random Variables-8NxTW1u4s-Y.mp4 5.66Мб
20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt 5.07Кб
20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt 4.18Кб
20. Notebook + Quiz Your Turn - Part II.html 12.21Кб
20. Outliers-HKIsvkZUZfo.ar.vtt 3.49Кб
20. Outliers-HKIsvkZUZfo.en.vtt 2.63Кб
20. Outliers-HKIsvkZUZfo.mp4 5.74Мб
20. Outliers-HKIsvkZUZfo.pt-BR.vtt 2.69Кб
20. Outliers-HKIsvkZUZfo.zh-CN.vtt 2.29Кб
20. Outro.html 6.42Кб
20. Outro SC V1-YD1grQje9fw.en.vtt 1.64Кб
20. Outro SC V1-YD1grQje9fw.mp4 1.39Мб
20. Outro SC V1-YD1grQje9fw.pt-BR.vtt 1.71Кб
20. Percentiles-Qro8uvysnys.ar.vtt 1.46Кб
20. Percentiles-Qro8uvysnys.en.vtt 1.18Кб
20. Percentiles-Qro8uvysnys.mp4 1.41Мб
20. Percentiles-Qro8uvysnys.pt-BR.vtt 1.15Кб
20. Percentiles-Qro8uvysnys.zh-CN.vtt 1.02Кб
20. Precision and Recall.html 9.35Кб
20. Precision and Recall-3vT0kSBCLdU.ar.vtt 1.37Кб
20. Precision and Recall-3vT0kSBCLdU.en.vtt 1.12Кб
20. Precision and Recall-3vT0kSBCLdU.mp4 4.26Мб
20. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt 1.13Кб
20. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt 996б
20. Predicting Salary-g1ZAn02ETK4.en.vtt 1.25Кб
20. Predicting Salary-g1ZAn02ETK4.mp4 2.20Мб
20. Predicting Salary-g1ZAn02ETK4.pt-BR.vtt 1.45Кб
20. Quiz DISTINCT.html 8.92Кб
20. Quiz Silhouette Coefficient .html 7.40Кб
20. Random Restart.html 7.52Кб
20. Random Restart-idyBBCzXiqg.en.vtt 466б
20. Random Restart-idyBBCzXiqg.mp4 394.99Кб
20. Random Restart-idyBBCzXiqg.pt-BR.vtt 478б
20. Random Restart-idyBBCzXiqg.zh-CN.vtt 419б
20. Screencast Solution.html 9.69Кб
20. Solutions Last Check.html 13.25Кб
20. Solutions ORDER BY.html 10.61Кб
20. String Methods.html 12.66Кб
20. Summary.html 6.30Кб
20. Text Recap + Next Steps.html 7.92Кб
20. TF-IDF.html 7.24Кб
20. The Cold Start Problem-DNz7aywJVzA.en.vtt 2.00Кб
20. The Cold Start Problem-DNz7aywJVzA.mp4 5.69Мб
20. Using Grid Search-iTL43Jk9_bQ.en.vtt 3.29Кб
20. Using Grid Search-iTL43Jk9_bQ.mp4 3.05Мб
20. Using Grid Search-iTL43Jk9_bQ.pt-BR.vtt 3.83Кб
20. Using Grid Search with Pipelines.html 10.91Кб
20. Version Control in Data Science.html 7.55Кб
20. Video Calculating the p-value.html 9.38Кб
20. Video Higher Order Terms.html 8.07Кб
20. Video Percentiles.html 9.02Кб
20. Video Predicting Salary.html 11.38Кб
20. Video Random Variables.html 11.11Кб
20. Video Shape and Outliers.html 9.62Кб
20. Video The Cold Start Problem.html 8.10Кб
20. Video Ways to Recommend Content Based.html 9.83Кб
20. Video When Does the Central Limit Theorem Not Work.html 9.52Кб
20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt 2.20Кб
20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt 1.63Кб
20. When Does the CLT Not Work-uZGTVUEMfrU.mp4 4.80Мб
20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt 1.77Кб
20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt 1.35Кб
20. While Loops.html 10.47Кб
21. 15 Making a Package v2-Hj2OBr1CGZM.en.vtt 7.52Кб
21. 15 Making a Package v2-Hj2OBr1CGZM.mp4 7.53Мб
21. 15 Making a Package v2-Hj2OBr1CGZM.pt-BR.vtt 7.77Кб
21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.en.vtt 1.40Кб
21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.mp4 2.08Мб
21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.pt-BR.vtt 1.46Кб
21. Another String Method - Split.html 10.69Кб
21. Case Study Grid Search Pipeline.html 7.71Кб
21. Closed Form Solution.html 7.74Кб
21. Closed Form Solution-G3fRVgLa5gI.en.vtt 3.54Кб
21. Closed Form Solution-G3fRVgLa5gI.mp4 2.84Мб
21. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt 3.39Кб
21. Cross-Entropy 2.html 10.11Кб
21. Cross-Entropy 2.html 10.97Кб
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03Кб
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03Кб
21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61Мб
21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61Мб
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81Кб
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81Кб
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66Кб
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66Кб
21. Exercise Flask.html 8.08Кб
21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607б
21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607б
21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08Мб
21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08Мб
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719б
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719б
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545б
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545б
21. GMM Cluster Validation Lab.html 7.65Кб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.en.vtt 3.69Кб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.mp4 3.93Мб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.pt-BR.vtt 4.30Кб
21. Making a Package.html 10.53Кб
21. Mini project Image Augmentation in Keras.html 8.57Кб
21. Missing Data - Delete.html 9.13Кб
21. Momentum.html 7.47Кб
21. Momentum-r-rYz_PEWC8.en.vtt 2.50Кб
21. Momentum-r-rYz_PEWC8.mp4 2.14Мб
21. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.70Кб
21. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21Кб
21. Notebook + Quiz Central Limit Theorem - Part III.html 12.65Кб
21. Notebook Bag of Words and TF-IDF.html 7.86Кб
21. Notebook Content Based.html 8.96Кб
21. Notebook The Cold Start Problem.html 8.14Кб
21. Order By Part II-XQCjREdOqwE.ar.vtt 2.76Кб
21. Order By Part II-XQCjREdOqwE.en.vtt 2.08Кб
21. Order By Part II-XQCjREdOqwE.mp4 3.18Мб
21. Order By Part II-XQCjREdOqwE.pt-BR.vtt 2.50Кб
21. Order By Part II-XQCjREdOqwE.zh-CN.vtt 1.83Кб
21. Outro.html 6.73Кб
21. Outro-AeDSl4KSVIE.en.vtt 417б
21. Outro-AeDSl4KSVIE.mp4 1.41Мб
21. Outro-AeDSl4KSVIE.pt-BR.vtt 445б
21. Outro-CuIqzL8HjI8.en.vtt 817б
21. Outro-CuIqzL8HjI8.mp4 2.54Мб
21. Outro-CuIqzL8HjI8.pt-BR.vtt 925б
21. Powell Precision and Recall.html 11.00Кб
21. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt 916б
21. Powell Precision and Recall-q_zfkCwRg1w.en.vtt 736б
21. Powell Precision and Recall-q_zfkCwRg1w.mp4 2.79Мб
21. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt 747б
21. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt 698б
21. Powell Precision and Recall-QWWq77k-K_0.ar.vtt 422б
21. Powell Precision and Recall-QWWq77k-K_0.en.vtt 346б
21. Powell Precision and Recall-QWWq77k-K_0.mp4 1.30Мб
21. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt 376б
21. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt 333б
21. Practice While Loops.html 11.18Кб
21. Predicting Salary-HTp4LA1MJh8.en.vtt 15.14Кб
21. Predicting Salary-HTp4LA1MJh8.mp4 17.35Мб
21. Predicting Salary-HTp4LA1MJh8.pt-BR.vtt 14.99Кб
21. Quiz Percentiles.html 9.88Кб
21. Quiz Variable Types.html 10.35Кб
21. Quiz What is a p-value Anyway.html 14.14Кб
21. Recap-DzMi27LI5l4.en.vtt 959б
21. Recap-DzMi27LI5l4.mp4 3.21Мб
21. Recap-DzMi27LI5l4.pt-BR.vtt 1.09Кб
21. Recap-DzMi27LI5l4.zh-CN.vtt 750б
21. Robot Sensing 1-_DjfTytro6I.ar.vtt 2.01Кб
21. Robot Sensing 1-_DjfTytro6I.en.vtt 1.43Кб
21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt 1.53Кб
21. Robot Sensing 1-_DjfTytro6I.ja.vtt 1.38Кб
21. Robot Sensing 1-_DjfTytro6I.mp4 11.42Мб
21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt 1.76Кб
21. Robot Sensing 1-_DjfTytro6I.th.vtt 2.91Кб
21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt 1.31Кб
21. Robot Sensing 1.html 14.25Кб
21. Robot Sensing 1--TBAfU1cjRU.ar.vtt 844б
21. Robot Sensing 1--TBAfU1cjRU.en.vtt 537б
21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt 560б
21. Robot Sensing 1--TBAfU1cjRU.ja.vtt 557б
21. Robot Sensing 1--TBAfU1cjRU.mp4 5.17Мб
21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt 735б
21. Robot Sensing 1--TBAfU1cjRU.th.vtt 910б
21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt 521б
21. Scenario #1.html 11.42Кб
21. Screencast Predicting Salary.html 10.49Кб
21. Solutions DISTINCT.html 9.83Кб
21. Text Higher Order Terms.html 10.85Кб
21. Text Recap Looking Ahead.html 9.57Кб
21. The Standard Library.html 8.30Кб
21. The Standard Library-Fw3vf0tDrJM.ar.vtt 4.50Кб
21. The Standard Library-Fw3vf0tDrJM.en.vtt 3.08Кб
21. The Standard Library-Fw3vf0tDrJM.mp4 10.55Мб
21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt 3.39Кб
21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt 2.73Кб
21. Video ORDER BY Part II.html 10.13Кб
21. Video Outro.html 6.76Кб
21. Video Outro.html 6.83Кб
21. Video Recap.html 7.32Кб
21. Video Working With Outliers.html 9.73Кб
21. Working with Outliers-4RnQjtJB8t8.ar.vtt 2.89Кб
21. Working with Outliers-4RnQjtJB8t8.en.vtt 2.14Кб
21. Working with Outliers-4RnQjtJB8t8.mp4 4.89Мб
21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt 2.46Кб
21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt 1.90Кб
22. (Optional) Closed form Solution Math.html 14.96Кб
22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.en.vtt 2.30Кб
22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.mp4 5.00Мб
22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.pt-BR.vtt 2.74Кб
22. Bootstrapping-42j3YclcZ4Q.ar.vtt 2.60Кб
22. Bootstrapping-42j3YclcZ4Q.en.vtt 1.89Кб
22. Bootstrapping-42j3YclcZ4Q.mp4 4.23Мб
22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt 2.01Кб
22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt 1.66Кб
22. Bush Precision and Recall.html 10.71Кб
22. Bush Precision and Recall-8fM13xqU2a8.ar.vtt 265б
22. Bush Precision and Recall-8fM13xqU2a8.en.vtt 213б
22. Bush Precision and Recall-8fM13xqU2a8.mp4 774.95Кб
22. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt 203б
22. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt 204б
22. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt 1.55Кб
22. Bush Precision and Recall-FLpXmoHp7eE.en.vtt 1.18Кб
22. Bush Precision and Recall-FLpXmoHp7eE.mp4 4.36Мб
22. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt 1.15Кб
22. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt 1.24Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14Мб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14Мб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01Кб
22. Flask + Pandas.html 9.79Кб
22. Flask and Pandas-L_M_8UVY42k.en.vtt 4.38Кб
22. Flask and Pandas-L_M_8UVY42k.mp4 6.20Мб
22. Flask and Pandas-L_M_8UVY42k.pt-BR.vtt 4.81Кб
22. GMM Cluster Validation Lab Solution.html 7.67Кб
22. Groundbreaking CNN Architectures.html 8.83Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 3.94Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.09Мб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.26Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.52Кб
22. Having-D4gmN0vnk58.ar.vtt 2.41Кб
22. Having-D4gmN0vnk58.en.vtt 1.72Кб
22. Having-D4gmN0vnk58.mp4 2.16Мб
22. Having-D4gmN0vnk58.pt-BR.vtt 1.78Кб
22. Interactions Higher Order Terms-gMHwogzqPOk.en.vtt 4.47Кб
22. Interactions Higher Order Terms-gMHwogzqPOk.mp4 17.27Мб
22. Interactions Higher Order Terms-gMHwogzqPOk.pt-BR.vtt 4.52Кб
22. Interactions Higher Order Terms-gMHwogzqPOk.zh-CN.vtt 3.76Кб
22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4 4.83Мб
22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt 2.33Кб
22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4 6.06Мб
22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt 2.95Кб
22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4 5.67Мб
22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt 4.34Кб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.en.vtt 1.71Кб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.mp4 1.90Мб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.pt-BR.vtt 1.99Кб
22. Lists and Membership Operators.html 15.50Кб
22. Missing Data - Impute.html 9.13Кб
22. Multi-Class Cross Entropy.html 8.73Кб
22. Multi-Class Cross Entropy.html 9.59Кб
22. Notebook + Quiz What Happened.html 11.02Кб
