Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
._04. Possible Projects.html |
4.00Кб |
._index.html |
4.00Кб |
01. 01 Intro-4C4PuJANIdE.en.vtt |
994б |
01. 01 Intro-4C4PuJANIdE.mp4 |
2.73Мб |
01. 01 Intro-4C4PuJANIdE.pt-BR.vtt |
945б |
01. 01 Intro-4C4PuJANIdE.zh-CN.vtt |
922б |
01. 01 Intro V1 2 V4-iW4uqhfRk10.en.vtt |
1.92Кб |
01. 01 Intro V1 2 V4-iW4uqhfRk10.mp4 |
5.59Мб |
01. 01 Intro V1 2 V4-iW4uqhfRk10.pt-BR.vtt |
2.17Кб |
01. 01 Intro V1 V3-Zl_es7xtSqk.en.vtt |
806б |
01. 01 Intro V1 V3-Zl_es7xtSqk.mp4 |
2.87Мб |
01. 01 Intro V1 V3-Zl_es7xtSqk.pt-BR.vtt |
1.07Кб |
01. 01 Welcome V1 V2-Ykd7CN5dDx0.en.vtt |
2.39Кб |
01. 01 Welcome V1 V2-Ykd7CN5dDx0.mp4 |
8.36Мб |
01. 01 Welcome V1 V2-Ykd7CN5dDx0.pt-BR.vtt |
2.69Кб |
01. 04 L Types Of Errors-Twf1qnPZeSY.en-US.vtt |
6.89Кб |
01. 04 L Types Of Errors-Twf1qnPZeSY.mp4 |
6.55Мб |
01. 04 L Types Of Errors-Twf1qnPZeSY.pt-BR.vtt |
6.23Кб |
01. 04 L Types Of Errors-Twf1qnPZeSY.zh-CN.vtt |
6.02Кб |
01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt |
1.14Кб |
01. 26 Spread Part 1-zb76Z_viYLY.en.vtt |
898б |
01. 26 Spread Part 1-zb76Z_viYLY.mp4 |
1.82Мб |
01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt |
889б |
01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt |
848б |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt |
2.55Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt |
2.00Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4 |
7.48Мб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt |
1.77Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt |
1.83Кб |
01. Admissions Case Study Introduction.html |
6.17Кб |
01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt |
787б |
01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt |
655б |
01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4 |
2.09Мб |
01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt |
567б |
01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt |
566б |
01. Announcement.html |
7.63Кб |
01. A Repository's History - Intro-UBmg3syQS0E.ar.vtt |
4.91Кб |
01. A Repository's History - Intro-UBmg3syQS0E.en.vtt |
3.89Кб |
01. A Repository's History - Intro-UBmg3syQS0E.mp4 |
12.31Мб |
01. A Repository's History - Intro-UBmg3syQS0E.pt-BR.vtt |
4.13Кб |
01. A Repository's History - Intro-UBmg3syQS0E.zh-CN.vtt |
3.46Кб |
01. Bayes Rule.html |
8.72Кб |
01. Bayes Rules-CohZnkZMOxE.ar.vtt |
896б |
01. Bayes Rules-CohZnkZMOxE.en.vtt |
714б |
01. Bayes Rules-CohZnkZMOxE.es-ES.vtt |
746б |
01. Bayes Rules-CohZnkZMOxE.it.vtt |
767б |
01. Bayes Rules-CohZnkZMOxE.ja.vtt |
902б |
01. Bayes Rules-CohZnkZMOxE.mp4 |
3.79Мб |
01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt |
695б |
01. Bayes Rules-CohZnkZMOxE.th.vtt |
1.00Кб |
01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt |
633б |
01. Binomial.html |
7.80Кб |
01. Binomial-3koDdc9r73E.ar.vtt |
1.09Кб |
01. Binomial-3koDdc9r73E.en.vtt |
839б |
01. Binomial-3koDdc9r73E.es-ES.vtt |
885б |
01. Binomial-3koDdc9r73E.ja.vtt |
835б |
01. Binomial-3koDdc9r73E.mp4 |
4.90Мб |
01. Binomial-3koDdc9r73E.pt-BR.vtt |
864б |
01. Binomial-3koDdc9r73E.zh-CN.vtt |
759б |
01. Binomial-x1yamZeOMPY.ar.vtt |
493б |
01. Binomial-x1yamZeOMPY.en.vtt |
339б |
01. Binomial-x1yamZeOMPY.es-ES.vtt |
356б |
01. Binomial-x1yamZeOMPY.ja.vtt |
326б |
01. Binomial-x1yamZeOMPY.mp4 |
1.93Мб |
01. Binomial-x1yamZeOMPY.pt-BR.vtt |
362б |
01. Binomial-x1yamZeOMPY.zh-CN.vtt |
302б |
01. Blogging for Data Science-WrvGpRN5XQI.en.vtt |
3.92Кб |
01. Blogging for Data Science-WrvGpRN5XQI.mp4 |
25.24Мб |
01. Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt |
4.01Кб |
01. C4 Intro-gXlqR86h0yI.en.vtt |
2.47Кб |
01. C4 Intro-gXlqR86h0yI.mp4 |
8.67Мб |
01. C4 Intro-gXlqR86h0yI.pt-BR.vtt |
2.69Кб |
01. Capstone-jewlarqqbTo.en.vtt |
3.18Кб |
01. Capstone-jewlarqqbTo.mp4 |
6.19Мб |
01. Case Study Introduction-J5uvdPxHIfs.en.vtt |
598б |
01. Case Study Introduction-J5uvdPxHIfs.mp4 |
2.13Мб |
01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt |
735б |
01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt |
532б |
01. Confidence Intervals Introduction-crleT4000ak.en.vtt |
1.67Кб |
01. Confidence Intervals Introduction-crleT4000ak.mp4 |
2.78Мб |
01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt |
1.75Кб |
01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt |
1.34Кб |
01. Congrats!.html |
4.89Кб |
01. Congrats!-P3MfbMs-D98.en.vtt |
2.94Кб |
01. Congrats!-P3MfbMs-D98.mp4 |
13.27Мб |
01. Congrats!-P3MfbMs-D98.pt-BR.vtt |
3.13Кб |
01. Congrats-OTp4YOTDd0Q.en.vtt |
1.71Кб |
01. Congrats-OTp4YOTDd0Q.mp4 |
6.35Мб |
01. Congratulations!.html |
4.40Кб |
01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt |
3.50Кб |
01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 |
16.45Мб |
01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt |
3.47Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt |
2.38Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt |
1.82Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.mp4 |
6.80Мб |
01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt |
1.91Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt |
1.68Кб |
01. FAQ.html |
5.40Кб |
01. FAQ.html |
5.40Кб |
01. Figure 8 Project-QbLVh5GTuJQ.en.vtt |
4.28Кб |
01. Figure 8 Project-QbLVh5GTuJQ.mp4 |
13.64Мб |
01. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt |
4.42Кб |
01. Get Opportunities with LinkedIn.html |
10.47Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt |
4.78Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt |
3.54Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4 |
8.89Мб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt |
3.47Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt |
3.20Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt |
2.97Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt |
2.22Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4 |
4.39Мб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt |
2.28Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt |
1.91Кб |
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt |
617б |
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4 |
2.85Мб |
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt |
582б |
01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt |
532б |
01. IBM Project Overview-XP_f64c07Gc.en.vtt |
3.65Кб |
01. IBM Project Overview-XP_f64c07Gc.mp4 |
13.50Мб |
01. Instructor.html |
5.15Кб |
01. Instructor.html |
5.86Кб |
01. Instructor.html |
6.18Кб |
01. Instructor.html |
8.52Кб |
01. Instructors.html |
6.52Кб |
01. Instructors.html |