22. One-Hot Encoding.html 7.41Кб
22. One-Hot Encoding-a0j1CDXFYZI.en.vtt 1.40Кб
22. One-Hot Encoding-a0j1CDXFYZI.mp4 1.08Мб
22. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt 1.59Кб
22. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt 1.21Кб
22. Optimizers in Keras.html 8.31Кб
22. Outliers Advice-BhhDoTgYQmI.ar.vtt 1.91Кб
22. Outliers Advice-BhhDoTgYQmI.en.vtt 1.48Кб
22. Outliers Advice-BhhDoTgYQmI.mp4 3.85Мб
22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt 1.64Кб
22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt 1.29Кб
22. Quiz Calculating a p-value.html 11.78Кб
22. Quiz ORDER BY Part II.html 11.53Кб
22. Quiz The Standard Library.html 16.59Кб
22. Random Observed Values-KFIt2OC3wCI.ar.vtt 3.51Кб
22. Random Observed Values-KFIt2OC3wCI.en.vtt 2.74Кб
22. Random Observed Values-KFIt2OC3wCI.mp4 4.47Мб
22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt 2.93Кб
22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt 2.37Кб
22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.en.vtt 3.78Кб
22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.mp4 5.50Мб
22. Recommendations 1 20 10491855 V1-BafXxtTuZgQ.mp4 8.13Мб
22. Recommendations 1 20 10491855 V2-pjoxB00grHw.en.vtt 4.96Кб
22. Recommendations 1 20 10491855 V2-pjoxB00grHw.mp4 8.60Мб
22. Recommendations 1 20 4271048 V1-2On65U7Panw.en.vtt 4.12Кб
22. Recommendations 1 20 4271048 V1-2On65U7Panw.mp4 7.02Мб
22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.en.vtt 12.17Кб
22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.mp4 17.02Мб
22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.en.vtt 9.91Кб
22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.mp4 12.80Мб
22. Robot Sensing 2.html 10.34Кб
22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt 1.10Кб
22. Robot Sensing 2-aBBmlnd7okQ.en.vtt 952б
22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt 975б
22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt 846б
22. Robot Sensing 2-aBBmlnd7okQ.mp4 2.03Мб
22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt 944б
22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt 896б
22. Robot Sensing 2-t22oDruXhuo.ar.vtt 584б
22. Robot Sensing 2-t22oDruXhuo.en.vtt 428б
22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt 478б
22. Robot Sensing 2-t22oDruXhuo.ja.vtt 428б
22. Robot Sensing 2-t22oDruXhuo.mp4 2.36Мб
22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt 473б
22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt 369б
22. Scenario #2.html 8.93Кб
22. Screencast How to Add Higher Order Terms.html 8.10Кб
22. Screencast Solution Content Based.html 10.11Кб
22. Screencast The Cold Start Problem.html 8.28Кб
22. Solution Grid Search Pipeline.html 10.78Кб
22. Solutions Percentiles.html 8.73Кб
22. Solution While Loops Practice.html 9.12Кб
22. Text Recap.html 8.36Кб
22. Text Recap.html 8.71Кб
22. Text Recap + Next Steps.html 7.92Кб
22. Video Bootstrapping.html 9.09Кб
22. Video Capital vs. Lower.html 11.37Кб
22. Video HAVING.html 8.40Кб
22. Video Working With Outliers My Advice.html 10.28Кб
22. Virtual Environments.html 13.87Кб
22. Virtual Environments-f7rzxUiHOJ0.en.vtt 3.25Кб
22. Virtual Environments-f7rzxUiHOJ0.mp4 2.99Мб
22. Virtual Environments-f7rzxUiHOJ0.pt-BR.vtt 3.33Кб
23. 24 Conclusion V1 V2-Jq6pj_uKDmY.en.vtt 905б
23. 24 Conclusion V1 V2-Jq6pj_uKDmY.mp4 3.20Мб
23. 24 Conclusion V1 V2-Jq6pj_uKDmY.pt-BR.vtt 1.04Кб
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt 2.96Кб
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt 2.30Кб
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4 4.06Мб
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt 2.40Кб
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt 1.98Кб
23. Conclusion.html 7.27Кб
23. Connecting Errors and P-Values.html 9.83Кб
23. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt 2.20Кб
23. Connecting Errors and P-Values-hFNjd5l9CLs.mp4 8.58Мб
23. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt 1.97Кб
23. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt 1.81Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49Мб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49Мб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46Кб
23. Error Functions Around the World.html 7.64Кб
23. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17Кб
23. Error Functions Around the World-34AAcTECu2A.mp4 1.73Мб
23. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08Кб
23. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06Кб
23. Error Function-V5kkHldUlVU.en.vtt 4.87Кб
23. Error Function-V5kkHldUlVU.en.vtt 4.87Кб
23. Error Function-V5kkHldUlVU.mp4 4.84Мб
23. Error Function-V5kkHldUlVU.mp4 4.84Мб
23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19Кб
23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19Кб
23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15Кб
23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15Кб
23. Example Flask + Pandas.html 8.10Кб
23. Exercise Imputation.html 9.46Кб
23. Exercise Making a Package and Pip Installing.html 8.37Кб
23. HAVING.html 11.53Кб
23. Interpreting Interactions-XV6S2srsdxw.en.vtt 3.14Кб
23. Interpreting Interactions-XV6S2srsdxw.mp4 10.37Мб
23. Interpreting Interactions-XV6S2srsdxw.pt-BR.vtt 3.17Кб
23. Interpreting Interactions-XV6S2srsdxw.zh-CN.vtt 2.54Кб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.en.vtt 1.57Кб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.mp4 3.04Мб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.pt-BR.vtt 1.87Кб
23. Linear Regression Warnings.html 9.45Кб
23. Logistic Regression.html 9.21Кб
23. Logistic Regression.html 10.07Кб
23. Putting It All Together-r5jfD2uKnbQ.en.vtt 1.82Кб
23. Putting It All Together-r5jfD2uKnbQ.mp4 5.37Мб
23. Quiz Introduction to Notation.html 11.69Кб
23. Quiz Lists and Membership Operators.html 14.38Кб
23. Quiz Shape and Outliers (Comparing Distributions).html 15.61Кб
23. Quiz While Loops.html 12.93Кб
23. Robot Sensing 3.html 10.44Кб
23. Robot Sensing 3--6l4_oprDOk.ar.vtt 395б
23. Robot Sensing 3--6l4_oprDOk.en.vtt 322б
23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt 329б
23. Robot Sensing 3--6l4_oprDOk.ja.vtt 327б
23. Robot Sensing 3--6l4_oprDOk.mp4 1.48Мб
23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt 317б
23. Robot Sensing 3--6l4_oprDOk.th.vtt 480б
23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt 282б
23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt 783б
23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt 663б
23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt 679б
23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt 657б
23. Robot Sensing 3-m1LSU9SPZ2k.mp4 5.55Мб
23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt 687б
23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt 622б
23. Scenario #3.html 11.10Кб
23. Screencast What Happened Solution.html 11.44Кб
23. Solutions ORDER BY Part II.html 10.71Кб
23. Solution The Standard Library.html 8.06Кб
23. True Positives in Eigenfaces.html 10.21Кб
23. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt 1.13Кб
23. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt 900б
23. True Positives in Eigenfaces-bgT8sWuV2lc.mp4 3.06Мб
23. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt 867б
23. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt 812б
23. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt 326б
23. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt 252б
23. True Positives in Eigenfaces-TWGqylKdGWs.mp4 918.37Кб
23. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt 264б
23. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt 241б
23. Types Of Recommendations-uoXF81AO21E.en.vtt 2.50Кб
23. Types Of Recommendations-uoXF81AO21E.mp4 4.78Мб
23. Video Bootstrapping The Central Limit Theorem.html 10.10Кб
23. Video Interpreting Interactions.html 8.03Кб
23. Video Putting It All Together.html 7.51Кб
23. Video Recap.html 7.61Кб
23. Video Three Types of Recommendation Systems.html 8.37Кб
23. Visualizing CNNs (Part 1).html 9.81Кб
23. Visualizing CNNs-mnqS_EhEZVg.en.vtt 3.87Кб
23. Visualizing CNNs-mnqS_EhEZVg.mp4 9.20Мб
23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83Кб
23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33Кб
23. What Happened-gLn6_Z3nwcc.en.vtt 8.60Кб
23. What Happened-gLn6_Z3nwcc.mp4 12.15Мб
23. What Happened-gLn6_Z3nwcc.pt-BR.vtt 8.61Кб
23. Window Functions Conclusion-2ZdocDMw7D8.ar.vtt 807б
23. Window Functions Conclusion-2ZdocDMw7D8.en.vtt 555б
23. Window Functions Conclusion-2ZdocDMw7D8.mp4 2.23Мб
23. Window Functions Conclusion-2ZdocDMw7D8.pt-BR.vtt 522б
23. Window Functions Conclusion-2ZdocDMw7D8.zh-CN.vtt 549б
23. Word Embeddings.html 7.63Кб
23. Word Embeddings-4mM_S9L2_JQ.en.vtt 1.55Кб
23. Word Embeddings-4mM_S9L2_JQ.mp4 1.22Мб
23. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt 1.71Кб
23. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt 1.26Кб
24. Binomial Class.html 8.55Кб
24. Binomial Class-O-4qRh74rkI.en.vtt 1.27Кб
24. Binomial Class-O-4qRh74rkI.mp4 3.44Мб
24. Binomial Class-O-4qRh74rkI.pt-BR.vtt 1.38Кб
24. Binomial Class-xTamXY6Z9Kg.en.vtt 3.35Кб
24. Binomial Class-xTamXY6Z9Kg.mp4 4.33Мб
24. Binomial Class-xTamXY6Z9Kg.pt-BR.vtt 3.30Кб
24. Conclusions in Hypothesis Testing.html 9.70Кб
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt 1.97Кб
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4 7.48Мб
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt 1.99Кб
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt 1.75Кб
24. Data Engineering-z6r2e_V0Td0.en.vtt 6.05Кб
24. Data Engineering-z6r2e_V0Td0.mp4 35.29Мб
24. Data Engineering-z6r2e_V0Td0.pt-BR.vtt 6.35Кб
24. False Positives in Eigenfaces.html 10.22Кб
24. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt 218б
24. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt 161б
24. False Positives in Eigenfaces-0bEbJ33dUis.mp4 502.09Кб
24. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt 173б
24. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt 187б
24. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt 455б
24. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt 350б
24. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4 1.04Мб
24. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt 354б
24. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt 294б
24. Flask+Plotly+Pandas Part 1.html 10.87Кб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.en.vtt 4.66Кб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.mp4 6.68Мб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.pt-BR.vtt 5.01Кб
24. Gradient Descent.html 15.51Кб
24. Gradient Descent.html 16.37Кб
24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85Кб
24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85Кб
24. Gradient Descent-rhVIF-nigrY.mp4 3.76Мб
24. Gradient Descent-rhVIF-nigrY.mp4 3.76Мб
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98Кб
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98Кб
24. Modeling.html 8.19Кб
24. Modeling-P4w_2rkxBvE.en.vtt 1.29Кб
24. Modeling-P4w_2rkxBvE.mp4 1.19Мб
24. Modeling-P4w_2rkxBvE.pt-BR.vtt 1.44Кб
24. Modeling-P4w_2rkxBvE.zh-CN.vtt 1.09Кб
24. Model Versioning.html 7.80Кб
24. Neural Network Regression.html 7.34Кб
24. Neural Network Regression-aUJCBqBfEnI.mp4 3.46Мб
24. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt 3.74Кб
24. Notebook + Quiz Bootstrapping.html 12.13Кб
24. Polynomial Regression.html 7.58Кб
24. Polynomial Regression-DBhWG-PagEQ.en.vtt 1.29Кб
24. Polynomial Regression-DBhWG-PagEQ.mp4 982.28Кб
24. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt 1.18Кб
24. Quiz Shape and Outliers (Visuals).html 14.60Кб
24. Recommendations 2 25 V1-zgz5WYlI5fE.en.vtt 8.70Кб
24. Recommendations 2 25 V1-zgz5WYlI5fE.mp4 10.50Мб
24. Robot Sensing 4.html 10.15Кб
24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt 252б
24. Robot Sensing 4-d_fbDqAGVdE.en.vtt 214б
24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt 221б
24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt 198б
24. Robot Sensing 4-d_fbDqAGVdE.mp4 1.06Мб
24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt 202б
24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt 207б
24. Robot Sensing 4-vasdN2Gol0M.ar.vtt 2.21Кб
24. Robot Sensing 4-vasdN2Gol0M.en.vtt 1.67Кб
24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt 1.69Кб
24. Robot Sensing 4-vasdN2Gol0M.ja.vtt 1.52Кб
24. Robot Sensing 4-vasdN2Gol0M.mp4 9.87Мб
24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt 1.58Кб
24. Robot Sensing 4-vasdN2Gol0M.th.vtt 2.98Кб
24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt 1.56Кб
24. Screencast Code Walkthrough.html 7.50Кб
24. Solution List and Membership Operators.html 10.42Кб
24. Solutions HAVING.html 11.90Кб
24. Solution While Loops Quiz.html 9.95Кб
24. SQL, optimization, and ETL - Robert Chang Airbnb.html 9.40Кб
24. Techniques for Importing Modules.html 10.97Кб
24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt 6.13Кб
24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt 4.34Кб
24. Techniques For Importing Modules-jPGyFgcIvsM.mp4 5.33Мб
24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt 4.84Кб
24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt 3.93Кб
24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt 2.86Кб
24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt 2.03Кб
24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4 5.00Мб
24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt 2.14Кб
24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt 1.74Кб
24. Text Interpreting Interactions.html 11.56Кб
24. Text More Recommendation Technniques.html 12.30Кб
24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt 2.26Кб
24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt 1.68Кб
24. There Must Be A Better Way-oBp8YX2AgJw.mp4 3.23Мб
24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt 1.61Кб
24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt 1.45Кб
24. Video Better Way.html 9.14Кб
24. Video WHERE.html 10.50Кб
24. Video Working With Missing Values.html 11.47Кб
24. Visualizing CNNs (Part 2).html 14.40Кб
24. WHERE Statements -mN0uTnlXaxg.ar.vtt 3.00Кб
24. WHERE Statements -mN0uTnlXaxg.en.vtt 2.25Кб
24. WHERE Statements -mN0uTnlXaxg.mp4 4.50Мб
24. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt 2.70Кб
24. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt 2.05Кб
24. Working With Missing Values-mbAgYicmzqE.en.vtt 1.11Кб
24. Working With Missing Values-mbAgYicmzqE.mp4 4.01Мб
24. Working With Missing Values-mbAgYicmzqE.pt-BR.vtt 1.22Кб
25. [OPTIONAL] Word2Vec.html 7.38Кб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.en.vtt 6.91Кб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.mp4 7.90Мб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.pt-BR.vtt 7.07Кб
25. Aggregations-ADx1x2ljFB4.ar.vtt 3.51Кб
25. Aggregations-ADx1x2ljFB4.en.vtt 2.90Кб
25. Aggregations-ADx1x2ljFB4.mp4 5.11Мб
25. Aggregations-ADx1x2ljFB4.pt-BR.vtt 2.80Кб
25. Aggregations-ADx1x2ljFB4.zh-CN.vtt 2.51Кб
25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt 1.87Кб
25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt 1.43Кб
25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4 5.39Мб
25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt 1.40Кб
25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt 1.23Кб
25. Break, Continue.html 11.83Кб
25. Break and Continue-F6qJAv9ts9Y.ar.vtt 5.88Кб
25. Break and Continue-F6qJAv9ts9Y.en.vtt 3.95Кб
25. Break and Continue-F6qJAv9ts9Y.mp4 13.22Мб
25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt 4.43Кб
25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt 3.64Кб
25. Conclusion.html 7.20Кб
25. DATE Functions I-E7Z6GMFVmIY.ar.vtt 4.98Кб
25. DATE Functions I-E7Z6GMFVmIY.en.vtt 3.49Кб
25. DATE Functions I-E7Z6GMFVmIY.mp4 3.86Мб
25. DATE Functions I-E7Z6GMFVmIY.pt-BR.vtt 3.66Кб
25. DATE Functions I-E7Z6GMFVmIY.zh-CN.vtt 3.05Кб
25. Duplicate Data.html 9.04Кб
25. Duplicate Data-49ZwWRviAFg.en.vtt 2.46Кб
25. Duplicate Data-49ZwWRviAFg.mp4 5.15Мб
25. Duplicate Data-49ZwWRviAFg.pt-BR.vtt 2.64Кб
25. Exercise Binomial Class.html 8.33Кб
25. False Negatives in Eigenfaces.html 10.10Кб
25. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt 662б
25. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt 469б
25. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt 472б
25. False Negatives in Eigenfaces-bxDutNyYKjE.mp4 1.33Мб
25. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt 526б
25. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt 426б
25. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt 137б
25. False Negatives in Eigenfaces-dyShKWpTo-c.mp4 418.97Кб
25. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt 133б
25. Flask+Plotly+Pandas Part 2.html 9.55Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98Мб
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98Мб
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21Кб
25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt 2.16Кб
25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4 5.28Мб
25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt 2.28Кб
25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt 1.90Кб
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt 4.63Кб
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4 13.33Мб
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt 4.45Кб
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt 3.84Кб
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.en.vtt 816б
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.mp4 2.84Мб
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.pt-BR.vtt 984б
25. List Methods.html 12.97Кб
25. Logistic Regression Algorithm.html 7.60Кб
25. Logistic Regression Algorithm.html 8.46Кб
25. Neural Networks Playground.html 8.03Кб
25. Notebook + Quiz Interpreting Model Coefficients.html 17.49Кб
25. Quiz Connecting Errors and P-Values.html 15.23Кб
25. Quiz Polynomial Regression.html 13.20Кб
25. Quiz Recommendation Methods.html 12.08Кб
25. Quiz Shape and Outliers (Final Quiz).html 15.50Кб
25. Quiz Techniques for Importing Modules.html 10.60Кб
25. Quiz WHERE.html 10.53Кб
25. Removing Data - Why Not-w3-5Z5mEzTM.en.vtt 2.15Кб
25. Removing Data - Why Not-w3-5Z5mEzTM.mp4 5.08Мб
25. Removing Data - Why Not-w3-5Z5mEzTM.pt-BR.vtt 2.59Кб
25. Robot Sensing 5.html 10.27Кб
25. Robot Sensing 5-PGG9agooCvw.ar.vtt 544б
25. Robot Sensing 5-PGG9agooCvw.en.vtt 414б
25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt 451б
25. Robot Sensing 5-PGG9agooCvw.ja.vtt 395б
25. Robot Sensing 5-PGG9agooCvw.mp4 1.74Мб
25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt 410б
25. Robot Sensing 5-PGG9agooCvw.th.vtt 667б
25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt 420б
25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt 118б
25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt 97б
25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt 108б
25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt 123б
25. Robot Sensing 5-tIrqdYTT_9Q.mp4 506.06Кб
25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt 106б
25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt 137б
25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt 110б
25. Transfer Learning.html 18.80Кб
25. Transfer Learning-LHG5FltaR6I.en.vtt 6.00Кб
25. Transfer Learning-LHG5FltaR6I.mp4 13.32Мб
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.51Кб
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.39Кб
25. Video DATE Functions.html 9.05Кб
25. Video Removing Data - Why Not.html 11.50Кб
25. Video Summation.html 11.51Кб
25. Video The Background of Bootstrapping.html 9.21Кб
25. Word2Vec-7jjappzGRe0.en.vtt 3.42Кб
25. Word2Vec-7jjappzGRe0.mp4 2.98Мб
25. Word2Vec-7jjappzGRe0.pt-BR.vtt 3.81Кб
25. Word2Vec-7jjappzGRe0.zh-CN.vtt 2.85Кб
25. Workspace Recommender Module.html 8.14Кб
26. [OPTIONAL] GloVe.html 7.36Кб
26. Conclusion-R5-OYqKk9Ys.en.vtt 1.92Кб
26. Conclusion-R5-OYqKk9Ys.mp4 4.57Мб
26. DATE Functions Part II-UPWkDhW4cLI.ar.vtt 5.98Кб
26. DATE Functions Part II-UPWkDhW4cLI.en.vtt 4.19Кб
26. DATE Functions Part II-UPWkDhW4cLI.mp4 4.56Мб
26. DATE Functions Part II-UPWkDhW4cLI.pt-BR.vtt 4.22Кб
26. DATE Functions Part II-UPWkDhW4cLI.zh-CN.vtt 3.83Кб
26. Exercise Duplicate Data.html 9.46Кб
26. Flask+Plotly+Pandas Part 3.html 9.05Кб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.en.vtt 1.83Кб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.mp4 2.95Мб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.pt-BR.vtt 1.93Кб
26. GloVe-KK3PMIiIn8o.en.vtt 4.21Кб
26. GloVe-KK3PMIiIn8o.mp4 3.81Мб
26. GloVe-KK3PMIiIn8o.pt-BR.vtt 4.55Кб
26. GloVe-KK3PMIiIn8o.zh-CN.vtt 3.61Кб
26. Keras Lab-a50un22BsLI.en.vtt 586б
26. Keras Lab-a50un22BsLI.mp4 2.19Мб
26. Keras Lab-a50un22BsLI.pt-BR.vtt 574б
26. Keras Lab-a50un22BsLI.zh-CN.vtt 540б
26. Mini Project Intro.html 7.50Кб
26. Notation for the Mean-3EF15AoRxyM.ar.vtt 2.81Кб
26. Notation for the Mean-3EF15AoRxyM.en.vtt 2.05Кб
26. Notation for the Mean-3EF15AoRxyM.mp4 3.03Мб
26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt 2.26Кб
26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt 1.82Кб
26. Notebook + Quiz Drawing Conclusions.html 14.60Кб
26. Practicing TP, FP, FN with Rumsfeld.html 10.85Кб
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt 462б
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt 337б
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4 1.80Мб
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt 337б
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt 291б
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt 234б
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt 186б
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4 792.74Кб
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt 188б
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt 180б
26. Pre-Lab Gradient Descent.html 9.28Кб
26. Pre-Lab Gradient Descent.html 10.14Кб
26. Quiz Break, Continue.html 9.80Кб
26. Quiz List Methods.html 14.18Кб
26. Recap-VM6GGNC2q8I.en.vtt 884б
26. Recap-VM6GGNC2q8I.mp4 4.59Мб
26. Recap-VM6GGNC2q8I.pt-BR.vtt 983б
26. Recap-VM6GGNC2q8I.zh-CN.vtt 736б
26. Regularization.html 7.53Кб
26. Regularization-PyFNIcsNma0.en.vtt 10.87Кб
26. Regularization-PyFNIcsNma0.mp4 8.76Мб
26. Regularization-PyFNIcsNma0.pt-BR.vtt 10.38Кб
26. Removing Data - When Is It OK-oQhIPq5AccU.en.vtt 1.62Кб
26. Removing Data - When Is It OK-oQhIPq5AccU.mp4 6.04Мб
26. Removing Data - When Is It OK-oQhIPq5AccU.pt-BR.vtt 1.77Кб
26. Robot Sensing 6.html 10.27Кб
26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt 456б
26. Robot Sensing 6-hXyXlk0gYzk.en.vtt 343б
26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt 348б
26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt 326б
26. Robot Sensing 6-hXyXlk0gYzk.mp4 1.58Мб
26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt 329б
26. Robot Sensing 6-hXyXlk0gYzk.th.vtt 554б
26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt 331б
26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt 175б
26. Robot Sensing 6-Se-ddM2Wdac.en.vtt 147б
26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt 157б
26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt 176б
26. Robot Sensing 6-Se-ddM2Wdac.mp4 484.71Кб
26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt 157б
26. Robot Sensing 6-Se-ddM2Wdac.th.vtt 240б
26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt 149б
26. Scikit-learn Source Code.html 9.00Кб
26. Scikitlearn Source Code-4_qkqMsbthg.en.vtt 5.56Кб