6.99Кб |
01. Instructors Introduction-lIvm8urf4GE.ar.vtt |
1.21Кб |
01. Instructors Introduction-lIvm8urf4GE.en.vtt |
1.01Кб |
01. Instructors Introduction-lIvm8urf4GE.mp4 |
2.88Мб |
01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt |
953б |
01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt |
883б |
01. Intro.html |
5.02Кб |
01. Intro.html |
5.21Кб |
01. Intro.html |
5.25Кб |
01. Intro.html |
5.26Кб |
01. Intro.html |
5.35Кб |
01. Intro.html |
5.39Кб |
01. Intro.html |
5.53Кб |
01. Intro.html |
5.57Кб |
01. Intro.html |
5.74Кб |
01. Intro.html |
6.05Кб |
01. Intro.html |
6.17Кб |
01. Intro.html |
6.36Кб |
01. Intro.html |
6.39Кб |
01. Intro.html |
6.39Кб |
01. Intro.html |
6.69Кб |
01. Intro.html |
6.81Кб |
01. Intro.html |
7.44Кб |
01. Intro.html |
7.57Кб |
01. Intro-28mN6RvGXDM.en.vtt |
1013б |
01. Intro-28mN6RvGXDM.mp4 |
2.61Мб |
01. Introduce Instructors.html |
8.26Кб |
01. Introducing Alexis.html |
7.79Кб |
01. Introducing Alexis-38ExGpdyvJI.en.vtt |
694б |
01. Introducing Alexis-38ExGpdyvJI.mp4 |
2.05Мб |
01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt |
599б |
01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt |
615б |
01. Introduction.html |
5.05Кб |
01. Introduction.html |
5.05Кб |
01. Introduction.html |
5.43Кб |
01. Introduction.html |
5.62Кб |
01. Introduction.html |
5.63Кб |
01. Introduction.html |
5.74Кб |
01. Introduction.html |
5.89Кб |
01. Introduction.html |
6.30Кб |
01. Introduction.html |
6.38Кб |
01. Introduction.html |
6.39Кб |
01. Introduction.html |
6.61Кб |
01. Introduction.html |
6.85Кб |
01. Introduction.html |
7.23Кб |
01. Introduction.html |
7.50Кб |
01. Introduction.html |
7.73Кб |
01. Introduction.html |
8.45Кб |
01. Introduction.html |
8.90Кб |
01. Introduction.html |
8.99Кб |
01. Introduction.html |
9.57Кб |
01. Introduction.html |
9.66Кб |
01. Introduction.html |
9.89Кб |
01. Introduction.html |
10.83Кб |
01. Introduction.html |
11.76Кб |
01. Introduction.html |
12.78Кб |
01. Introduction.html |
13.36Кб |
01. Introduction-2Y279421n3A.ar.vtt |
1.10Кб |
01. Introduction-2Y279421n3A.en.vtt |
836б |
01. Introduction-2Y279421n3A.mp4 |
2.42Мб |
01. Introduction-2Y279421n3A.pt-BR.vtt |
879б |
01. Introduction-2Y279421n3A.zh-CN.vtt |
736б |
01. Introduction-4F7SC0C6tfQ.ar.vtt |
3.00Кб |
01. Introduction-4F7SC0C6tfQ.en.vtt |
2.35Кб |
01. Introduction-4F7SC0C6tfQ.mp4 |
13.27Мб |
01. Introduction-4F7SC0C6tfQ.pt-BR.vtt |
2.70Кб |
01. Introduction-4F7SC0C6tfQ.zh-CN.vtt |
2.12Кб |
01. Introduction-5DfFaAl1Wmc.en.vtt |
1.71Кб |
01. Introduction-5DfFaAl1Wmc.mp4 |
5.34Мб |
01. Introduction-5DfFaAl1Wmc.pt-BR.vtt |
1.76Кб |
01. Introduction-eUrvACMMJ5w.ar.vtt |
1.42Кб |
01. Introduction-eUrvACMMJ5w.en.vtt |
944б |
01. Introduction-eUrvACMMJ5w.mp4 |
5.90Мб |
01. Introduction-eUrvACMMJ5w.pt-BR.vtt |
1.07Кб |
01. Introduction-eUrvACMMJ5w.zh-CN.vtt |
862б |
01. Introduction-k7YOVTkFRJM.en.vtt |
1.17Кб |
01. Introduction-k7YOVTkFRJM.mp4 |
4.28Мб |
01. Introduction-k7YOVTkFRJM.pt-BR.vtt |
1.17Кб |
01. Introduction-LcX-s-ujp7U.en.vtt |
641б |
01. Introduction-LcX-s-ujp7U.mp4 |
2.02Мб |
01. Introduction-LcX-s-ujp7U.pt-BR.vtt |
844б |
01. Introduction-p5L4rTV1Pgk.ar.vtt |
1.74Кб |
01. Introduction-p5L4rTV1Pgk.en.vtt |
1.38Кб |
01. Introduction-p5L4rTV1Pgk.mp4 |
8.85Мб |
01. Introduction-p5L4rTV1Pgk.pt-BR.vtt |
1.51Кб |
01. Introduction-p5L4rTV1Pgk.zh-CN.vtt |
1.24Кб |
01. Introduction-RVcFzwBXI2M.en.vtt |
3.19Кб |
01. Introduction-RVcFzwBXI2M.mp4 |
6.36Мб |
01. Introduction-RVcFzwBXI2M.pt-BR.vtt |
3.41Кб |
01. Introduction-SvdlBB-ZjcQ.ar.vtt |
1.19Кб |
01. Introduction-SvdlBB-ZjcQ.en.vtt |
940б |
01. Introduction-SvdlBB-ZjcQ.mp4 |
2.75Мб |
01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt |
987б |
01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt |
750б |
01. Introduction to Advanced SQL-i0VaVPIKUks.ar.vtt |
1.15Кб |
01. Introduction to Advanced SQL-i0VaVPIKUks.en.vtt |
940б |
01. Introduction to Advanced SQL-i0VaVPIKUks.mp4 |
3.23Мб |
01. Introduction to Advanced SQL-i0VaVPIKUks.pt-BR.vtt |
825б |
01. Introduction to Advanced SQL-i0VaVPIKUks.zh-CN.vtt |
944б |
01. Introduction to Aggregations-5vRf_Ntoxfw.ar.vtt |
3.52Кб |
01. Introduction to Aggregations-5vRf_Ntoxfw.en.vtt |
2.54Кб |
01. Introduction to Aggregations-5vRf_Ntoxfw.mp4 |
9.24Мб |
01. Introduction to Aggregations-5vRf_Ntoxfw.pt-BR.vtt |
2.74Кб |
01. Introduction to Aggregations-5vRf_Ntoxfw.zh-CN.vtt |
2.22Кб |
01. Introduction to Conditional Probability.html |
6.39Кб |
01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt |
2.30Кб |
01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt |
1.73Кб |
01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4 |
6.54Мб |
01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt |
1.88Кб |
01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt |
1.53Кб |
01. Introduction to Data Cleaning-YTtH3NM2BX0.ar.vtt |
1.34Кб |
01. Introduction to Data Cleaning-YTtH3NM2BX0.en.vtt |
958б |
01. Introduction to Data Cleaning-YTtH3NM2BX0.mp4 |
3.55Мб |
01. Introduction to Data Cleaning-YTtH3NM2BX0.pt-BR.vtt |
937б |
01. Introduction to Data Cleaning-YTtH3NM2BX0.zh-CN.vtt |
893б |
01. Introduction to Data Visualization.html |
6.84Кб |
01. Introduction to JOINs-YvZ010GU-Ck.ar.vtt |
2.44Кб |
01. Introduction to JOINs-YvZ010GU-Ck.en.vtt |
1.66Кб |
01. Introduction to JOINs-YvZ010GU-Ck.mp4 |
4.19Мб |
01. Introduction to JOINs-YvZ010GU-Ck.pt-BR.vtt |
1.77Кб |
01. Introduction to JOINs-YvZ010GU-Ck.zh-CN.vtt |
1.40Кб |
01. Introduction to Logistic Regression-P_f2RjjnPEg.en.vtt |
1.66Кб |
01. Introduction to Logistic Regression-P_f2RjjnPEg.mp4 |
10.77Мб |
01. Introduction to Logistic Regression-P_f2RjjnPEg.pt-BR.vtt |
1.92Кб |
01. Introduction to Logistic Regression-P_f2RjjnPEg.zh-CN.vtt |
1.42Кб |
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.en.vtt |
1.39Кб |
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.mp4 |
10.07Мб |
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.pt-BR.vtt |
1.49Кб |
01. Introduction to Multiple Linear Regression-b26v8HK-8-o.zh-CN.vtt |
1.17Кб |
01. Introduction to Probability.html |
6.58Кб |
01. Introduction to Probability-HeoQccoqfTk.ar.vtt |
1.37Кб |
01. Introduction to Probability-HeoQccoqfTk.en.vtt |
1.06Кб |
01. Introduction to Probability-HeoQccoqfTk.mp4 |
4.21Мб |
01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt |
1.24Кб |
01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt |
949б |
01. Introduction To Software Engineering-7kphieW4yl4.en.vtt |
3.15Кб |
01. Introduction To Software Engineering-7kphieW4yl4.mp4 |
10.99Мб |
01. Introduction To Software Engineering-7kphieW4yl4.pt-BR.vtt |
3.50Кб |
01. Introduction to the Lesson.html |
4.99Кб |
01. Introduction to Window Functions-u3qLjP8KMKc.ar.vtt |
1.15Кб |
01. Introduction to Window Functions-u3qLjP8KMKc.en.vtt |
906б |
01. Introduction to Window Functions-u3qLjP8KMKc.mp4 |
3.80Мб |
01. Introduction to Window Functions-u3qLjP8KMKc.pt-BR.vtt |
935б |
01. Introduction to Window Functions-u3qLjP8KMKc.zh-CN.vtt |
886б |
01. Introduction-tpFPcxoGxaE.en.vtt |
1.89Кб |
01. Introduction-tpFPcxoGxaE.mp4 |
4.71Мб |
01. Introduction-tpFPcxoGxaE.pt-BR.vtt |
1.73Кб |
01. Introduction-TRw4bvZuEG8.en.vtt |
1.16Кб |
01. Introduction-TRw4bvZuEG8.mp4 |
4.25Мб |
01. Introduction-TRw4bvZuEG8.pt-BR.vtt |
1.19Кб |
01. Introduction-VpxATYHhKM8.en.vtt |
700б |
01. Introduction-VpxATYHhKM8.mp4 |
2.23Мб |
01. Introduction-VpxATYHhKM8.pt-BR.vtt |
767б |
01. Introduction-Yg0gBpTzkMo.en.vtt |
1.70Кб |
01. Introduction-Yg0gBpTzkMo.mp4 |
6.20Мб |
01. Introduction-Yg0gBpTzkMo.pt-BR.vtt |
1.81Кб |
01. Introduction-Z8WNfx9Oq9s.ar.vtt |
2.07Кб |
01. Introduction-Z8WNfx9Oq9s.en.vtt |
1.35Кб |
01. Introduction-Z8WNfx9Oq9s.mp4 |
5.88Мб |
01. Introduction-Z8WNfx9Oq9s.pt-BR.vtt |
1.55Кб |
01. Introduction-Z8WNfx9Oq9s.zh-CN.vtt |
1.30Кб |
01. Intro-EBGMcpWe8-U.en.vtt |
1.84Кб |
01. Intro-EBGMcpWe8-U.mp4 |
5.54Мб |
01. Intro-j5RmK0UHOTY.ar.vtt |
1.42Кб |
01. Intro-j5RmK0UHOTY.en.vtt |
1.07Кб |
01. Intro-j5RmK0UHOTY.mp4 |
3.22Мб |
01. Intro-j5RmK0UHOTY.pt-BR.vtt |
1.05Кб |
01. Intro-j5RmK0UHOTY.zh-CN.vtt |
988б |
01. Intro-SBUOhyXcR1Q.ar.vtt |
3.85Кб |
01. Intro-SBUOhyXcR1Q.en.vtt |
2.81Кб |
01. Intro-SBUOhyXcR1Q.mp4 |
8.34Мб |
01. Intro-SBUOhyXcR1Q.pt-BR.vtt |
2.82Кб |
01. Intro-SBUOhyXcR1Q.zh-CN.vtt |
2.49Кб |
01. Intro-svCesgAQ46Q.en.vtt |
1.04Кб |
01. Intro-svCesgAQ46Q.mp4 |
3.23Мб |
01. Intro to Experiment Design and Recommendation Engines.html |
5.11Кб |
01. Intro-VkqtlJuZ9rs.ar.vtt |
1.28Кб |
01. Intro-VkqtlJuZ9rs.en.vtt |
1.06Кб |
01. Intro-VkqtlJuZ9rs.mp4 |
3.40Мб |
01. Intro-VkqtlJuZ9rs.pt-BR.vtt |
1.20Кб |
01. Intro-VkqtlJuZ9rs.zh-CN.vtt |
946б |
01. K-means considerations.html |
6.58Кб |
01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.mp4 |
5.07Мб |
01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.pt-BR.vtt |
2.07Кб |
01. L2 011 Intro HD V2-TlpGWQBLG6E.mp4 |
2.14Мб |
01. L2 011 Intro HD V2-TlpGWQBLG6E.pt-BR.vtt |
1009б |
01. L2 01 Intro V1 V1-z7v7oa--W48.en.vtt |
1.22Кб |
01. L2 01 Intro V1 V1-z7v7oa--W48.mp4 |
5.64Мб |
01. L2 01 Intro V1 V1-z7v7oa--W48.pt-BR.vtt |
1.39Кб |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.en.vtt |
685б |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.mp4 |
2.82Мб |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.pt-BR.vtt |
871б |
01. L3 011 Intro V3-4BpAF4MYKm8.en.vtt |
1.72Кб |
01. L3 011 Intro V3-4BpAF4MYKm8.mp4 |
3.85Мб |
01. L3 011 Intro V3-4BpAF4MYKm8.pt-BR.vtt |
1.88Кб |
01. L3 011 Intro V3-4BpAF4MYKm8.zh-CN.vtt |
1.45Кб |
01. L4 011 Intro V2-JzvJIWG8Rk4.en.vtt |
1.55Кб |
01. L4 011 Intro V2-JzvJIWG8Rk4.mp4 |
3.36Мб |
01. L4 011 Intro V2-JzvJIWG8Rk4.pt-BR.vtt |
1.63Кб |
01. L4 011 Intro V2-JzvJIWG8Rk4.zh-CN.vtt |
1.40Кб |
01. L4 Intro V2--PGMIIXFCgg.en.vtt |
1.95Кб |
01. L4 Intro V2--PGMIIXFCgg.mp4 |
5.88Мб |
01. L4 Intro V2--PGMIIXFCgg.pt-BR.vtt |
2.20Кб |
01. L5 011 Intro V3-ckylQMBXB10.en.vtt |
1.80Кб |
01. L5 011 Intro V3-ckylQMBXB10.mp4 |
4.18Мб |
01. L5 011 Intro V3-ckylQMBXB10.pt-BR.vtt |
1.90Кб |
01. L6 011 Intro V1-gLy8qpursJI.mp4 |
3.91Мб |
01. L6 011 Intro V1-gLy8qpursJI.pt-BR.vtt |
1.54Кб |
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.en.vtt |
8.97Кб |
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.mp4 |
9.20Мб |
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.pt-BR.vtt |
9.28Кб |
01. L7 011 Intro V1-Virihwp36do.mp4 |
1.41Мб |
01. L7 011 Intro V1-Virihwp36do.pt-BR.vtt |
759б |
01. Lesson Introduction.html |
5.70Кб |
01. Lesson Introduction.html |
5.86Кб |
01. Lesson Introduction.html |
6.03Кб |
01. Lesson Introduction-rw3YaQ2CTNQ.mp4 |
3.03Мб |
01. Linear Combination. Part 1.html |
5.75Кб |
01. Linear Combinations 1-fmal7UE7dEE.en.vtt |
6.78Кб |
01. Linear Combinations 1-fmal7UE7dEE.mp4 |
8.30Мб |
01. Linear Combinations 1-fmal7UE7dEE.pt-BR.vtt |
7.01Кб |
01. Linear Combinations 1-fmal7UE7dEE.zh-CN.vtt |
5.86Кб |
01. Maximum Probability.html |
7.79Кб |
01. Maximum Probability-5zkupL6EWh8.ar.vtt |
607б |
01. Maximum Probability-5zkupL6EWh8.en.vtt |
486б |
01. Maximum Probability-5zkupL6EWh8.es-ES.vtt |
529б |
01. Maximum Probability-5zkupL6EWh8.ja.vtt |
491б |
01. Maximum Probability-5zkupL6EWh8.mp4 |
1.27Мб |
01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt |
552б |
01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt |
411б |
01. Maximum Probability-b2zvrFL8AUw.ar.vtt |
2.71Кб |
01. Maximum Probability-b2zvrFL8AUw.en.vtt |
2.11Кб |
01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt |
2.17Кб |
01. Maximum Probability-b2zvrFL8AUw.ja.vtt |
2.01Кб |
01. Maximum Probability-b2zvrFL8AUw.mp4 |
21.97Мб |
01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt |
2.58Кб |
01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt |
1.75Кб |
01. Mean Squared Error Function.html |
6.07Кб |
01. ML Charity Project-aVodYHcOB8U.en.vtt |
1.32Кб |
01. ML Charity Project-aVodYHcOB8U.mp4 |
3.99Мб |
01. ML Charity Project-aVodYHcOB8U.pt-BR.vtt |
1.37Кб |
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt |
4.37Кб |
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4 |
21.68Мб |
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt |
4.25Кб |
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt |
4.26Кб |
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.en.vtt |
3.86Кб |
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.mp4 |
3.38Мб |
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.pt-BR.vtt |
3.89Кб |
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.en.vtt |
5.01Кб |
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.mp4 |
15.47Мб |
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.pt-BR.vtt |
4.56Кб |
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.zh-CN.vtt |
4.69Кб |
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.en.vtt |
2.28Кб |
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.mp4 |
8.39Мб |
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.pt-BR.vtt |
2.41Кб |
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.zh-CN.vtt |
2.02Кб |
01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt |
716б |
01. Naive Bayes Intro V2-vNOiQXghgRY.mp4 |
3.22Мб |