26. Scikitlearn Source Code-4_qkqMsbthg.mp4 9.62Мб
26. Scikitlearn Source Code-4_qkqMsbthg.pt-BR.vtt 5.66Кб
26. Solutions WHERE.html 10.66Кб
26. Text Descriptive Statistics Summary .html 12.54Кб
26. Third-Party Libraries.html 12.91Кб
26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt 4.42Кб
26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt 3.49Кб
26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4 7.36Мб
26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt 3.73Кб
26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt 3.10Кб
26. Transfer Learning in Keras.html 9.09Кб
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.11Кб
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 12.92Мб
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.77Кб
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.69Кб
26. Types Of Ratings-fMjqe4sxBlQ.en.vtt 2.24Кб
26. Types Of Ratings-fMjqe4sxBlQ.mp4 5.76Мб
26. Video Conclusion.html 7.44Кб
26. Video DATE Functions II.html 9.75Кб
26. Video Notation for the Mean.html 9.68Кб
26. Video Recap.html 7.90Кб
26. Video Removing Data - When Is It OK.html 11.53Кб
26. Video Types of Ratings.html 9.77Кб
26. Video Why are Sampling Distributions Important.html 8.81Кб
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt 1.39Кб
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt 1.09Кб
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4 4.09Мб
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt 1.10Кб
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt 927б
27. [OPTIONAL] Embeddings for Deep Learning.html 7.51Кб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.en.vtt 9.61Кб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.mp4 16.29Мб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.pt-BR.vtt 9.98Кб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.en.vtt 10.08Кб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.mp4 17.06Мб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.pt-BR.vtt 10.17Кб
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt 4.74Кб
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt 3.22Кб
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 6.17Мб
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt 3.51Кб
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt 2.74Кб
27. Dummy Variables.html 9.80Кб
27. Dummy Variables-bgxBUvPpKQQ.en.vtt 2.07Кб
27. Dummy Variables-bgxBUvPpKQQ.mp4 3.51Мб
27. Dummy Variables-bgxBUvPpKQQ.pt-BR.vtt 2.36Кб
27. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt 5.11Кб
27. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 4.70Мб
27. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt 5.60Кб
27. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt 4.70Кб
27. Equation for Precision.html 10.82Кб
27. Equation for Precision-8QEAYYIyopY.ar.vtt 1.25Кб
27. Equation for Precision-8QEAYYIyopY.en.vtt 1008б
27. Equation for Precision-8QEAYYIyopY.mp4 4.19Мб
27. Equation for Precision-8QEAYYIyopY.pt-BR.vtt 930б
27. Equation for Precision-8QEAYYIyopY.zh-CN.vtt 888б
27. Equation for Precision-CStZqZRe6Mk.ar.vtt 816б
27. Equation for Precision-CStZqZRe6Mk.en.vtt 610б
27. Equation for Precision-CStZqZRe6Mk.en-US.vtt 617б
27. Equation for Precision-CStZqZRe6Mk.mp4 2.29Мб
27. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt 618б
27. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt 503б
27. Experimenting with an Interpreter.html 10.64Кб
27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt 5.13Кб
27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt 3.80Кб
27. Experimenting With An Interpreter-hspPtnQwMPg.mp4 5.58Мб
27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt 4.15Кб
27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt 3.29Кб
27. Flask+Plotly+Pandas Part 4.html 10.24Кб
27. Goals Of Recommendation Systems-WzelOlFeDmU.en.vtt 2.44Кб
27. Goals Of Recommendation Systems-WzelOlFeDmU.mp4 2.99Мб
27. L2 04 Tuples V3-33xN-AbTMoc.mp4 3.96Мб
27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt 2.74Кб
27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt 2.10Кб
27. Notebook Gradient Descent.html 7.96Кб
27. Notebook Gradient Descent.html 8.82Кб
27. Other Things to Consider - What if Our Sample is Large.html 10.97Кб
27. Pre-Lab IMDB Data in Keras.html 11.72Кб
27. Putting Code on PyPi.html 11.13Кб
27. Quiz + Text Recap Next Steps.html 15.08Кб
27. Quiz DATE Functions.html 9.62Кб
27. Quiz Regularization.html 18.92Кб
27. Quiz Summation.html 11.46Кб
27. Removing Data - Other Considerations-xrXk_Tvi0oQ.en.vtt 1.77Кб
27. Removing Data - Other Considerations-xrXk_Tvi0oQ.mp4 4.64Мб
27. Removing Data - Other Considerations-xrXk_Tvi0oQ.pt-BR.vtt 1.86Кб
27. Robot Sensing 7.html 10.27Кб
27. Robot Sensing 7-clFL503NPyY.ar.vtt 126б
27. Robot Sensing 7-clFL503NPyY.en.vtt 109б
27. Robot Sensing 7-clFL503NPyY.es-ES.vtt 118б
27. Robot Sensing 7-clFL503NPyY.ja.vtt 113б
27. Robot Sensing 7-clFL503NPyY.mp4 218.29Кб
27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt 108б
27. Robot Sensing 7-clFL503NPyY.th.vtt 177б
27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt 108б
27. Robot Sensing 7-goEMc0w58xM.ar.vtt 211б
27. Robot Sensing 7-goEMc0w58xM.en.vtt 155б
27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt 174б
27. Robot Sensing 7-goEMc0w58xM.ja.vtt 175б
27. Robot Sensing 7-goEMc0w58xM.mp4 473.30Кб
27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt 169б
27. Robot Sensing 7-goEMc0w58xM.th.vtt 244б
27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt 158б
27. Solution Break, Continue.html 8.82Кб
27. Text Recap.html 8.55Кб
27. Text Review.html 10.39Кб
27. Tuples.html 10.66Кб
27. Video Descriptive vs. Inferential Statistics.html 10.09Кб
27. Video Goals of Recommendation Systems.html 9.53Кб
27. Video Removing Data - Other Considerations.html 11.13Кб
27. Video WHERE with Non-Numeric Data.html 10.44Кб
27. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt 3.16Кб
27. What If Our Sample Is Large-WoTCeSTL1eM.mp4 11.95Мб
27. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt 3.02Кб
27. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt 2.76Кб
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt 1.42Кб
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt 1.11Кб
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4 2.12Мб
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt 1.27Кб
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt 1004б
28. [OPTIONAL] t-SNE.html 7.36Кб
28. Equation for Recall.html 10.66Кб
28. Equation for Recall-2cUiqlbt-hc.ar.vtt 408б
28. Equation for Recall-2cUiqlbt-hc.en.vtt 306б
28. Equation for Recall-2cUiqlbt-hc.mp4 720.53Кб
28. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt 305б
28. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt 288б
28. Equation for Recall-j2SP83afRS0.ar.vtt 850б
28. Equation for Recall-j2SP83afRS0.en.vtt 658б
28. Equation for Recall-j2SP83afRS0.mp4 2.17Мб
28. Equation for Recall-j2SP83afRS0.pt-BR.vtt 696б
28. Equation for Recall-j2SP83afRS0.zh-CN.vtt 552б
28. Example Flask + Plotly + Pandas.html 8.11Кб
28. Exercise Dummy Variables.html 9.47Кб
28. Exercise Upload to PyPi.html 8.33Кб
28. Feature Scaling.html 24.52Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.20Мб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.20Мб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.60Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.60Кб
28. Lab IMDB Data in Keras.html 7.96Кб
28. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt 2.21Кб
28. Multiple Testing Corrections-DuMgeHrkIF0.mp4 7.33Мб
28. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt 2.21Кб
28. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt 1.90Кб
28. Online Resources.html 13.94Кб
28. Other Things to Consider - What if Test More Than Once.html 10.07Кб
28. Perceptron vs Gradient Descent.html 7.91Кб
28. Perceptron vs Gradient Descent.html 8.77Кб
28. Quiz Descriptive vs. Inferential (Udacity Students).html 11.30Кб
28. Quiz Notation for the Mean.html 13.97Кб
28. Quiz Removing Data.html 16.31Кб
28. Quiz Tuples.html 13.69Кб
28. Quiz Types of Ratings Goals of Recommendation Systems.html 11.08Кб
28. Quiz WHERE with Non-Numeric.html 10.53Кб
28. Robot Sensing 8.html 10.85Кб
28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt 315б
28. Robot Sensing 8-hyAQ28MYmc4.en.vtt 248б
28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt 243б
28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt 200б
28. Robot Sensing 8-hyAQ28MYmc4.mp4 978.72Кб
28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt 249б
28. Robot Sensing 8-hyAQ28MYmc4.th.vtt 393б
28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt 226б
28. Robot Sensing 8-lmuonrQp_lM.ar.vtt 626б
28. Robot Sensing 8-lmuonrQp_lM.en.vtt 524б
28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt 804б
28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt 531б
28. Robot Sensing 8-lmuonrQp_lM.ja.vtt 541б
28. Robot Sensing 8-lmuonrQp_lM.mp4 3.35Мб
28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt 497б
28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt 492б
28. Solutions DATE Functions.html 11.45Кб
28. T-SNE-xxcK8oZ6_WE.en.vtt 2.17Кб
28. T-SNE-xxcK8oZ6_WE.mp4 5.56Мб
28. T-SNE-xxcK8oZ6_WE.pt-BR.vtt 2.47Кб
28. T-SNE-xxcK8oZ6_WE.zh-CN.vtt 1.84Кб
28. Zip and Enumerate.html 10.67Кб
28. Zip and Enumerate-bSJPzVArE7M.ar.vtt 3.58Кб
28. Zip and Enumerate-bSJPzVArE7M.en.vtt 2.54Кб
28. Zip and Enumerate-bSJPzVArE7M.mp4 15.71Мб
28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt 2.63Кб
28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt 2.35Кб
29. 11 CASE V2-BInXuTY_FzE.ar.vtt 6.29Кб
29. 11 CASE V2-BInXuTY_FzE.en.vtt 5.15Кб
29. 11 CASE V2-BInXuTY_FzE.mp4 7.52Мб
29. 11 CASE V2-BInXuTY_FzE.pt-BR.vtt 5.48Кб
29. 11 CASE V2-BInXuTY_FzE.zh-CN.vtt 4.37Кб
29. Conclusion.html 7.96Кб
29. Conclusion-rEMrswkLvh8.ar.vtt 652б
29. Conclusion-rEMrswkLvh8.en.vtt 473б
29. Conclusion-rEMrswkLvh8.mp4 2.84Мб
29. Conclusion-rEMrswkLvh8.pt-BR.vtt 508б
29. Conclusion-rEMrswkLvh8.zh-CN.vtt 456б
29. Conclusion-wOiUQDgGD9E.en.vtt 725б
29. Conclusion-wOiUQDgGD9E.mp4 2.58Мб
29. Conclusion-wOiUQDgGD9E.pt-BR.vtt 1.02Кб
29. Conclusion-wOiUQDgGD9E.zh-CN.vtt 655б
29. Conclusion-zX5jZH2y8d8.en.vtt 1.09Кб
29. Conclusion-zX5jZH2y8d8.mp4 3.49Мб
29. Continuous Perceptrons.html 8.43Кб
29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33Кб
29. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13Мб
29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31Кб
29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15Кб
29. Exercise Flask + Plotly + Pandas.html 8.12Кб
29. Generalizing.html 8.52Кб
29. Generalizing-SdMk3aROgSc.ar.vtt 1.73Кб
29. Generalizing-SdMk3aROgSc.en.vtt 1.24Кб
29. Generalizing-SdMk3aROgSc.es-ES.vtt 1.32Кб
29. Generalizing-SdMk3aROgSc.ja.vtt 1.22Кб
29. Generalizing-SdMk3aROgSc.mp4 6.27Мб
29. Generalizing-SdMk3aROgSc.pt-BR.vtt 1.33Кб
29. Generalizing-SdMk3aROgSc.zh-CN.vtt 1.17Кб
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt 1.70Кб
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4 6.98Мб
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt 1.87Кб
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt 1.44Кб
29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt 2.25Кб
29. L2 03 Sets V2-eIHNFgTFfnA.mp4 5.92Мб
29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt 2.60Кб
29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt 2.14Кб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.en.vtt 2.13Кб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.mp4 6.15Мб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.pt-BR.vtt 2.32Кб
29. Lesson Summary.html 8.49Кб
29. Model Diagnostics In Python-1Z4eorbfOOc.en.vtt 6.75Кб
29. Model Diagnostics In Python-1Z4eorbfOOc.mp4 22.79Мб
29. Model Diagnostics In Python-1Z4eorbfOOc.pt-BR.vtt 6.22Кб
29. Model Diagnostics In Python-1Z4eorbfOOc.zh-CN.vtt 5.76Кб
29. Neural Networks Outro V2-pwA5shUkRVc.mp4 3.30Мб
29. Notebook + Quiz Removing Values.html 11.02Кб
29. Other Things to Consider - How Do CIs and HTs Compare.html 9.82Кб
29. Outliers - How to Find Them.html 9.85Кб
29. Outliers How To Find Them-ksqzOCSAp5U.en.vtt 3.15Кб
29. Outliers How To Find Them-ksqzOCSAp5U.mp4 8.10Мб
29. Outliers How To Find Them-ksqzOCSAp5U.pt-BR.vtt 3.82Кб
29. Outro.html 7.17Кб
29. Outro.html 7.48Кб
29. Outro.html 8.07Кб
29. Quiz Descriptive vs. Inferential (Bagels).html 17.39Кб
29. Quiz Zip and Enumerate.html 14.26Кб
29. Screencast Model Diagnostics in Python - Part I.html 10.90Кб
29. Sets.html 10.56Кб
29. Solutions WHERE with Non-Numeric.html 10.40Кб
29. Text Summary on Notation.html 10.65Кб
29. Video CASE Statements.html 11.50Кб
29. Video Outro.html 8.27Кб
30. Arithmetic Operators-fgcJdiNECxI.ar.vtt 2.50Кб
30. Arithmetic Operators-fgcJdiNECxI.en.vtt 1.89Кб
30. Arithmetic Operators-fgcJdiNECxI.mp4 1.65Мб
30. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt 2.09Кб
30. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt 1.79Кб
30. CASE Statements and Aggregations-asSXB6iD3z4.ar.vtt 2.21Кб
30. CASE Statements and Aggregations-asSXB6iD3z4.en.vtt 1.78Кб
30. CASE Statements and Aggregations-asSXB6iD3z4.mp4 1.55Мб
30. CASE Statements and Aggregations-asSXB6iD3z4.pt-BR.vtt 1.90Кб
30. CASE Statements and Aggregations-asSXB6iD3z4.zh-CN.vtt 1.59Кб
30. Deployment.html 17.01Кб
30. Deployment-YPfNzpnm_Rk.en.vtt 13.81Кб
30. Deployment-YPfNzpnm_Rk.mp4 19.37Мб
30. Deployment-YPfNzpnm_Rk.pt-BR.vtt 13.64Кб
30. Exercise Outliers Part 1.html 9.47Кб
30. Non-linear Data.html 8.38Кб
30. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633б
30. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14Мб
30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600б
30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624б
30. Notebook + Quiz Model Diagnostics.html 14.06Кб
30. Notebook + Quiz Other Things to Consider.html 20.95Кб
30. Quiz Sets.html 11.97Кб
30. Removing Data-97UTBiybYTs.en.vtt 6.06Кб
30. Removing Data-97UTBiybYTs.mp4 7.33Мб
30. Removing Data-97UTBiybYTs.pt-BR.vtt 5.89Кб
30. ScreenCast Removing Data Solution.html 11.44Кб
30. Sebastian At Home.html 10.08Кб
30. Sebastian At Home-R4zq6mPPMxs.ar.vtt 1.89Кб
30. Sebastian At Home-R4zq6mPPMxs.en.vtt 1.44Кб
30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt 1.44Кб
30. Sebastian At Home-R4zq6mPPMxs.ja.vtt 1.46Кб
30. Sebastian At Home-R4zq6mPPMxs.mp4 11.04Мб
30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt 1.73Кб
30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt 1.22Кб
30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt 1.51Кб
30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt 1.04Кб
30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt 1.14Кб
30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt 1.13Кб
30. Sebastian At Home-TtmQ7YCw_1Y.mp4 7.74Мб
30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt 1.30Кб
30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt 930б
30. Solution Zip and Enumerate.html 10.97Кб
30. Text Descriptive vs. Inferential Summary.html 10.69Кб
30. Text Recap.html 10.70Кб
30. Video Arithmetic Operators.html 10.91Кб
30. Video CASE Aggregations.html 8.85Кб
3004608562.gif 301.85Кб
3006898966.gif 365.93Кб
3007188710.gif 262.28Кб
3007308918.gif 307.77Кб
3009678880.gif 248.38Кб
3016088789.gif 257.62Кб
3016528680.gif 355.33Кб
3017398561.gif 306.84Кб
3021738574.gif 374.98Кб
3022138739.gif 334.43Кб
3022688695.gif 351.11Кб
3023678781.gif 258.28Кб
3030118734.gif 460.01Кб
3031238602.gif 327.07Кб
3039578581.gif 416.59Кб
3041298589.gif 335.25Кб
3043028606.gif 408.16Кб
3050008540.gif 240.03Кб
31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.en.vtt 2.16Кб
31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.mp4 5.43Мб
31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.pt-BR.vtt 2.49Кб
31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt 679б
31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt 523б
31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4 1.88Мб
31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt 503б
31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt 442б
31. Dictionaries and Identity Operators.html 11.71Кб
31. Exercise Deployment.html 8.09Кб
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.en.vtt 1.34Кб
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.mp4 7.54Мб
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.pt-BR.vtt 1.50Кб
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.zh-CN.vtt 1.12Кб
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt 3.39Кб
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4 10.70Мб
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt 3.76Кб
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt 2.76Кб
31. Learning Objectives - Conditional Probability.html 17.90Кб
31. List Comprehensions.html 10.54Кб
31. List Comprehensions-6qxo-NV9v_s.ar.vtt 4.13Кб
31. List Comprehensions-6qxo-NV9v_s.en.vtt 2.93Кб
31. List Comprehensions-6qxo-NV9v_s.mp4 17.37Мб
31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt 3.53Кб
31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt 2.88Кб
31. Non-Linear Models.html 8.39Кб
31. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.30Кб
31. Non-Linear Models-HWuBKCZsCo8.mp4 1.13Мб
31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39Кб
31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12Кб
31. Notebook + Quiz Other Things to Consider.html 17.86Кб
31. Notebook + Quiz Removing Data Part II.html 11.03Кб
31. Outliers - What to do .html 9.16Кб
31. Quiz Arithmetic Operators.html 11.49Кб
31. Quiz CASE.html 11.36Кб
31. Video Final Thoughts On Shifting to Machine Learning.html 8.90Кб
31. Video Summary.html 9.04Кб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02Кб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83Мб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34Кб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76Кб
32. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29Кб
32. Combinando modelos-Boy3zHVrWB4.mp4 4.73Мб
32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29Кб
32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61Кб
32. Exercise Outliers - Part 2.html 9.47Кб
32. Hypothesis Testing Conclusion.html 8.88Кб
32. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt 1.06Кб
32. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4 4.36Мб
32. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt 1.11Кб
32. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt 890б
32. L4 Outro V2-8MyuJx5yu38.en.vtt 1.36Кб
32. L4 Outro V2-8MyuJx5yu38.mp4 3.09Мб
32. L4 Outro V2-8MyuJx5yu38.pt-BR.vtt 1.41Кб
32. Layers-pg99FkXYK0M.en.vtt 3.40Кб
32. Layers-pg99FkXYK0M.mp4 3.11Мб
32. Layers-pg99FkXYK0M.pt-BR.vtt 3.29Кб
32. Layers-pg99FkXYK0M.zh-CN.vtt 3.04Кб
32. Lesson Summary.html 7.96Кб
32. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08Кб
32. Multiclass Classification-uNTtvxwfox0.mp4 1.88Мб
32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12Кб
32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82Кб
32. Neural Network Architecture.html 13.05Кб
32. Quiz Dictionaries and Identity Operators.html 15.99Кб
32. Quiz List Comprehensions.html 11.43Кб
32. Reducing Uncertainty.html 8.36Кб
32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt 1.88Кб
32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt 1.48Кб
32. Reducing Uncertainty-zuFMhmKQ--o.mp4 4.40Мб
32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt 1.50Кб
32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt 1.23Кб
32. Removing Data Part II-lPl6-Z098Rs.en.vtt 11.30Кб
32. Removing Data Part II-lPl6-Z098Rs.mp4 17.63Мб
32. Removing Data Part II-lPl6-Z098Rs.pt-BR.vtt 10.48Кб
32. Screencast Removing Data Part II Solution.html 11.48Кб
32. Solutions Arithmetic Operators.html 10.90Кб
32. Solutions CASE.html 13.08Кб
32. Text Recap.html 9.97Кб
33. AI and Data Engineering - Robert Chang Airbnb.html 9.38Кб
33. Bayes' Rule and Robotics.html 8.42Кб
33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt 1.27Кб
33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt 979б
33. Bayes' Rule and Robotics-meNSO42JF6I.mp4 2.91Мб
33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt 1.14Кб
33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt 892б
33. Congrats-Qy8VYdqoxGA.en.vtt 564б
33. Congrats-Qy8VYdqoxGA.mp4 3.48Мб
33. Congrats-Qy8VYdqoxGA.pt-BR.vtt 576б
33. Congrats-Qy8VYdqoxGA.zh-CN.vtt 473б
33. Data Engineering Importance-VO-OrJ0JqxM.en.vtt 3.03Кб
33. Data Engineering Importance-VO-OrJ0JqxM.mp4 20.61Мб
33. Data Engineering Importance-VO-OrJ0JqxM.pt-BR.vtt 3.29Кб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17Кб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33Мб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76Кб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33Кб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97Кб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72Мб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12Кб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69Кб
33. Feedforward.html 9.67Кб
33. Imputing Missing Values-CEWIPjz_gCE.en.vtt 3.15Кб
33. Imputing Missing Values-CEWIPjz_gCE.mp4 8.42Мб
33. Quiz + Text Recap.html 16.44Кб
33. Solution Dictionaries and Identity Operators.html 9.32Кб
33. Solution List Comprehensions.html 9.53Кб
33. Text Introduction to Logical Operators.html 10.46Кб
33. Text Recap.html 8.25Кб
33. Video Congratulations.html 8.65Кб
33. Video Imputing Missing Values.html 11.87Кб
34. Backpropagation.html 12.49Кб
34. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21Кб
34. Backpropagation V2-1SmY3TZTyUk.mp4 6.52Мб
34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17Кб
34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39Кб
34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41Кб
34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31Мб
34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44Кб
34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88Кб
34. Chain Rule-YAhIBOnbt54.en.vtt 1.65Кб
34. Chain Rule-YAhIBOnbt54.mp4 1.46Мб
34. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73Кб
34. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42Кб
34. Conclusion.html 8.46Кб
34. Congrats!-vDoqpwCHxs4.ar.vtt 673б
34. Congrats!-vDoqpwCHxs4.en.vtt 467б
34. Congrats!-vDoqpwCHxs4.mp4 3.11Мб
34. Congrats!-vDoqpwCHxs4.pt-BR.vtt 583б
34. Congrats!-vDoqpwCHxs4.zh-CN.vtt 410б
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16Кб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69Мб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.50Кб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05Кб
34. Learning from Sensor Data.html 11.65Кб
34. LIKE Operator-O5z6eWkNip4.ar.vtt 2.66Кб
34. LIKE Operator-O5z6eWkNip4.en.vtt 1.95Кб
34. LIKE Operator-O5z6eWkNip4.mp4 2.17Мб
34. LIKE Operator-O5z6eWkNip4.pt-BR.vtt 2.42Кб
34. LIKE Operator-O5z6eWkNip4.zh-CN.vtt 1.76Кб
34. Notebook + Quiz Imputation Methods Resources.html 11.06Кб
34. Quiz More With Dictionaries.html 13.72Кб
34. Scaling Data.html 9.02Кб
34. Scaling Data-OgjTk3XCUUE.en.vtt 1.68Кб
34. Scaling Data-OgjTk3XCUUE.mp4 3.84Мб
34. Scaling Data-OgjTk3XCUUE.pt-BR.vtt 1.96Кб
34. Video LIKE.html 11.01Кб
35. Compound Data Structures.html 10.70Кб
35. Exercise Scaling Data.html 9.46Кб
35. Imputation Methods-OwEWSBitF-Q.en.vtt 11.89Кб
35. Imputation Methods-OwEWSBitF-Q.mp4 18.42Мб
35. Imputation Methods-OwEWSBitF-Q.pt-BR.vtt 10.52Кб
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt 1.24Кб
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4 4.21Мб