01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt |
690б |
01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt |
631б |
01. Natural Language Processing-UQBxJzoCp-I.en.vtt |
1.17Кб |
01. Natural Language Processing-UQBxJzoCp-I.mp4 |
3.39Мб |
01. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt |
1.30Кб |
01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt |
1.03Кб |
01. NLP and Pipelines.html |
8.08Кб |
01. Non-linear Data.html |
7.52Кб |
01. Non-Linear Data-F7ZiE8PQiSc.en.vtt |
633б |
01. Non-Linear Data-F7ZiE8PQiSc.mp4 |
2.14Мб |
01. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt |
600б |
01. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt |
624б |
01. Our Goal .html |
5.39Кб |
01. Overview.html |
6.38Кб |
01. Perception Algorithm V2-ebIlG6Pqwas.en.vtt |
1.01Кб |
01. Perception Algorithm V2-ebIlG6Pqwas.mp4 |
5.37Мб |
01. Perception Algorithm V2-ebIlG6Pqwas.pt-BR.vtt |
928б |
01. Perception Algorithm V2-ebIlG6Pqwas.zh-CN.vtt |
916б |
01. Project Intro.html |
5.76Кб |
01. Project Introduction.html |
4.93Кб |
01. Project Introduction.html |
5.40Кб |
01. Project Introduction.html |
7.11Кб |
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.en.vtt |
1.31Кб |
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.mp4 |
2.85Мб |
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.pt-BR.vtt |
1.45Кб |
01. PROJECT INTRO MAIN V2---9IFCNBM6Y.zh-CN.vtt |
1.19Кб |
01. Project Overview.html |
7.08Кб |
01. Prove Your Skills With GitHub.html |
10.55Кб |
01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt |
684б |
01. Python Probability Introduction-tFMdvAN7WDY.en.vtt |
484б |
01. Python Probability Introduction-tFMdvAN7WDY.mp4 |
1.65Мб |
01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt |
541б |
01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt |
441б |
01. Random Projection.html |
6.85Кб |
01. Regression Introduction-PKqSS0TzXeA.en.vtt |
756б |
01. Regression Introduction-PKqSS0TzXeA.mp4 |
2.16Мб |
01. Regression Introduction-PKqSS0TzXeA.pt-BR.vtt |
935б |
01. Regression Introduction-PKqSS0TzXeA.zh-CN.vtt |
643б |
01. Scripting-Qxe_gCiXUDg.ar.vtt |
885б |
01. Scripting-Qxe_gCiXUDg.en.vtt |
645б |
01. Scripting-Qxe_gCiXUDg.mp4 |
4.24Мб |
01. Scripting-Qxe_gCiXUDg.pt-BR.vtt |
810б |
01. Scripting-Qxe_gCiXUDg.zh-CN.vtt |
569б |
01. Shell Intro--EtN5oD8MM0.ar.vtt |
5.39Кб |
01. Shell Intro--EtN5oD8MM0.en.vtt |
4.01Кб |
01. Shell Intro--EtN5oD8MM0.mp4 |
10.76Мб |
01. Shell Intro--EtN5oD8MM0.pt-BR.vtt |
3.51Кб |
01. Shell Intro--EtN5oD8MM0.zh-CN.vtt |
3.76Кб |
01. Starbucks Lab-QPKRboscAf4.en.vtt |
3.27Кб |
01. Starbucks Lab-QPKRboscAf4.mp4 |
16.21Мб |
01. Support Vector Machine V2-LBmM6pZCrI0.en.vtt |
514б |
01. Support Vector Machine V2-LBmM6pZCrI0.mp4 |
2.42Мб |
01. Support Vector Machine V2-LBmM6pZCrI0.pt-BR.vtt |
543б |
01. Support Vector Machine V2-LBmM6pZCrI0.zh-CN.vtt |
432б |
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.ar.vtt |
2.38Кб |
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.en.vtt |
1.81Кб |
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4 |
6.59Мб |
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.pt-BR.vtt |
1.58Кб |
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.zh-CN.vtt |
1.63Кб |
01. Types of Errors.html |
6.02Кб |
01. Undoing Changes - Intro-Kfi7l41wUVc.ar.vtt |
2.44Кб |
01. Undoing Changes - Intro-Kfi7l41wUVc.en.vtt |
1.86Кб |
01. Undoing Changes - Intro-Kfi7l41wUVc.mp4 |
6.31Мб |
01. Undoing Changes - Intro-Kfi7l41wUVc.pt-BR.vtt |
1.71Кб |
01. Undoing Changes - Intro-Kfi7l41wUVc.zh-CN.vtt |
1.78Кб |
01. Vectors 1-oPBz-MLVUHk.en.vtt |
4.61Кб |
01. Vectors 1-oPBz-MLVUHk.mp4 |
4.88Мб |
01. Vectors 1-oPBz-MLVUHk.pt-BR.vtt |
4.42Кб |
01. Vectors 1-oPBz-MLVUHk.zh-CN.vtt |
3.98Кб |
01. Video Intro.html |
7.35Кб |
01. Video Intro.html |
9.13Кб |
01. Video Intro.html |
10.43Кб |
01. Video Introduction.html |
6.58Кб |
01. Video Introduction.html |
6.87Кб |
01. Video Introduction.html |
7.18Кб |
01. Video Introduction.html |
7.19Кб |
01. Video Introduction.html |
7.53Кб |
01. Video Introduction.html |
7.68Кб |
01. Video Introduction.html |
8.78Кб |
01. Video Introduction.html |
9.78Кб |
01. Video Introduction to Advanced SQL.html |
7.03Кб |
01. Video Introduction to Aggregation.html |
8.43Кб |
01. Video Introduction to SQL Data Cleaning.html |
7.04Кб |
01. Video Introduction to Window Functions.html |
7.69Кб |
01. Video Motivation.html |
7.14Кб |
01. Video SQL Introduction.html |
9.74Кб |
01. Video What are Measures of Spread.html |
9.60Кб |
01. Welcome!.html |
6.55Кб |
01. Welcome.html |
5.44Кб |
01. Welcome.html |
5.57Кб |
01. Welcome.html |
5.77Кб |
01. Welcome-SaSzn718doY.en.vtt |
1.46Кб |
01. Welcome-SaSzn718doY.mp4 |
8.01Мб |
01. Welcome-SaSzn718doY.pt-BR.vtt |
1.64Кб |
01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.en.vtt |
2.37Кб |
01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.mp4 |
9.07Мб |
01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.pt-BR.vtt |
2.18Кб |
01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt |
1.15Кб |
01. Welcome To Linear Regression-zxZkTkM34BY.mp4 |
3.90Мб |
01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt |
1.21Кб |
01. What's a Vector.html |
6.11Кб |
01. What do Data Scientists Do.html |
5.03Кб |
01. What do Data Scientists Do.html |
5.18Кб |
01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt |
3.30Кб |
01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt |
3.30Кб |
01. What Do Data Scientists Do-sN2DbIJUZmw.mp4 |
14.96Мб |
01. What Do Data Scientists Do-sN2DbIJUZmw.mp4 |
14.96Мб |
01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt |
3.31Кб |
01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt |
3.31Кб |
01. What is a Matrix.html |
8.36Кб |
01. What is Version Control.html |
8.67Кб |
01. What It Takes.html |
5.49Кб |
01. What It Takes.html |
5.49Кб |
01. Why Network-exjEm9Paszk.ar.vtt |
5.14Кб |
01. Why Network-exjEm9Paszk.en.vtt |
3.40Кб |
01. Why Network-exjEm9Paszk.es-MX.vtt |
3.20Кб |
01. Why Network-exjEm9Paszk.mp4 |
17.37Мб |
01. Why Network-exjEm9Paszk.pt-BR.vtt |
3.20Кб |
01. Why Network-exjEm9Paszk.zh-CN.vtt |
3.29Кб |
02. 02 Intro SC V1-mIgABrjJVBY.en.vtt |
1.45Кб |
02. 02 Intro SC V1-mIgABrjJVBY.mp4 |
1.08Мб |
02. 02 Intro SC V1-mIgABrjJVBY.pt-BR.vtt |
1.40Кб |
02. AB Testing.html |
8.25Кб |
02. AB Testing-EcWvhbIjT9o.en.vtt |
3.08Кб |
02. AB Testing-EcWvhbIjT9o.mp4 |
6.32Мб |
02. AB Testing-EcWvhbIjT9o.pt-BR.vtt |
3.61Кб |
02. AB Testing-EcWvhbIjT9o.zh-CN.vtt |
2.58Кб |
02. Adam from IBM-NjjtY5UHyac.en.vtt |
4.52Кб |
02. Adam from IBM-NjjtY5UHyac.mp4 |
18.86Мб |
02. Adam from IBM-NjjtY5UHyac.pt-BR.vtt |
4.33Кб |
02. Admissions 1.html |
8.81Кб |
02. Admissions 1-CLgVLQAEYw8.ar.vtt |
1.42Кб |
02. Admissions 1-CLgVLQAEYw8.en.vtt |
1.08Кб |
02. Admissions 1-CLgVLQAEYw8.es-ES.vtt |
1.17Кб |
02. Admissions 1-CLgVLQAEYw8.hr.vtt |
1.05Кб |
02. Admissions 1-CLgVLQAEYw8.it.vtt |
1.11Кб |
02. Admissions 1-CLgVLQAEYw8.ja.vtt |
1.08Кб |
02. Admissions 1-CLgVLQAEYw8.mp4 |
7.61Мб |
02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt |
1.28Кб |
02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt |
1.14Кб |
02. Admissions 1-CLgVLQAEYw8.tr.vtt |
1.14Кб |
02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt |
1.05Кб |
02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt |
1.09Кб |
02. Admissions 1-f3y_weFskL4.ar.vtt |
99б |
02. Admissions 1-f3y_weFskL4.en.vtt |
88б |
02. Admissions 1-f3y_weFskL4.es-ES.vtt |
95б |
02. Admissions 1-f3y_weFskL4.hr.vtt |
87б |
02. Admissions 1-f3y_weFskL4.it.vtt |
89б |
02. Admissions 1-f3y_weFskL4.ja.vtt |
100б |
02. Admissions 1-f3y_weFskL4.mp4 |
323.09Кб |
02. Admissions 1-f3y_weFskL4.pt-BR.vtt |
101б |
02. Admissions 1-f3y_weFskL4.pt-PT.vtt |
89б |
02. Admissions 1-f3y_weFskL4.tr.vtt |
81б |
02. Admissions 1-f3y_weFskL4.zh-CN.vtt |
94б |
02. Admissions 1-f3y_weFskL4.zh-Hans.vtt |
98б |
02. Applications of CNNs.html |
12.91Кб |
02. Applications of CNNs-HrYNL_1SV2Y.en.vtt |
5.37Кб |
02. Applications of CNNs-HrYNL_1SV2Y.mp4 |
17.70Мб |
02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt |
5.66Кб |
02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt |
4.70Кб |
02. Arithmetic Operators.html |
10.18Кб |
02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt |
4.67Кб |
02. Arithmetic Operators-M8TIOK2P2yw.en.vtt |
3.42Кб |
02. Arithmetic Operators-M8TIOK2P2yw.mp4 |
11.07Мб |
02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt |
3.70Кб |
02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt |
2.97Кб |
02. Cancer Test.html |
11.23Кб |
02. Cancer Test-CNpSrdnYvbo.ar.vtt |
4.48Кб |
02. Cancer Test-CNpSrdnYvbo.en.vtt |
3.25Кб |
02. Cancer Test-CNpSrdnYvbo.es-ES.vtt |
3.44Кб |
02. Cancer Test-CNpSrdnYvbo.it.vtt |
3.45Кб |
02. Cancer Test-CNpSrdnYvbo.ja.vtt |
3.28Кб |
02. Cancer Test-CNpSrdnYvbo.mp4 |
18.01Мб |
02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt |
3.05Кб |
02. Cancer Test-CNpSrdnYvbo.th.vtt |
5.13Кб |
02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt |
3.06Кб |
02. Cancer Test-FnNveASivMA.ar.vtt |
1.32Кб |
02. Cancer Test-FnNveASivMA.en.vtt |
1.05Кб |
02. Cancer Test-FnNveASivMA.es-ES.vtt |
1.07Кб |
02. Cancer Test-FnNveASivMA.it.vtt |
1.08Кб |
02. Cancer Test-FnNveASivMA.ja.vtt |
1018б |
02. Cancer Test-FnNveASivMA.mp4 |
2.08Мб |
02. Cancer Test-FnNveASivMA.pt-BR.vtt |
1014б |
02. Cancer Test-FnNveASivMA.th.vtt |
1.94Кб |
02. Cancer Test-FnNveASivMA.zh-CN.vtt |
978б |
02. Classification Problems 1.html |
6.76Кб |
02. Classsification Example-Dh625piH7Z0.en.vtt |
2.70Кб |
02. Classsification Example-Dh625piH7Z0.mp4 |
2.07Мб |
02. Classsification Example-Dh625piH7Z0.pt-BR.vtt |
2.51Кб |
02. Classsification Example-Dh625piH7Z0.zh-CN.vtt |
2.37Кб |
02. Clean and Modular Code.html |
10.65Кб |
02. Cleaning with String Functions-y1fduSu7Ovc.ar.vtt |
4.09Кб |
02. Cleaning with String Functions-y1fduSu7Ovc.en.vtt |
3.08Кб |
02. Cleaning with String Functions-y1fduSu7Ovc.mp4 |
4.22Мб |
02. Cleaning with String Functions-y1fduSu7Ovc.pt-BR.vtt |
3.44Кб |
02. Cleaning with String Functions-y1fduSu7Ovc.zh-CN.vtt |
2.66Кб |
02. Conditional Statements.html |
16.48Кб |
02. Continuous Perceptrons.html |
7.57Кб |
02. Continuous Perceptrons-07-JJ-aGEfM.en.vtt |
1.33Кб |
02. Continuous Perceptrons-07-JJ-aGEfM.mp4 |
1.13Мб |
02. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt |
1.31Кб |
02. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt |
1.15Кб |
02. Corporate Messaging Case Study.html |
7.81Кб |
02. Corporate Messaging Case Study-xnDsUsrF884.en.vtt |
2.54Кб |
02. Corporate Messaging Case Study-xnDsUsrF884.mp4 |
4.70Мб |
02. Corporate Messaging Case Study-xnDsUsrF884.pt-BR.vtt |
3.05Кб |
02. Course Overview.html |
6.71Кб |
02. Course Syllabus.html |
7.37Кб |
02. Create a Pull Request.html |
10.05Кб |
02. Create A Repo From Scratch.html |
14.78Кб |
02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt |
3.50Кб |
02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 |
16.45Мб |
02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt |
3.47Кб |
02. CRISP-DM-PaVwnGcqlSE.en.vtt |
1.32Кб |
02. CRISP-DM-PaVwnGcqlSE.mp4 |
4.00Мб |
02. CRISP-DM-PaVwnGcqlSE.pt-BR.vtt |
1.43Кб |
02. Data Vis L4 C02 V1-wBDC5AmYgyg.en.vtt |
3.07Кб |
02. Data Vis L4 C02 V1-wBDC5AmYgyg.mp4 |
3.58Мб |
02. Data Vis L4 C02 V1-wBDC5AmYgyg.pt-BR.vtt |
2.77Кб |
02. Data Vis L4 C02 V1-wBDC5AmYgyg.zh-CN.vtt |
2.64Кб |
02. DataVis L5C02 V3-bgDNMfG9Gfs.en.vtt |
6.74Кб |
02. DataVis L5C02 V3-bgDNMfG9Gfs.mp4 |
6.79Мб |
02. DataVis L5C02 V3-bgDNMfG9Gfs.pt-BR.vtt |
7.01Кб |
02. Default Arguments-cG6UfBZX2KI.ar.vtt |
2.72Кб |
02. Default Arguments-cG6UfBZX2KI.en.vtt |
2.05Кб |
02. Default Arguments-cG6UfBZX2KI.mp4 |
5.64Мб |
02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt |
2.40Кб |
02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt |
1.81Кб |
02. Defining Functions.html |
14.76Кб |
02. Defining Functions-IP_tJYhynbc.ar.vtt |
6.65Кб |
02. Defining Functions-IP_tJYhynbc.en.vtt |
5.39Кб |
02. Defining Functions-IP_tJYhynbc.mp4 |
15.48Мб |
02. Defining Functions-IP_tJYhynbc.pt-BR.vtt |
5.95Кб |
02. Defining Functions-IP_tJYhynbc.zh-CN.vtt |
4.76Кб |
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt |
4.74Кб |
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt |
3.22Кб |
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 |
6.17Мб |
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt |
3.51Кб |
02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt |
2.74Кб |
02. Disaster Relief Project Preview-DuwYAjqGM3E.en.vtt |
1.70Кб |
02. Disaster Relief Project Preview-DuwYAjqGM3E.mp4 |
5.33Мб |
02. Disaster Relief Project Preview-DuwYAjqGM3E.pt-BR.vtt |
2.14Кб |
02. Displaying A Repository's Commits.html |
18.63Кб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt |
1.36Кб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 |
1.48Мб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt |
1.46Кб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt |
1.26Кб |
02. Ensembles.html |
9.29Кб |
02. First Things First-ehjC7JK-zMI.en.vtt |
1.26Кб |
02. First Things First-ehjC7JK-zMI.mp4 |
3.98Мб |
02. First Things First-ehjC7JK-zMI.pt-BR.vtt |