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt 1.58Кб
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt 1.08Кб
35. Pre-Lab Analyzing Student Data.html 9.29Кб
35. Quiz LIKE.html 10.49Кб
35. Screencast Imputation Methods Resources Solution.html 11.49Кб
35. Using Sensor Data.html 8.34Кб
35. Using Sensor Data-vhl-SADfti8.ar.vtt 2.19Кб
35. Using Sensor Data-vhl-SADfti8.en.vtt 1.59Кб
35. Using Sensor Data-vhl-SADfti8.mp4 5.21Мб
35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt 1.86Кб
35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt 1.38Кб
36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.en.vtt 2.30Кб
36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.mp4 5.15Мб
36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.pt-BR.vtt 2.59Кб
36. Feature Engineering.html 9.11Кб
36. Learning Objectives - Bayes' Rule.html 16.50Кб
36. Notebook + Quiz Imputing Values.html 11.02Кб
36. Notebook Analyzing Student Data.html 8.83Кб
36. Quiz Compound Data Structures.html 15.14Кб
36. Solutions LIKE.html 10.49Кб
37. Bayes Rule Conclusion.html 8.37Кб
37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt 731б
37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt 530б
37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4 1.61Мб
37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt 579б
37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt 458б
37. Exercise Feature Engineering.html 9.47Кб
37. Imputing Values-nTM4HiDneeE.en.vtt 6.69Кб
37. Imputing Values-nTM4HiDneeE.mp4 13.17Мб
37. Imputing Values-nTM4HiDneeE.pt-BR.vtt 6.11Кб
37. IN Operator-_JPO7wwX3uA.ar.vtt 1.92Кб
37. IN Operator-_JPO7wwX3uA.en.vtt 1.47Кб
37. IN Operator-_JPO7wwX3uA.mp4 1.76Мб
37. IN Operator-_JPO7wwX3uA.pt-BR.vtt 1.57Кб
37. IN Operator-_JPO7wwX3uA.zh-CN.vtt 1.29Кб
37. Outro.html 8.37Кб
37. Screencast Imputing Values Solution.html 11.45Кб
37. Solution Compound Data Structions.html 9.25Кб
37. Video IN.html 10.70Кб
38. Bloopers.html 9.16Кб
38. Bloopers Intro 1 V1-Y1weHponR2Q.en.vtt 1.79Кб
38. Bloopers Intro 1 V1-Y1weHponR2Q.mp4 8.02Мб
38. Bloopers Intro 1 V1-Y1weHponR2Q.pt-BR.vtt 2.11Кб
38. Conclusion.html 9.12Кб
38. Conclusion-LLEZadlXM8A.ar.vtt 534б
38. Conclusion-LLEZadlXM8A.en.vtt 423б
38. Conclusion-LLEZadlXM8A.mp4 2.54Мб
38. Conclusion-LLEZadlXM8A.pt-BR.vtt 411б
38. Conclusion-LLEZadlXM8A.zh-CN.vtt 389б
38. Quiz IN.html 10.61Кб
38. Video Working With Categorical Variables Refresher.html 11.12Кб
38. Working With Categorical Variables-IoQOiuxsIZg.en.vtt 1.32Кб
38. Working With Categorical Variables-IoQOiuxsIZg.mp4 2.65Мб
38. Working With Categorical Variables-IoQOiuxsIZg.pt-BR.vtt 1.47Кб
39. 47 Load V1 V1-Us1hWDaabxo.en.vtt 1.22Кб
39. 47 Load V1 V1-Us1hWDaabxo.mp4 3.06Мб
39. 47 Load V1 V1-Us1hWDaabxo.pt-BR.vtt 1.51Кб
39. Load.html 10.17Кб
39. Load Walk Through-AZvC7kYp_74.en.vtt 1.84Кб
39. Load Walk Through-AZvC7kYp_74.mp4 4.08Мб
39. Load Walk Through-AZvC7kYp_74.pt-BR.vtt 1.87Кб
39. Notebook + Quiz Categorical Variables.html 11.03Кб
39. Solutions IN.html 10.45Кб
39. Summary.html 14.66Кб
40. Categorical Variables-p3gDUkBD9uM.en.vtt 15.29Кб
40. Categorical Variables-p3gDUkBD9uM.mp4 21.83Мб
40. Categorical Variables-p3gDUkBD9uM.pt-BR.vtt 14.60Кб
40. Exercise Load.html 9.45Кб
40. NOT Operator-dSQF87oW8a0.ar.vtt 3.10Кб
40. NOT Operator-dSQF87oW8a0.en.vtt 2.22Кб
40. NOT Operator-dSQF87oW8a0.mp4 1.90Мб
40. NOT Operator-dSQF87oW8a0.pt-BR.vtt 2.44Кб
40. NOT Operator-dSQF87oW8a0.zh-CN.vtt 2.01Кб
40. Screencast Categorical Variables Solution.html 11.48Кб
40. Video NOT.html 10.12Кб
41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.en.vtt 434б
41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.mp4 1.33Мб
41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.pt-BR.vtt 514б
41. How To Fix This-IPQZ4pfRMRA.en.vtt 2.90Кб
41. How To Fix This-IPQZ4pfRMRA.mp4 4.13Мб
41. How To Fix This-IPQZ4pfRMRA.pt-BR.vtt 2.96Кб
41. Putting It All Together.html 9.76Кб
41. Putting It All Together-PHaSifd-Mas.en.vtt 4.35Кб
41. Putting It All Together-PHaSifd-Mas.mp4 5.94Мб
41. Putting It All Together-PHaSifd-Mas.pt-BR.vtt 4.82Кб
41. Quiz NOT.html 10.99Кб
41. Video How to Fix This.html 10.93Кб
42. Exercise Putting It All Together.html 9.48Кб
42. Notebook + Quiz Putting It All Together .html 11.04Кб
42. Solutions NOT.html 10.82Кб
43. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt 3.17Кб
43. AND BETWEEN Operators-nBuDPneWcKY.en.vtt 2.28Кб
43. AND BETWEEN Operators-nBuDPneWcKY.mp4 2.37Мб
43. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt 2.50Кб
43. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt 2.04Кб
43. Lesson Summary.html 9.03Кб
43. Outro V1 V4-XE3aoYOXeBw.en.vtt 1.25Кб
43. Outro V1 V4-XE3aoYOXeBw.mp4 4.09Мб
43. Outro V1 V4-XE3aoYOXeBw.pt-BR.vtt 1.59Кб
43. Putting It All Together-3SX4dMZPNEI.en.vtt 10.14Кб
43. Putting It All Together-3SX4dMZPNEI.mp4 16.04Мб
43. Putting It All Together-3SX4dMZPNEI.pt-BR.vtt 9.73Кб
43. Screencast + Notebook Putting It All Together Solution.html 11.52Кб
43. Video AND and BETWEEN.html 11.09Кб
44. Quiz AND and BETWEEN.html 10.84Кб
44. Text + Quiz Results.html 19.84Кб
45. Solutions AND and BETWEEN.html 10.97Кб
45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.en.vtt 1.42Кб
45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.mp4 5.05Мб
45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.pt-BR.vtt 1.58Кб
45. Video The Data Science Process - Evaluate Deploy.html 11.36Кб
46. OR Operator-3vLGEuXAAvA.ar.vtt 2.82Кб
46. OR Operator-3vLGEuXAAvA.en.vtt 2.14Кб
46. OR Operator-3vLGEuXAAvA.mp4 1.94Мб
46. OR Operator-3vLGEuXAAvA.pt-BR.vtt 2.41Кб
46. OR Operator-3vLGEuXAAvA.zh-CN.vtt 1.87Кб
46. OR Statement-DRmkKVhe6-s.ar.vtt 2.48Кб
46. OR Statement-DRmkKVhe6-s.en.vtt 1.79Кб
46. OR Statement-DRmkKVhe6-s.mp4 1.70Мб
46. OR Statement-DRmkKVhe6-s.pt-BR.vtt 1.84Кб
46. OR Statement-DRmkKVhe6-s.zh-CN.vtt 1.51Кб
46. Text Recap.html 12.66Кб
46. Video OR.html 11.33Кб
47. Quiz OR.html 10.81Кб
48. Solutions OR.html 10.69Кб
48011955.gif 81.89Кб
48198838.gif 82.00Кб
48198839.gif 82.81Кб
48204962.gif 58.29Кб
48230509.gif 60.32Кб
48230510.gif 79.18Кб
48240997.gif 88.58Кб
48240998.gif 80.60Кб
48241000.gif 74.71Кб
48271966.gif 86.74Кб
48271967.gif 96.13Кб
48292975.gif 58.78Кб
48296523.gif 71.75Кб
48310768.gif 87.65Кб
48311831.gif 80.33Кб
48311832.gif 82.90Кб
48445276.gif 83.24Кб
48480558.gif 69.36Кб
48480561.gif 85.92Кб
48609553.gif 70.70Кб
48629196.gif 70.92Кб
48632799.gif 71.37Кб
48632800.gif 47.62Кб
48632846.gif 60.60Кб
48632848.gif 79.80Кб
48635652.gif 58.13Кб
48641639.gif 83.13Кб
48646780.gif 83.92Кб
48652467.gif 72.79Кб
48658976.gif 80.19Кб
48665990.gif 309.25Кб
48667978.gif 84.52Кб
48667979.gif 70.38Кб
48667981.gif 52.53Кб
48678737.gif 77.74Кб
48678758.gif 73.58Кб
48680638.gif 68.34Кб
48683704.gif 70.66Кб
48684686.gif 91.62Кб
48684742.gif 57.16Кб
48686674.gif 75.75Кб
48687733.gif 71.92Кб
48687795.gif 57.33Кб
48688787.gif 82.40Кб
48688828.gif 57.96Кб
48692636.gif 74.24Кб
48692663.gif 70.63Кб
48692666.gif 59.53Кб
48693692.gif 58.52Кб
48695597.gif 63.29Кб
48697566.gif 71.26Кб
48698525.gif 89.16Кб
48698526.gif 90.98Кб
48698583.gif 61.09Кб
48698595.gif 53.00Кб
48699581.gif 55.22Кб
48704300.gif 80.67Кб
48709280.gif 73.94Кб
48713571.gif 1011.65Кб
48716247.gif 62.80Кб
48716288.gif 59.35Кб
48716290.gif 84.79Кб
48720246.gif 55.25Кб
48721292.gif 90.54Кб
48721315.gif 73.74Кб
48725208.gif 68.86Кб
48726280.gif 84.66Кб
48728202.gif 92.14Кб
48729170.gif 54.43Кб
48734186.gif 68.36Кб
48734324.gif 90.86Кб
48736116.gif 267.40Кб
48737119.gif 77.14Кб
48738100.gif 61.08Кб
48738115.gif 47.54Кб
48739104.gif 63.85Кб
48739228.gif 83.99Кб
48741058.gif 56.01Кб
48741083.gif 82.16Кб
48741099.gif 52.38Кб
48742066.gif 56.40Кб
48743074.gif 87.07Кб
48745039.gif 291.24Кб
48746014.gif 72.67Кб
48746015.gif 57.96Кб
48750006.gif 58.62Кб
48750011.gif 82.00Кб
48750031.gif 78.60Кб
48752009.gif 82.38Кб
49. Text Recap Looking Ahead.html 12.46Кб
6485174133.gif 458.07Кб
6499079068.gif 445.94Кб
6509638772.gif 711.08Кб
6551597473.gif 444.36Кб
6-point-likert-scale-even-survey.png 7.47Кб
accuracy-quiz.png 105.85Кб
admissions-data.png 118.38Кб
all-ranks.png 308.47Кб
all-ranks.png 308.47Кб
and-quiz.png 265.78Кб
and-quiz.png 265.78Кб
and-quiz.png 265.78Кб
and-to-or.png 606.14Кб
and-to-or.png 606.14Кб
and-to-or.png 606.14Кб
anscombes-quartet-3.svg 59.16Кб
anscombe-table.png 38.45Кб
apple.jpg 105.41Кб
backprop-error.gif 2.93Кб
backprop-general.gif 2.20Кб
backprop-network.png 13.07Кб
backprop-weight-update.gif 1.68Кб
bad-viz-2.png 356.49Кб
batch-stochastic.png 196.92Кб
bootstrap.min.css 137.64Кб
bootstrap.min.js 49.85Кб
business-money-pink-coins.jpg 4.47Мб
c03-practicalsignificance-01.png 1.75Кб
c03-practicalsignificance-02.png 2.03Кб
c03-practicalsignificance-03.png 2.29Кб
c08-multimetrics-01.png 16.97Кб
c08-multimetrics-02.png 13.71Кб
challenger2.gif 154.59Кб
challenger-good.png 21.31Кб
circle-data.png 49.91Кб
codecogseqn-2.png 2.26Кб
codecogseqn-43.gif 7.96Кб
codecogseqn-43.gif 7.96Кб
codecogseqn-49.gif 2.09Кб
codecogseqn-49.gif 2.09Кб
codecogseqn-58.gif 919б
codecogseqn-58.gif 919б
codecogseqn-60-2.png 8.94Кб
codecogseqn-60-2.png 8.94Кб
codecogseqn-61.gif 2.07Кб
codecogseqn-62.gif 1.31Кб
collage2.png 936.77Кб
command+palette.mp4 169.16Кб
complexity.png 95.64Кб
conda_default_install.mp4 595.30Кб
conda_install.mp4 201.72Кб
conda-create-env.png 70.79Кб
conda-environments.png 40.09Кб
conda-install.png 81.15Кб
conda-search.png 430.84Кб
conda-tab.png 109.92Кб
confusion.png 188.85Кб
conv-dims.png 28.55Кб
convolution-schematic.gif 63.63Кб
cp1a9390.jpg 63.65Кб
data.png 49.54Кб
data.png 49.54Кб
decision-tree-sketch.png 744.81Кб
derivative-example.png 55.08Кб
diagonal-line-1.png 5.76Кб
diagonal-line-2.png 6.62Кб
disaster-response-project1.png 74.74Кб
disaster-response-project2.png 86.95Кб
e.gif 1.18Кб
eeg-ica.png 170.89Кб
email.png 148.53Кб
erd.png 80.34Кб
example-data.png 92.11Кб
external-indices-quiz.png 96.46Кб
f1.gif 2.01Кб
f2.gif 1.88Кб
f4.gif 1.13Кб
f6.gif 1.60Кб
fbeta.png 337.08Кб
full-outer-join.png 61.14Кб
full-outer-join-if-null.png 62.02Кб
full-padding-no-strides-transposed.gif 221.74Кб
generate-messages-output.png 310.53Кб
get-hired-with-the-udacity-career-portal.gif 756.73Кб
get-hired-with-the-udacity-career-portal.gif 756.73Кб
gif-1.gif 1.03Кб
gmm-1d-quiz.png 26.76Кб
gmm-2d-quiz.png 78.44Кб
gmm-quiz.png 80.65Кб
gradient-descent.png 71.96Кб
grant.png 569.90Кб
grid-layer-1.png 35.30Кб
hidden-errors.gif 2.80Кб
hidden-layer-weights.gif 1.75Кб
histogram-nonnormal.png 35.31Кб
house.png 491.52Кб
image4.png 436.47Кб
image4.png 436.47Кб
image8.png 228.06Кб
image8.png 228.06Кб
img-4646.jpg 27.12Кб
index.html 3.47Кб
index.html 3.52Кб
index.html 3.52Кб
index.html 3.60Кб
index.html 3.67Кб
index.html 3.67Кб
index.html 3.68Кб
index.html 3.68Кб
index.html 3.68Кб
index.html 3.71Кб
index.html 3.76Кб
index.html 3.77Кб
index.html 3.78Кб
index.html 3.80Кб
index.html 3.81Кб
index.html 3.83Кб
index.html 3.85Кб
index.html 3.87Кб
index.html 3.87Кб
index.html 3.89Кб
index.html 3.89Кб
index.html 3.94Кб
index.html 3.94Кб
index.html 3.94Кб
index.html 3.94Кб
index.html 3.97Кб
index.html 4.01Кб
index.html 4.02Кб
index.html 4.08Кб
index.html 4.11Кб
index.html 4.14Кб
index.html 4.15Кб
index.html 4.16Кб
index.html 4.17Кб
index.html 4.18Кб
index.html 4.20Кб
index.html 4.23Кб
index.html 4.26Кб
index.html 4.27Кб
index.html 4.29Кб
index.html 4.32Кб
index.html 4.35Кб
index.html 4.37Кб
index.html 4.37Кб
index.html 4.38Кб
index.html 4.38Кб
index.html 4.41Кб
index.html 4.42Кб
index.html 4.48Кб
index.html 4.50Кб
index.html 4.51Кб
index.html 4.51Кб
index.html 4.51Кб
index.html 4.56Кб
index.html 4.61Кб
index.html 4.61Кб
index.html 4.63Кб
index.html 4.66Кб
index.html 4.66Кб
index.html 4.70Кб
index.html 4.73Кб
index.html 4.77Кб
index.html 4.79Кб
index.html 4.80Кб
index.html 4.81Кб
index.html 4.81Кб
index.html 4.82Кб