1.33Кб |
02. Fitting Logistic Regression-Dg0rBDQnIYg.en.vtt |
2.60Кб |
02. Fitting Logistic Regression-Dg0rBDQnIYg.mp4 |
9.74Мб |
02. Fitting Logistic Regression-Dg0rBDQnIYg.pt-BR.vtt |
2.82Кб |
02. Fitting Logistic Regression-Dg0rBDQnIYg.zh-CN.vtt |
2.11Кб |
02. Flipping Coins.html |
9.14Кб |
02. Flipping Coins-lgUDXtUyLLg.ar.vtt |
799б |
02. Flipping Coins-lgUDXtUyLLg.en.vtt |
635б |
02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt |
686б |
02. Flipping Coins-lgUDXtUyLLg.hr.vtt |
637б |
02. Flipping Coins-lgUDXtUyLLg.it.vtt |
695б |
02. Flipping Coins-lgUDXtUyLLg.ja.vtt |
617б |
02. Flipping Coins-lgUDXtUyLLg.mp4 |
4.62Мб |
02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt |
570б |
02. Flipping Coins-lgUDXtUyLLg.ru.vtt |
617б |
02. Flipping Coins-lgUDXtUyLLg.th.vtt |
1.15Кб |
02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt |
536б |
02. Flipping Coins-OpNufHYgJCg.ar.vtt |
2.01Кб |
02. Flipping Coins-OpNufHYgJCg.en.vtt |
1.47Кб |
02. Flipping Coins-OpNufHYgJCg.es-ES.vtt |
1.55Кб |
02. Flipping Coins-OpNufHYgJCg.hr.vtt |
1.50Кб |
02. Flipping Coins-OpNufHYgJCg.it.vtt |
1.64Кб |
02. Flipping Coins-OpNufHYgJCg.ja.vtt |
1.32Кб |
02. Flipping Coins-OpNufHYgJCg.mp4 |
11.32Мб |
02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt |
1.33Кб |
02. Flipping Coins-OpNufHYgJCg.th.vtt |
2.84Кб |
02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt |
1.34Кб |
02. Forking A Repository.html |
15.96Кб |
02. Forking a Repository - What Is Forking-z4mkVwqVztc.ar.vtt |
2.16Кб |
02. Forking a Repository - What Is Forking-z4mkVwqVztc.en.vtt |
1.72Кб |
02. Forking a Repository - What Is Forking-z4mkVwqVztc.mp4 |
5.29Мб |
02. Forking a Repository - What Is Forking-z4mkVwqVztc.pt-BR.vtt |
1.76Кб |
02. Forking a Repository - What Is Forking-z4mkVwqVztc.zh-CN.vtt |
1.73Кб |
02. Gaussian Mixture Model (GMM) Clustering.html |
7.56Кб |
02. Git Add.html |
20.66Кб |
02. Gradient Descent.html |
12.63Кб |
02. Gradient Descent-29PmNG7fuuM.en.vtt |
1.60Кб |
02. Gradient Descent-29PmNG7fuuM.mp4 |
2.46Мб |
02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt |
1.52Кб |
02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt |
1.41Кб |
02. Guess the Person.html |
6.24Кб |
02. Heads Tails.html |
7.85Кб |
02. Heads Tails-iyX0-eXStbw.ar.vtt |
472б |
02. Heads Tails-iyX0-eXStbw.en.vtt |
341б |
02. Heads Tails-iyX0-eXStbw.es-ES.vtt |
357б |
02. Heads Tails-iyX0-eXStbw.ja.vtt |
300б |
02. Heads Tails-iyX0-eXStbw.mp4 |
1.08Мб |
02. Heads Tails-iyX0-eXStbw.pt-BR.vtt |
375б |
02. Heads Tails-iyX0-eXStbw.zh-CN.vtt |
309б |
02. Heads Tails-yo55zJtJQwo.ar.vtt |
141б |
02. Heads Tails-yo55zJtJQwo.en.vtt |
118б |
02. Heads Tails-yo55zJtJQwo.es-ES.vtt |
125б |
02. Heads Tails-yo55zJtJQwo.ja.vtt |
139б |
02. Heads Tails-yo55zJtJQwo.mp4 |
1.03Мб |
02. Heads Tails-yo55zJtJQwo.pt-BR.vtt |
158б |
02. Heads Tails-yo55zJtJQwo.zh-CN.vtt |
117б |
02. Histograms-4t10RgUv2Fc.ar.vtt |
2.27Кб |
02. Histograms-4t10RgUv2Fc.en.vtt |
1.61Кб |
02. Histograms-4t10RgUv2Fc.mp4 |
2.57Мб |
02. Histograms-4t10RgUv2Fc.pt-BR.vtt |
1.75Кб |
02. Histograms-4t10RgUv2Fc.zh-CN.vtt |
1.38Кб |
02. History - A Statistician's Perspective.html |
5.78Кб |
02. History - Statisticians Perspective-zNNouqLGF9E.en.vtt |
2.07Кб |
02. History - Statisticians Perspective-zNNouqLGF9E.mp4 |
5.50Мб |
02. History - Statisticians Perspective-zNNouqLGF9E.pt-BR.vtt |
2.29Кб |
02. How NLP Pipelines Work.html |
8.36Кб |
02. Hypothesis Testing.html |
8.81Кб |
02. Hypothesis Testing-9GbHHpiK6wk.en.vtt |
2.52Кб |
02. Hypothesis Testing-9GbHHpiK6wk.mp4 |
10.68Мб |
02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt |
2.42Кб |
02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt |
2.26Кб |
02. Identifying Recommendation Engines-KwegrgvV-V4.en.vtt |
847б |
02. Identifying Recommendation Engines-KwegrgvV-V4.mp4 |
3.48Мб |
02. If Elif and Else-KZubH5XT0eU.ar.vtt |
4.12Кб |
02. If Elif and Else-KZubH5XT0eU.en.vtt |
2.83Кб |
02. If Elif and Else-KZubH5XT0eU.mp4 |
18.28Мб |
02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt |
3.18Кб |
02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt |
2.50Кб |
02. If Statements-jWiIUMrwPqA.ar.vtt |
3.99Кб |
02. If Statements-jWiIUMrwPqA.en.vtt |
2.70Кб |
02. If Statements-jWiIUMrwPqA.mp4 |
16.99Мб |
02. If Statements-jWiIUMrwPqA.pt-BR.vtt |
3.11Кб |
02. If Statements-jWiIUMrwPqA.zh-CN.vtt |
2.32Кб |
02. Indentation-G8qUNOTHtrM.ar.vtt |
1.54Кб |
02. Indentation-G8qUNOTHtrM.en.vtt |
1.09Кб |
02. Indentation-G8qUNOTHtrM.mp4 |
7.65Мб |
02. Indentation-G8qUNOTHtrM.pt-BR.vtt |
1.31Кб |
02. Indentation-G8qUNOTHtrM.zh-CN.vtt |
1007б |
02. Info on the Diamond Dataset.html |
6.99Кб |
02. Instructors.html |
6.76Кб |
02. Interview Adam [IBM].html |
4.97Кб |
02. Interview Robert Chang [AirBnB].html |
5.23Кб |
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.en.vtt |
1.31Кб |
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.mp4 |
2.85Мб |
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.pt-BR.vtt |
1.45Кб |
02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.zh-CN.vtt |
1.19Кб |
02. Introducing PyTorch.html |
7.36Кб |
02. Introduction.html |
7.31Кб |
02. Introduction.html |
7.50Кб |
02. Introduction.html |
8.36Кб |
02. Introduction-tn-CrUTkCUc.en.vtt |
3.28Кб |
02. Introduction-tn-CrUTkCUc.en.vtt |
3.28Кб |
02. Introduction-tn-CrUTkCUc.mp4 |
7.54Мб |
02. Introduction-tn-CrUTkCUc.mp4 |
7.54Мб |
02. Introduction-tn-CrUTkCUc.pt-BR.vtt |
3.09Кб |
02. Introduction-tn-CrUTkCUc.pt-BR.vtt |
3.09Кб |
02. Introduction-tn-CrUTkCUc.zh-CN.vtt |
2.84Кб |
02. Introduction-tn-CrUTkCUc.zh-CN.vtt |
2.84Кб |
02. Introduction to GPU Workspaces.html |
16.20Кб |
02. Introduction to Machine Learning-pLcFPPI1L-0.en.vtt |
2.02Кб |
02. Introduction to Machine Learning-pLcFPPI1L-0.mp4 |
2.81Мб |
02. Introduction to Machine Learning-pLcFPPI1L-0.pt-BR.vtt |
2.62Кб |
02. Introduction to Machine Learning-pLcFPPI1L-0.zh-CN.vtt |
1.72Кб |
02. Introduction to NumPy.html |
8.70Кб |
02. Introduction to Pandas.html |
8.47Кб |
02. Introduction to Subqueries-s8ZJMj4gscY.ar.vtt |
941б |
02. Introduction to Subqueries-s8ZJMj4gscY.en.vtt |
639б |
02. Introduction to Subqueries-s8ZJMj4gscY.mp4 |
2.83Мб |
02. Introduction to Subqueries-s8ZJMj4gscY.pt-BR.vtt |
753б |
02. Introduction to Subqueries-s8ZJMj4gscY.zh-CN.vtt |
547б |
02. Introduction-Vnj2VNQROtI.ar.vtt |
2.28Кб |
02. Introduction-Vnj2VNQROtI.en.vtt |
1.58Кб |
02. Introduction-Vnj2VNQROtI.mp4 |
9.59Мб |
02. Introduction-Vnj2VNQROtI.pt-BR.vtt |
1.79Кб |
02. Introduction-Vnj2VNQROtI.zh-CN.vtt |
1.62Кб |
02. Intro to Term 2.html |
5.18Кб |
02. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt |
3.40Кб |
02. Kaggle Project Final For Classroom-Ssttix340C8.mp4 |
10.15Мб |
02. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt |
2.89Кб |
02. Keras.html |
15.58Кб |
02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt |
1.02Кб |
02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt |
806б |
02. L1 01 Intro V3-yyNtiUyI5Tw.mp4 |
5.21Мб |
02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt |
1021б |
02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt |
745б |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.en.vtt |
1.25Кб |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.mp4 |
2.21Мб |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.pt-BR.vtt |
1.48Кб |
02. L1 - Remote Repos Intro-AnSlYftJnwA.ar.vtt |
3.08Кб |
02. L1 - Remote Repos Intro-AnSlYftJnwA.en.vtt |
2.28Кб |
02. L1 - Remote Repos Intro-AnSlYftJnwA.mp4 |
4.11Мб |
02. L1 - Remote Repos Intro-AnSlYftJnwA.pt-BR.vtt |
2.25Кб |
02. L1 - Remote Repos Intro-AnSlYftJnwA.zh-CN.vtt |
1.97Кб |
02. L1 - Sending Branches To Remote-414f0ukhOTY.ar.vtt |
1.27Кб |
02. L1 - Sending Branches To Remote-414f0ukhOTY.en.vtt |
1.01Кб |
02. L1 - Sending Branches To Remote-414f0ukhOTY.mp4 |
826.62Кб |
02. L1 - Sending Branches To Remote-414f0ukhOTY.pt-BR.vtt |
982б |
02. L1 - Sending Branches To Remote-414f0ukhOTY.zh-CN.vtt |
1017б |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.en.vtt |
5.12Кб |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.mp4 |
9.80Мб |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.pt-BR.vtt |
5.48Кб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.en.vtt |
1.38Кб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.mp4 |
4.05Мб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.pt-BR.vtt |
1.69Кб |
02. L2 - Pushing To A Fork-WRgNpr19t48.ar.vtt |
6.87Кб |
02. L2 - Pushing To A Fork-WRgNpr19t48.en.vtt |
5.39Кб |
02. L2 - Pushing To A Fork-WRgNpr19t48.mp4 |
7.65Мб |
02. L2 - Pushing To A Fork-WRgNpr19t48.pt-BR.vtt |
5.31Кб |
02. L2 - Pushing To A Fork-WRgNpr19t48.zh-CN.vtt |
4.83Кб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.en.vtt |
2.34Кб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.mp4 |
4.28Мб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.pt-BR.vtt |
2.48Кб |
02. L3 - Pull Request In Action-d3AGtKmHxUk.ar.vtt |
5.45Кб |
02. L3 - Pull Request In Action-d3AGtKmHxUk.en.vtt |
4.20Кб |
02. L3 - Pull Request In Action-d3AGtKmHxUk.mp4 |
4.57Мб |
02. L3 - Pull Request In Action-d3AGtKmHxUk.pt-BR.vtt |
3.83Кб |
02. L3 - Pull Request In Action-d3AGtKmHxUk.zh-CN.vtt |
3.76Кб |
02. L3 - Pull Request In Theory-twLr9ndsf90.ar.vtt |
3.04Кб |
02. L3 - Pull Request In Theory-twLr9ndsf90.en.vtt |
2.22Кб |
02. L3 - Pull Request In Theory-twLr9ndsf90.mp4 |
1.65Мб |
02. L3 - Pull Request In Theory-twLr9ndsf90.pt-BR.vtt |
2.35Кб |
02. L3 - Pull Request In Theory-twLr9ndsf90.zh-CN.vtt |
2.09Кб |
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.en.vtt |
3.55Кб |
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.mp4 |
5.26Мб |
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.pt-BR.vtt |
3.67Кб |
02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.zh-CN.vtt |
2.88Кб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.en.vtt |
1.47Кб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.mp4 |
3.64Мб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.pt-BR.vtt |
1.59Кб |
02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.en.vtt |
2.80Кб |
02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.mp4 |
4.37Мб |
02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.pt-BR.vtt |
2.98Кб |
02. Lesson Overview.html |
9.42Кб |
02. Lesson Overview.html |
12.18Кб |
02. Lesson Overview -q1beUVlLoIQ.en.vtt |
1.38Кб |
02. Lesson Overview -q1beUVlLoIQ.mp4 |
3.98Мб |
02. Lesson Overview -q1beUVlLoIQ.pt-BR.vtt |
1.60Кб |
02. Lesson Topics-LBzA08F_r4w.en.vtt |
1.24Кб |
02. Lesson Topics-LBzA08F_r4w.mp4 |
3.81Мб |
02. Lesson Topics-LBzA08F_r4w.pt-BR.vtt |
1.35Кб |
02. Linear Combination. Part 2.html |
5.75Кб |
02. Linear Combinations 2-RsKJNDTb8nw.en.vtt |
7.21Кб |
02. Linear Combinations 2-RsKJNDTb8nw.mp4 |
14.17Мб |
02. Linear Combinations 2-RsKJNDTb8nw.pt-BR.vtt |
7.04Кб |
02. Linear Combinations 2-RsKJNDTb8nw.zh-CN.vtt |
6.36Кб |
02. Matrix Addition.html |
8.73Кб |
02. Medical Example 1.html |
8.39Кб |
02. Medical Example 1-E1ph6NP3_v4.ar.vtt |
132б |
02. Medical Example 1-E1ph6NP3_v4.en.vtt |
119б |
02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt |
125б |
02. Medical Example 1-E1ph6NP3_v4.it.vtt |
138б |
02. Medical Example 1-E1ph6NP3_v4.ja.vtt |
141б |
02. Medical Example 1-E1ph6NP3_v4.mp4 |
747.17Кб |
02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt |
146б |
02. Medical Example 1-E1ph6NP3_v4.th.vtt |
164б |
02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt |
118б |
02. Medical Example 1-mFfbts1lAEo.ar.vtt |
558б |
02. Medical Example 1-mFfbts1lAEo.en.vtt |
427б |
02. Medical Example 1-mFfbts1lAEo.es-ES.vtt |
466б |
02. Medical Example 1-mFfbts1lAEo.it.vtt |
422б |
02. Medical Example 1-mFfbts1lAEo.ja.vtt |
444б |
02. Medical Example 1-mFfbts1lAEo.mp4 |
2.69Мб |
02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt |
498б |
02. Medical Example 1-mFfbts1lAEo.th.vtt |
813б |
02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt |
341б |
02. Meet Chris-0ccflD9x5WU.ar.vtt |
6.32Кб |
02. Meet Chris-0ccflD9x5WU.en.vtt |
4.89Кб |
02. Meet Chris-0ccflD9x5WU.es-MX.vtt |
4.52Кб |
02. Meet Chris-0ccflD9x5WU.mp4 |
32.54Мб |
02. Meet Chris-0ccflD9x5WU.pt-BR.vtt |
4.47Кб |
02. Meet Chris-0ccflD9x5WU.zh-CN.vtt |
4.41Кб |
02. Meet the Instructors.html |
5.57Кб |
02. Meet The Instructors-XAU2Nf51vfU.en.vtt |
5.82Кб |
02. Meet The Instructors-XAU2Nf51vfU.mp4 |
17.31Мб |
02. Meet The Instructors-XAU2Nf51vfU.pt-BR.vtt |
6.03Кб |
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt |
1.66Кб |
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4 |
4.80Мб |
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt |
1.68Кб |
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt |
1.53Кб |
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.en.vtt |
1.17Кб |
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.mp4 |
3.07Мб |
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.pt-BR.vtt |
1.18Кб |
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.zh-CN.vtt |
1005б |
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.en.vtt |
1.20Кб |
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.mp4 |
4.34Мб |