index.html 4.84Кб
index.html 4.84Кб
index.html 4.85Кб
index.html 4.91Кб
index.html 4.93Кб
index.html 4.98Кб
index.html 5.00Кб
index.html 5.01Кб
index.html 5.02Кб
index.html 5.10Кб
index.html 5.13Кб
index.html 5.21Кб
index.html 5.21Кб
index.html 5.24Кб
index.html 5.29Кб
index.html 5.32Кб
index.html 5.43Кб
index.html 5.53Кб
index.html 5.53Кб
index.html 5.54Кб
index.html 5.56Кб
index.html 5.65Кб
index.html 5.66Кб
index.html 5.67Кб
index.html 5.72Кб
index.html 5.73Кб
index.html 5.79Кб
index.html 5.79Кб
index.html 5.90Кб
index.html 5.94Кб
index.html 6.01Кб
index.html 6.05Кб
index.html 6.15Кб
index.html 6.15Кб
index.html 6.23Кб
index.html 6.33Кб
index.html 6.41Кб
index.html 6.66Кб
index.html 6.71Кб
index.html 6.71Кб
index.html 6.82Кб
index.html 6.83Кб
index.html 6.95Кб
index.html 6.95Кб
index.html 7.28Кб
index.html 8.30Кб
index.html 422.33Кб
inner-join.png 84.77Кб
inputs-matrix.png 5.61Кб
input-times-weights.png 51.82Кб
iris-box-plot.png 15.80Кб
jquery.mCustomScrollbar.concat.min.js 44.41Кб
jquery.mCustomScrollbar.min.css 41.83Кб
jquery-3.3.1.min.js 84.89Кб
jupyter-logo.png 5.78Кб
just-a-2d-reg.png 68.49Кб
just-a-simple-lin-reg.png 25.95Кб
KaTeX_AMS-Regular.ttf 69.75Кб
KaTeX_AMS-Regular.woff 39.26Кб
KaTeX_AMS-Regular.woff2 32.43Кб
KaTeX_Caligraphic-Bold.ttf 19.13Кб
KaTeX_Caligraphic-Bold.woff 11.85Кб
KaTeX_Caligraphic-Bold.woff2 10.35Кб
KaTeX_Caligraphic-Regular.ttf 18.52Кб
KaTeX_Caligraphic-Regular.woff 11.59Кб
KaTeX_Caligraphic-Regular.woff2 10.17Кб
KaTeX_Fraktur-Bold.ttf 35.13Кб
KaTeX_Fraktur-Bold.woff 22.84Кб
KaTeX_Fraktur-Bold.woff2 20.01Кб
KaTeX_Fraktur-Regular.ttf 33.84Кб
KaTeX_Fraktur-Regular.woff 22.31Кб
KaTeX_Fraktur-Regular.woff2 19.39Кб
KaTeX_Main-Bold.ttf 60.27Кб
KaTeX_Main-Bold.woff 35.89Кб
KaTeX_Main-Bold.woff2 29.90Кб
KaTeX_Main-BoldItalic.ttf 43.77Кб
KaTeX_Main-BoldItalic.woff 25.61Кб
KaTeX_Main-BoldItalic.woff2 21.67Кб
KaTeX_Main-Italic.ttf 46.83Кб
KaTeX_Main-Italic.woff 26.56Кб
KaTeX_Main-Italic.woff2 22.52Кб
KaTeX_Main-Regular.ttf 68.43Кб
KaTeX_Main-Regular.woff 38.52Кб
KaTeX_Main-Regular.woff2 32.09Кб
KaTeX_Math-BoldItalic.ttf 38.81Кб
KaTeX_Math-BoldItalic.woff 22.65Кб
KaTeX_Math-BoldItalic.woff2 19.57Кб
KaTeX_Math-Italic.ttf 40.48Кб
KaTeX_Math-Italic.woff 23.26Кб
KaTeX_Math-Italic.woff2 19.95Кб
KaTeX_SansSerif-Bold.ttf 33.23Кб
KaTeX_SansSerif-Bold.woff 18.72Кб
KaTeX_SansSerif-Bold.woff2 15.62Кб
KaTeX_SansSerif-Italic.ttf 30.57Кб
KaTeX_SansSerif-Italic.woff 17.70Кб
KaTeX_SansSerif-Italic.woff2 14.86Кб
KaTeX_SansSerif-Regular.ttf 29.45Кб
KaTeX_SansSerif-Regular.woff 16.39Кб
KaTeX_SansSerif-Regular.woff2 13.70Кб
KaTeX_Script-Regular.ttf 24.28Кб
KaTeX_Script-Regular.woff 13.53Кб
KaTeX_Script-Regular.woff2 11.99Кб
KaTeX_Size1-Regular.ttf 12.86Кб
KaTeX_Size1-Regular.woff 6.82Кб
KaTeX_Size1-Regular.woff2 5.69Кб
KaTeX_Size2-Regular.ttf 12.12Кб
KaTeX_Size2-Regular.woff 6.53Кб
KaTeX_Size2-Regular.woff2 5.43Кб
KaTeX_Size3-Regular.ttf 8.16Кб
KaTeX_Size3-Regular.woff 4.66Кб
KaTeX_Size3-Regular.woff2 3.77Кб
KaTeX_Size4-Regular.ttf 11.02Кб
KaTeX_Size4-Regular.woff 6.30Кб
KaTeX_Size4-Regular.woff2 5.06Кб
KaTeX_Typewriter-Regular.ttf 35.46Кб
KaTeX_Typewriter-Regular.woff 20.43Кб
KaTeX_Typewriter-Regular.woff2 17.13Кб
katex.min.css 21.56Кб
katex.min.js 231.26Кб
l2-gradient-descent-data.png 8.64Кб
l3-c03-barchart1.png 6.74Кб
l3-c03-barchart2.png 6.73Кб
l3-c03-barchart3.png 6.72Кб
l3-c03-barchart4.png 6.73Кб
l3-c03-barchart5.png 13.47Кб
l3-c03-barchart6.png 14.27Кб
l3-c04-relfreqchart1.png 8.49Кб
l3-c04-relfreqchart2.png 9.38Кб
l3-c05-missingdata1.png 9.99Кб
l3-c05-missingdata2.png 4.69Кб
l3-c07-piecharts2.png 19.00Кб
l3-c07-piecharts3.png 11.30Кб
l3-c08-histograms1.png 4.14Кб
l3-c08-histograms2.png 4.65Кб
l3-c08-histograms3.png 6.67Кб
l3-c08-histograms4.png 14.17Кб
l3-c09b-subplots4.png 9.31Кб
l3-c09b-subplotsa.png 14.97Кб
l3-c10-dierolls1.png 7.59Кб
l3-c10-dierolls2.png 6.37Кб
l3-c11-outliers1.png 7.32Кб
l3-c12-transforms1.png 10.58Кб
l3-c12-transforms2.png 4.23Кб
l3-c12-transforms3.png 5.53Кб
l3-c12-transforms4.png 5.45Кб
l3-c15-kde1.png 35.93Кб
l3-c16-waffleplots1.png 3.97Кб
l3-c16-waffleplots2.png 4.00Кб
l3-c16-waffleplots3.png 15.84Кб
l3-c16-waffleplots4.png 4.94Кб
l3-c16-waffleplotsa.png 27.04Кб
l4-c02-scatterplot1.png 8.02Кб
l4-c02-scatterplot2.png 16.93Кб
l4-c02-scatterplot3.png 18.23Кб
l4-c03-overplotting1.png 7.40Кб
l4-c03-overplotting2.png 9.99Кб
l4-c03-overplotting3.png 19.28Кб
l4-c04-heatmap1.png 26.91Кб
l4-c04-heatmap2.png 6.72Кб
l4-c04-heatmap3.png 11.12Кб
l4-c06-violinplot1.png 18.65Кб
l4-c06-violinplot2.png 18.40Кб
l4-c06-violinplot3.png 24.06Кб
l4-c07-boxplot1.png 22.53Кб
l4-c07-boxplot2.png 11.14Кб
l4-c07-boxplot3.png 18.81Кб
l4-c09-clusteredbar1.png 10.11Кб
l4-c09-clusteredbar2.png 9.96Кб
l4-c09-clusteredbar3.png 11.66Кб
l4-c09-clusteredbar4.png 9.38Кб
l4-c09-clusteredbar5.png 11.83Кб
l4-c11-faceting1.png 7.50Кб
l4-c11-faceting2.png 7.06Кб
l4-c11-faceting3.png 12.22Кб
l4-c12-adaptations1.png 8.20Кб
l4-c12-adaptations2.png 10.22Кб
l4-c12-adaptations3.png 32.36Кб
l4-c12-adaptations4.png 6.82Кб
l4-c13-lineplot1.png 40.49Кб
l4-c13-lineplot2.png 14.48Кб
l4-c13-lineplot3.png 18.48Кб
l4-c13-lineplot4.png 9.57Кб
l4-c13-lineplot5.png 32.17Кб
l4-c16-qqplot1.png 10.12Кб
l4-c16-qqplot2.png 11.71Кб
l4-c16-qqplot3.png 12.44Кб
l4-c16-qqplot4.png 22.86Кб
l4-c17-rugplot1.png 11.04Кб
l4-c17-rugplot2.png 27.97Кб
l4-c18-swarmplot1.png 45.18Кб
l4-c19-stackedbars1.png 21.53Кб
l4-c19-stackedbars2.png 14.23Кб
l4-c19-stackedbars3.png 7.25Кб
l4-c20-ridgeline1.png 46.85Кб
l4-c20-ridgeline2.png 27.48Кб
l4-c20-ridgeline3.png 38.82Кб
l5-c02-encodings1.png 8.75Кб
l5-c02-encodings2.png 28.14Кб
l5-c02-encodings3.png 4.16Кб
l5-c03-color1.png 13.24Кб
l5-c03-color2.png 28.52Кб
l5-c03-color3.png 839б
l5-c03-color4.png 844б
l5-c03-color5.png 826б
l5-c03-color6.png 13.40Кб
l5-c03-color7.png 28.84Кб
l5-c03-color8.png 12.25Кб
l5-c05-faceting1.png 8.14Кб
l5-c05-faceting2.png 17.30Кб
l5-c06-adaptations1.png 10.15Кб
l5-c06-adaptations2.png 12.51Кб
l5-c06-adaptations3.png 7.26Кб
l5-c06-adaptations4.png 9.43Кб
l5-c06-adaptations5.png 25.32Кб
l5-c08-plotmatrices1.png 36.24Кб
l5-c08-plotmatrices2.png 47.46Кб
l5-c08-plotmatrices3.png 11.47Кб
l6-c06-polishing1.png 28.20Кб
l6-c08-slidedeck1.png 60.90Кб
lag.png 14.80Кб
lag-1-innerquery.png 5.04Кб
lag-diff.png 16.97Кб
layer-1-grid.png 45.73Кб
lead-3.png 15.29Кб
lead-diff.png 22.17Кб
learning-curves.png 109.03Кб
left-join.png 66.28Кб
likertscale.png 79.48Кб
lin-reg-no-outliers.png 28.61Кб
lin-reg-w-outliers.png 27.55Кб
local-minima.png 38.08Кб
m.gif 3.82Кб
magic-matplotlib.png 90.72Кб
magic-pdb.png 68.61Кб
magic-timeit.png 157.29Кб
magic-timeit2.png 56.11Кб
margin-geometry-images.001.jpeg 225.57Кб
margin-geometry-images.002.jpeg 215.44Кб
margin-geometry-images.003.jpeg 253.58Кб
margin-geometry-images.004.jpeg 272.85Кб
margin-geometry-images.005.jpeg 281.30Кб
margin-geometry-images.008.jpeg 369.43Кб
Markdown+cells.mp4 330.36Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-leonard-circle.png 384.91Кб
matrix-mult-3.png 78.97Кб
maxpool.jpeg 37.07Кб
medical.png 186.53Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
mike-josh-bios-portraits.png 208.29Кб
minibatch.png 136.77Кб
models.png 627.96Кб
mse.png 3.21Кб
multilayer-diagram-weights.png 48.57Кб
natgeo-scatter.jpg 123.75Кб
nbconvert-example.png 73.30Кб
network-with-labeled-nodes.png 52.00Кб
network-with-labeled-weights.png 59.44Кб
new-notebook.png 101.77Кб
new-pymk-925x1024.png 955.56Кб
New-Starbucks-Logo-1200x969.jpg 89.05Кб
nn.png 105.99Кб
notebook+interface.mp4 215.47Кб
notebook-components.png 30.25Кб
notebook-download.png 79.54Кб
notebook-json.png 95.29Кб
notebook-server.png 103.33Кб
notebook-shutdown.png 62.35Кб
or-quiz.png 393.62Кб
or-quiz.png 393.62Кб
or-quiz.png 393.62Кб
pasted-image-0.png 191.78Кб
perceptronquiz.png 93.69Кб
perceptronquiz.png 93.69Кб
perceptronquiz.png 93.69Кб
plyr.css 23.62Кб
plyr.polyfilled.min.js 126.16Кб
points.png 63.17Кб
points.png 63.17Кб
points.png 63.17Кб
polynomial-kernel-2-quiz.png 79.56Кб
pooling-dims.png 29.17Кб
precision-quiz.png 250.81Кб
profile-pics.jpg 595.62Кб
Project Description - Capstone Project.html 6.82Кб
Project Description - Create Your Own Image Classifier.html 5.83Кб
Project Description - Disaster Response Pipelines.html 6.05Кб
Project Description - Finding Donors for CharityML.html 7.60Кб
Project Description - Identify Customer Segments with Arvato.html 7.35Кб
Project Description - Improve Your LinkedIn Profile.html 7.44Кб
Project Description - Optimize Your GitHub Profile.html 9.51Кб
Project Description - Recommendations with IBM.html 7.06Кб
Project Description - Write A Data Science Blog Post.html 5.64Кб
Project Rubric - Capstone Project.html 13.73Кб
Project Rubric - Create Your Own Image Classifier.html 12.32Кб
Project Rubric - Disaster Response Pipelines.html 11.29Кб
Project Rubric - Finding Donors for CharityML.html 11.29Кб
Project Rubric - Identify Customer Segments with Arvato.html 10.82Кб
Project Rubric - Improve Your LinkedIn Profile.html 15.74Кб
Project Rubric - Optimize Your GitHub Profile.html 8.97Кб
Project Rubric - Recommendations with IBM.html 10.92Кб
Project Rubric - Write A Data Science Blog Post.html 10.96Кб
quadraticlinearregression.png 23.56Кб
quadraticlinearregression.png 23.56Кб
quiz.jpg 174.18Кб
README.txt 454б
recall-quiz.png 228.26Кб
recommending-apps.png 140.56Кб
redacted-linkedinresults.png 230.77Кб
regularization-quiz.png 87.90Кб
regularization-quiz.png 87.90Кб
resid2.jpg 87.09Кб
resid-plots.gif 7.11Кб
right-join.png 66.42Кб
screen-shot-2016-11-24-at-12.08.11-pm.png 2.90Мб
screen-shot-2016-11-24-at-12.09.02-pm.png 3.09Мб
screen-shot-2016-11-24-at-12.09.24-pm.png 3.49Мб
screen-shot-2017-06-26-at-2.11.18-pm.png 70.26Кб
screen-shot-2017-06-26-at-3.47.37-pm.png 77.21Кб
screen-shot-2017-08-02-at-10.48.24-pm.png 80.67Кб
screen-shot-2017-08-02-at-11.14.25-am.png 79.36Кб
screen-shot-2017-08-02-at-11.40.37-am.png 108.23Кб
screen-shot-2017-08-02-at-11.49.10-am.png 120.26Кб
screen-shot-2017-08-02-at-4.57.01-pm.png 84.00Кб
screen-shot-2017-08-04-at-6.41.07-pm.png 52.61Кб
screen-shot-2017-08-10-at-8.10.13-pm.png 68.17Кб
screen-shot-2017-08-10-at-8.23.48-pm.png 115.10Кб
screen-shot-2017-08-11-at-11.54.30-am.png 46.71Кб
screen-shot-2017-08-11-at-3.21.34-pm.png 58.51Кб
screen-shot-2017-08-14-at-1.12.55-pm.png 81.01Кб
screen-shot-2017-08-14-at-3.41.58-pm.png 88.68Кб
screen-shot-2017-08-14-at-4.04.44-pm.png 103.54Кб
screen-shot-2017-08-14-at-4.10.54-pm.png 105.31Кб
screen-shot-2017-08-28-at-1.04.03-pm.png 18.16Кб
screen-shot-2017-08-28-at-1.47.06-pm.png 21.14Кб
screen-shot-2017-08-28-at-2.22.27-pm.png 28.08Кб
screen-shot-2017-09-03-at-2.28.22-pm.png 47.67Кб
screen-shot-2017-09-03-at-3.13.54-pm.png 60.44Кб
screen-shot-2017-09-03-at-6.12.14-pm.png 30.64Кб
screen-shot-2017-09-03-at-6.34.02-pm.png 31.86Кб
screen-shot-2017-10-19-at-5.33.45-pm.png 80.34Кб
screen-shot-2017-10-27-at-1.49.58-pm.png 11.37Кб
screen-shot-2017-10-27-at-1.49.58-pm.png 11.37Кб
screen-shot-2017-11-06-at-1.14.05-pm.png 15.64Кб
screen-shot-2017-11-07-at-2.16.14-pm.png 78.33Кб
screen-shot-2017-11-07-at-2.17.08-pm.png 882.60Кб
screen-shot-2017-11-07-at-2.18.27-pm.png 832.02Кб
screen-shot-2017-11-10-at-2.43.00-pm.png 11.90Кб
screen-shot-2017-11-16-at-3.54.06-pm.png 229.78Кб
screen-shot-2017-11-16-at-3.54.06-pm.png 229.78Кб
screen-shot-2017-12-07-at-1.33.46-pm.png 617.99Кб
screen-shot-2017-12-07-at-3.45.19-pm.png 227.17Кб
screen-shot-2017-12-07-at-3.48.20-pm.png 925.38Кб
screen-shot-2017-12-07-at-3.56.39-pm.png 610.41Кб
screen-shot-2017-12-07-at-9.43.05-am.png 618.06Кб
screen-shot-2018-01-03-at-2.20.30-pm.png 647.38Кб
screen-shot-2018-01-03-at-2.23.38-pm.png 187.90Кб
screen-shot-2018-01-06-at-10.44.48-pm.png 285.48Кб
screen-shot-2018-01-06-at-8.13.20-pm.png 50.77Кб
screen-shot-2018-01-06-at-8.13.20-pm.png 50.77Кб