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.pt-BR.vtt |
1.27Кб |
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.zh-CN.vtt |
1008б |
02. Model Complexity Graph.html |
7.16Кб |
02. Model Complexity Graph-Question-YS5OQCA5cLY.en-US.vtt |
3.32Кб |
02. Model Complexity Graph-Question-YS5OQCA5cLY.mp4 |
5.41Мб |
02. Model Complexity Graph-Question-YS5OQCA5cLY.pt-BR.vtt |
3.12Кб |
02. Model Complexity Graph-Question-YS5OQCA5cLY.zh-CN.vtt |
3.03Кб |
02. Modifying The Last Commit.html |
6.79Кб |
02. Motivation for Data Visualization.html |
12.67Кб |
02. Multiple Linear Regression-rvYZp99nj6c.en.vtt |
2.65Кб |
02. Multiple Linear Regression-rvYZp99nj6c.mp4 |
13.78Мб |
02. Multiple Linear Regression-rvYZp99nj6c.pt-BR.vtt |
2.62Кб |
02. Multiple Linear Regression-rvYZp99nj6c.zh-CN.vtt |
2.23Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt |
2.17Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt |
1.63Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4 |
2.76Мб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt |
1.78Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt |
1.45Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt |
2.36Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt |
1.70Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4 |
2.22Мб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt |
1.77Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt |
1.51Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.ar.vtt |
2.17Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.en.vtt |
1.67Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.mp4 |
1.06Мб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.pt-BR.vtt |
1.54Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.zh-CN.vtt |
1.59Кб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt |
1.74Кб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 |
1.28Мб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt |
1.88Кб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt |
1.53Кб |
02. Non-Positional Encodings for Third Variables.html |
15.08Кб |
02. NULLs-WYUkLKn6XCw.ar.vtt |
1.53Кб |
02. NULLs-WYUkLKn6XCw.en.vtt |
1.08Кб |
02. NULLs-WYUkLKn6XCw.mp4 |
3.84Мб |
02. NULLs-WYUkLKn6XCw.pt-BR.vtt |
1.20Кб |
02. NULLs-WYUkLKn6XCw.zh-CN.vtt |
1015б |
02. Outline.html |
6.31Кб |
02. Overview.html |
8.63Кб |
02. Overview of other clustering methods.html |
6.61Кб |
02. Parch Posey Database-JOMI560DgXg.ar.vtt |
1.65Кб |
02. Parch Posey Database-JOMI560DgXg.en.vtt |
1.21Кб |
02. Parch Posey Database-JOMI560DgXg.mp4 |
5.26Мб |
02. Parch Posey Database-JOMI560DgXg.pt-BR.vtt |
1.35Кб |
02. Parch Posey Database-JOMI560DgXg.zh-CN.vtt |
1.15Кб |
02. Practice Statistical Significance.html |
8.07Кб |
02. Procedural vs. Object-Oriented Programming.html |
12.77Кб |
02. Project Details.html |
9.02Кб |
02. Project Motivation and Details.html |
8.59Кб |
02. Project Overview.html |
8.16Кб |
02. Project Overview.html |
8.38Кб |
02. Project Overview.html |
8.94Кб |
02. Projects.html |
8.69Кб |
02. Projects-1-E_ZYovKeI.en.vtt |
527б |
02. Projects-1-E_ZYovKeI.mp4 |
867.30Кб |
02. Projects-1-E_ZYovKeI.pt-BR.vtt |
516б |
02. Python Installation.html |
9.74Кб |
02. Python Installation.html |
10.97Кб |
02. Python Installation-2_P05aYChqQ.ar.vtt |
2.24Кб |
02. Python Installation-2_P05aYChqQ.ar.vtt |
2.24Кб |
02. Python Installation-2_P05aYChqQ.en.vtt |
1.76Кб |
02. Python Installation-2_P05aYChqQ.en.vtt |
1.76Кб |
02. Python Installation-2_P05aYChqQ.mp4 |
6.71Мб |
02. Python Installation-2_P05aYChqQ.mp4 |
6.71Мб |
02. Python Installation-2_P05aYChqQ.pt-BR.vtt |
2.12Кб |
02. Python Installation-2_P05aYChqQ.pt-BR.vtt |
2.12Кб |
02. Python Installation-2_P05aYChqQ.zh-CN.vtt |
1.64Кб |
02. Python Installation-2_P05aYChqQ.zh-CN.vtt |
1.64Кб |
02. Quiz Housing Prices.html |
8.86Кб |
02. Random Projection.html |
7.13Кб |
02. Recommending Apps 1.html |
10.04Кб |
02. Remote Repositories.html |
11.77Кб |
02. Reviews.html |
5.35Кб |
02. Reviews.html |
5.35Кб |
02. Revisiting the Data Analysis Process.html |
7.20Кб |
02. Roles of a Data Engineer.html |
5.60Кб |
02. Roles Of A Data Engineer-f57UbUlSDgo.en.vtt |
2.46Кб |
02. Roles Of A Data Engineer-f57UbUlSDgo.mp4 |
9.11Мб |
02. Roles Of A Data Engineer-f57UbUlSDgo.pt-BR.vtt |
2.90Кб |
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt |
2.26Кб |
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4 |
4.66Мб |
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt |
2.41Кб |
02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt |
1.83Кб |
02. Scatterplots and Correlation.html |
11.01Кб |
02. Scenario Description.html |
7.20Кб |
02. Shape.html |
8.20Кб |
02. Shape-DjsL64Kjr1Q.ar.vtt |
2.60Кб |
02. Shape-DjsL64Kjr1Q.en.vtt |
1.85Кб |
02. Shape-DjsL64Kjr1Q.es-ES.vtt |
1.85Кб |
02. Shape-DjsL64Kjr1Q.ja.vtt |
1.78Кб |
02. Shape-DjsL64Kjr1Q.mp4 |
11.18Мб |
02. Shape-DjsL64Kjr1Q.pt-BR.vtt |
1.97Кб |
02. Shape-DjsL64Kjr1Q.zh-CN.vtt |
1.60Кб |
02. Shape-w5qcGO8krMw.ar.vtt |
1002б |
02. Shape-w5qcGO8krMw.en.vtt |
790б |
02. Shape-w5qcGO8krMw.es-ES.vtt |
817б |
02. Shape-w5qcGO8krMw.ja.vtt |
748б |
02. Shape-w5qcGO8krMw.mp4 |
1.62Мб |
02. Shape-w5qcGO8krMw.pt-BR.vtt |
848б |
02. Shape-w5qcGO8krMw.zh-CN.vtt |
644б |
02. Simulating Coin Flips.html |
6.69Кб |
02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt |
4.92Кб |
02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt |
3.60Кб |
02. Simulating Coin Flips-7YtQNZ3iy6o.mp4 |
3.84Мб |
02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt |
3.91Кб |
02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt |
3.18Кб |
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt |
3.40Кб |
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4 |
8.49Мб |
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt |
3.25Кб |
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt |
3.00Кб |
02. Software Requirements.html |
7.04Кб |
02. Support.html |
5.01Кб |
02. Support.html |
5.01Кб |
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.en.vtt |
701б |
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.mp4 |
1.55Мб |
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.pt-BR.vtt |
638б |
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.zh-CN.vtt |
588б |
02. Tagging.html |
18.26Кб |
02. Testing.html |
6.29Кб |
02. Text + Images FULL OUTER JOIN.html |
11.01Кб |
02. Text Course Outline.html |
9.30Кб |
02. Text Optional Lessons Note.html |
8.53Кб |
02. Text What's Ahead.html |
8.19Кб |
02. Tidy Data.html |
9.75Кб |
02. Training Optimization.html |
6.19Кб |
02. Training Optimization