screen-shot-2018-01-06-at-9.30.27-pm.png 66.38Кб
screen-shot-2018-01-06-at-9.41.01-pm.png 110.70Кб
screen-shot-2018-01-19-at-1.05.48-pm.png 279.73Кб
screen-shot-2018-01-19-at-1.14.23-pm.png 358.59Кб
screen-shot-2018-01-19-at-1.57.42-pm.png 114.23Кб
screen-shot-2018-01-19-at-1.58.00-pm.png 126.03Кб
screen-shot-2018-01-19-at-2.24.21-pm.png 218.72Кб
screen-shot-2018-01-19-at-2.28.03-pm.png 90.71Кб
screen-shot-2018-01-23-at-10.49.16-am.png 42.36Кб
screen-shot-2018-01-23-at-11.30.13-am.png 92.79Кб
screen-shot-2018-01-24-at-12.03.45-am.png 170.85Кб
screen-shot-2018-01-24-at-2.27.07-pm.png 113.18Кб
screen-shot-2018-01-24-at-3.13.49-pm.png 204.57Кб
screen-shot-2018-01-26-at-10.16.48-pm.png 44.48Кб
screen-shot-2018-01-26-at-11.05.49-pm.png 323.90Кб
screen-shot-2018-01-26-at-11.16.45-pm.png 44.43Кб
screen-shot-2018-01-26-at-11.21.42-pm.png 44.22Кб
screen-shot-2018-01-26-at-11.48.02-pm.png 43.35Кб
screen-shot-2018-01-29-at-11.49.47-am.png 65.43Кб
screen-shot-2018-01-29-at-11.51.35-am.png 84.25Кб
screen-shot-2018-01-30-at-4.39.42-pm.png 95.46Кб
screen-shot-2018-01-30-at-5.14.39-pm.png 220.32Кб
screen-shot-2018-02-01-at-12.10.40-am.png 47.51Кб
screen-shot-2018-02-10-at-8.59.39-pm.png 314.45Кб
screen-shot-2018-02-10-at-9.00.30-pm.png 295.89Кб
screen-shot-2018-02-14-at-10.03.16-am.png 14.10Кб
screen-shot-2018-02-14-at-10.05.37-am.png 34.13Кб
screen-shot-2018-02-14-at-10.08.56-am.png 45.13Кб
screen-shot-2018-02-14-at-10.47.52-am.png 51.49Кб
screen-shot-2018-02-14-at-3.59.39-pm.png 102.91Кб
screen-shot-2018-02-14-at-6.07.26-pm.png 117.44Кб
screen-shot-2018-02-21-at-6.41.35-pm.png 18.77Кб
screen-shot-2018-02-21-at-8.05.18-pm.png 141.41Кб
screen-shot-2018-02-23-at-5.00.25-pm.png 754.27Кб
screen-shot-2018-02-23-at-5.11.40-pm.png 200.67Кб
screen-shot-2018-02-24-at-2.13.15-pm.png 280.87Кб
screen-shot-2018-02-24-at-2.16.00-pm.png 944.73Кб
screen-shot-2018-02-24-at-2.17.54-pm.png 52.92Кб
screen-shot-2018-02-24-at-2.18.30-pm.png 211.30Кб
screen-shot-2018-03-09-at-4.07.07-pm.png 72.08Кб
screen-shot-2018-03-10-at-12.47.35-am.png 53.25Кб
screen-shot-2018-03-10-at-3.31.18-pm.png 8.32Кб
screen-shot-2018-03-19-at-2.30.59-pm.png 507.42Кб
screen-shot-2018-03-19-at-2.30.59-pm.png 507.42Кб
screen-shot-2018-03-19-at-2.30.59-pm.png 507.42Кб
screen-shot-2018-03-19-at-2.49.57-pm.png 442.46Кб
screen-shot-2018-03-19-at-3.21.24-pm.png 339.90Кб
screen-shot-2018-03-19-at-3.21.24-pm.png 339.90Кб
screen-shot-2018-03-19-at-3.49.28-pm.png 471.61Кб
screen-shot-2018-03-19-at-3.49.28-pm.png 471.61Кб
screen-shot-2018-03-21-at-2.40.42-pm.png 48.54Кб
screen-shot-2018-03-28-at-4.44.34-pm.png 30.76Кб
screen-shot-2018-03-28-at-4.52.09-pm.png 9.29Кб
screen-shot-2018-03-28-at-5.11.09-pm.png 32.06Кб
screen-shot-2018-03-28-at-5.15.59-pm.png 32.15Кб
screen-shot-2018-04-02-at-4.25.41-pm.png 97.56Кб
screen-shot-2018-04-29-at-10.10.52-am.png 486.98Кб
screen-shot-2018-05-11-at-11.03.34-am.png 150.98Кб
screen-shot-2018-05-22-at-12.25.34-pm.png 6.09Кб
screen-shot-2018-05-22-at-12.27.22-pm.png 4.20Кб
screen-shot-2018-05-22-at-12.27.55-pm.png 4.28Кб
screen-shot-2018-05-25-at-11.22.02-am.png 15.55Кб
screen-shot-2018-05-25-at-11.27.26-am.png 57.46Кб
screen-shot-2018-05-25-at-11.27.36-am.png 156.64Кб
screen-shot-2018-05-26-at-4.40.07-pm.png 42.00Кб
screen-shot-2018-05-26-at-4.45.34-pm.png 35.58Кб
screen-shot-2018-05-26-at-4.59.04-pm.png 36.10Кб
screen-shot-2018-05-26-at-7.04.15-pm.png 54.88Кб
screen-shot-2018-05-26-at-7.24.13-pm.png 238.25Кб
screen-shot-2018-05-26-at-7.53.22-pm.png 322.07Кб
screen-shot-2018-05-26-at-7.55.02-pm.png 328.64Кб
screen-shot-2018-05-26-at-7.55.22-pm.png 326.29Кб
screen-shot-2018-05-29-at-4.06.53-pm.png 1.74Мб
screen-shot-2018-05-29-at-4.19.03-pm.png 1.29Мб
screen-shot-2018-06-02-at-5.34.36-pm.png 394.59Кб
screen-shot-2018-06-02-at-5.52.44-pm.png 785.71Кб
screen-shot-2018-06-02-at-6.07.54-pm.png 465.72Кб
screen-shot-2018-06-07-at-12.02.10-pm.png 35.69Кб
screen-shot-2018-06-13-at-6.32.38-pm.png 48.53Кб
screen-shot-2018-07-05-at-7.30.12-pm.png 13.95Кб
screen-shot-2018-07-19-at-4.05.25-pm.png 201.30Кб
screen-shot-2018-07-19-at-4.06.55-pm.png 130.00Кб
screen-shot-2018-07-27-at-1.24.38-pm.png 30.85Кб
screen-shot-2018-07-27-at-1.24.38-pm.png 30.85Кб
screen-shot-2018-08-07-at-4.35.30-pm.png 220.32Кб
screen-shot-2018-08-07-at-6.02.41-pm.png 173.12Кб
screen-shot-2018-08-11-at-12.52.03-pm.png 152.62Кб
screen-shot-2018-08-11-at-12.52.21-pm.png 217.24Кб
screen-shot-2018-08-11-at-12.54.48-pm.png 98.63Кб
screen-shot-2018-08-13-at-6.26.18-pm.png 169.28Кб
screen-shot-2018-08-13-at-6.39.12-pm.png 222.89Кб
screen-shot-2018-08-27-at-3.50.29-pm.png 44.81Кб
screen-shot-2018-08-27-at-3.51.23-pm.png 96.04Кб
screen-shot-2018-09-13-at-6.32.03-pm.png 240.26Кб
screen-shot-2018-09-14-at-10.11.13-am.png 236.96Кб
screen-shot-2018-09-14-at-10.16.10-am.png 247.65Кб
screen-shot-2018-09-14-at-2.25.01-pm.png 79.25Кб
screen-shot-2018-09-17-at-3.40.30-pm.png 141.60Кб
screen-shot-2018-09-21-at-11.36.43-am.png 1.67Мб
screen-shot-2018-09-21-at-12.02.03-pm.png 56.19Кб
screen-shot-2018-11-07-at-10.23.07-pm.png 366.06Кб
screen-shot-2018-11-07-at-10.23.07-pm.png 366.06Кб
screen-shot-2018-11-07-at-9.55.40-pm.png 222.17Кб
screen-shot-2018-11-07-at-9.55.40-pm.png 222.17Кб
screen-shot-2018-11-07-at-9.59.16-pm.png 529.19Кб
screen-shot-2018-11-07-at-9.59.16-pm.png 529.19Кб
screen-shot-2018-11-09-at-6.28.07-pm.png 299.96Кб
screen-shot-2018-11-09-at-6.28.07-pm.png 299.96Кб
screen-shot-2018-11-09-at-7.38.47-pm.png 110.58Кб
screen-shot-2018-11-09-at-7.38.47-pm.png 110.58Кб
screen-shot-2018-11-09-at-7.48.22-pm.png 1.57Мб
screen-shot-2018-11-09-at-7.48.22-pm.png 1.57Мб
screen-shot-2018-11-09-at-7.49.34-pm.png 238.98Кб
screen-shot-2018-11-09-at-7.49.34-pm.png 238.98Кб
screen-shot-2018-11-09-at-7.49.50-pm.png 375.54Кб
screen-shot-2018-11-09-at-7.49.50-pm.png 375.54Кб
screen-shot-2018-11-19-at-11.32.05-am.png 521.11Кб
server-shutdown.png 155.42Кб
sigmoid-derivative.gif 2.09Кб
sigmoid-derivative.gif 2.09Кб
slides-cell-toolbar-menu.png 61.36Кб
slides-choose-slide-type.png 53.31Кб
spam.png 67.76Кб
spamham.png 135.09Кб
speaking.png 17.08Кб
step1-cd.png 14.68Кб
step1-cd.png 14.68Кб
step2-pwd.png 16.39Кб
step2-pwd.png 16.39Кб
step3-path.png 20.76Кб
step3-path.png 20.76Кб
step4-alias.png 17.86Кб
step4-alias.png 17.86Кб
step5-source.png 15.24Кб
step5-source.png 15.24Кб
step6-testrun.png 43.44Кб
step6-testrun.png 43.44Кб
student-acceptance.png 20.47Кб
student-acceptance.png 20.47Кб
student-data.png 91.85Кб
student-quiz.png 748.98Кб
student-quiz.png 748.98Кб
student-quiz.png 748.98Кб
styles.css 3.76Кб
summary.png 93.72Кб
summary.png 93.72Кб
table.png 192.08Кб
tidy-data-four.png 397.87Кб
tidy-data-one.png 390.38Кб
tidy-data-three.png 437.59Кб
tidy-data-two.png 371.78Кб
trees.png 300.00Кб
ud123-l1-git-course-outline.png 378.38Кб
ud123-l1-google-docs-saving-progress.gif 390.05Кб
ud123-l1-terminal-config-mac.png 41.49Кб
ud123-l1-terminal-config-windows.png 93.23Кб
ud123-l2-.git-directory.png 205.76Кб
ud123-l2-base-directory.png 82.60Кб
ud123-l2-base-directory-git-repo.png 113.61Кб
ud123-l2-course-git-blog-project-in-browser.png 968.54Кб
ud123-l2-git-clone.gif 147.36Кб
ud123-l2-git-init.gif 75.86Кб
ud123-l2-git-status-blog-project.gif 70.78Кб
ud123-l2-git-status-new-project.gif 65.36Кб
ud123-l2-new-git-project.png 106.52Кб
ud123-l3-git-log-output.png 286.38Кб
ud123-l3-git-log-p.png 110.08Кб
ud123-l3-git-log-p-lines-removed-annotated.png 265.93Кб
ud123-l3-git-log-stat.gif 206.74Кб
ud123-l3-git-log-vs-git-log-oneline.png 504.63Кб
ud123-l3-git-log-vs-git-log-stat.png 404.31Кб
ud123-l3-git-status-output.png 174.21Кб
ud123-l3-project-in-editor.png 490.08Кб
ud123-l4-git-add.gif 352.75Кб
ud123-l4-git-add-to-staging-recap.gif 2.00Мб
ud123-l4-git-commit-details-section.png 364.44Кб
ud123-l4-git-commit-editor.png 313.05Кб
ud123-l4-git-commit-finished.png 184.69Кб
ud123-l4-git-commit-initial-commit.png 318.65Кб
ud123-l4-git-commit-terminal-hangs.png 111.00Кб
ud123-l4-git-diff.png 179.50Кб
ud123-l4-git-gitignore.png 191.41Кб
ud123-l4-git-ignore-word-doc.png 192.80Кб
ud123-l4-git-status.png 167.54Кб
ud123-l4-git-status-after-git-add.png 222.26Кб
ud123-l4-git-status-all-files.png 191.94Кб
ud123-l4-git-status-modified-files.png 208.52Кб
ud123-l4-git-status-with-untracked.png 222.97Кб
ud123-l4-new-git-project.png 110.42Кб
ud123-l5-branch-current.png 54.47Кб
ud123-l5-changes-add-color.png 164.17Кб
ud123-l5-editor-with-tag-message.png 280.85Кб
ud123-l5-git-branch.png 144.17Кб
ud123-l5-git-branch-asterisk.png 134.91Кб
ud123-l5-git-branch-sidebar.png 149.38Кб
ud123-l5-git-checkout-b-footer-master.png 183.94Кб
ud123-l5-git-checkout-sidebar.png 154.24Кб
ud123-l5-git-log-branches.png 143.82Кб
ud123-l5-git-log-decorate.png 265.33Кб
ud123-l5-git-log-graph-all.png 248.44Кб
ud123-l5-git-log-pre-tag.png 124.69Кб
ud123-l5-git-merge-conflict.png 193.74Кб
ud123-l5-git-merge-conflict-indicators.png 335.98Кб
ud123-l5-git-merge-conflict-prep.png 303.72Кб
ud123-l5-git-merge-conflict-prep2.png 321.08Кб
ud123-l5-git-merge-sidebar.png 177.00Кб
ud123-l5-git-tag.png 139.67Кб
ud123-l5-git-tag-delete.png 180.40Кб
ud123-l5-merge-fast-forward.gif 595.42Кб
ud123-l5-resolve-merge-conflict.gif 7.73Мб
ud123-l6-git-revert-hard.png 95.16Кб
ud123-l6-git-revert-mixed.png 125.86Кб
ud123-l6-git-revert-post.png 74.17Кб
ud123-l6-git-revert-prep.png 155.04Кб
ud123-l6-git-revert-soft.png 95.84Кб
ud456-l1-02-local-and-remote-repos.png 38.93Кб
ud456-l1-02-multiple-remote-repos.png 42.76Кб
ud456-l1-04-commit-count-local.png 147.52Кб
ud456-l1-04-commit-count-remote.png 408.66Кб
ud456-l1-04-git-pull.png 325.51Кб
ud456-l1-github-create-repo-page.png 331.69Кб
ud456-l1-github-homepage.png 596.72Кб
ud456-l1-github-homepage-new-repo-button.png 632.57Кб
ud456-l1-git-remote-add-terminal.png 249.26Кб
ud456-l1-git-remote-from-clone.png 186.20Кб
ud456-l1-git-remote-no-remote.png 140.37Кб
ud456-l1-git-remote-shortname.png 147.11Кб
ud456-l1-my-travel-plans-project.png 145.33Кб
ud456-l1-nav-bar-new-repo-link.png 68.16Кб
ud456-l1-project-commits.png 131.85Кб
ud456-l1-project-github-no-commits.png 413.25Кб
ud456-l1-project-on-github.png 185.50Кб
ud456-l1-project-on-github-focus.png 183.83Кб
ud456-l1-project-push-commits.png 328.26Кб
ud456-l2-02-clone-linked-to-fork.png 65.36Кб
ud456-l2-02-git-fork-error.png 155.01Кб
ud456-l2-03-clone-lighthouse-project.png 299.95Кб
ud456-l2-03-commit-with-description.png 296.12Кб
ud456-l2-03-git-log-author.png 255.39Кб
ud456-l2-03-git-shortlog.png 318.29Кб
ud456-l2-03-git-shortlog-flags.png 248.43Кб
ud456-l2-04-issue-comments.png 581.48Кб
ud456-l2-04-lighthouse-contributing-file.png 340.47Кб
ud456-l2-04-lighthouse-issues.png 505.67Кб
ud456-l2-04-new-issue-button.png 456.24Кб
ud456-l2-04-sign-contributor-license.png 284.72Кб
ud456-l2-04-submit-new-issue.png 327.19Кб
ud456-l3-03-add-upstream-remote.png 137.90Кб
ud456-l3-03-fetch-upstream-changes.png 88.07Кб
ud456-l3-03-git-log-of-upstream-changes.png 143.76Кб
ud456-l3-03-git-remotes-origin.png 89.27Кб
ud456-l3-03-rename-repos.png 153.18Кб
ud456-l3-03-starred-repos.png 433.92Кб
ud456-l3-03-watched-repos.png 450.83Кб
ud456-l3-04-pull-request-comment.png 519.66Кб
udacimak.png 461.07Кб
udacitylogo-copy.png 37.69Кб
udacitylogo-copy.png 37.69Кб
unnamed-project-desc-0.gif 94.58Кб
unnamed-project-desc-1.gif 19.15Кб
weight-label-reference.gif 2.83Кб
workspaces-gpu.png 145.50Кб
workspaces-jupyter.png 83.54Кб
workspaces-menu.png 93.96Кб
workspaces-new.png 85.21Кб
workspaces-notebook.png 142.90Кб
workspaces-submit.png 146.20Кб
workspaces-terminal.png 46.91Кб
xor.png 214.95Кб
xor.png 214.95Кб
xor.png 214.95Кб
xor-quiz.png 94.14Кб
xor-quiz.png 94.14Кб
xor-quiz.png 94.14Кб
y.gif 1.41Кб
Статистика распространения по странам
Россия (RU) 1
США (US) 1
Италия (IT) 1
Уганда (UG) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент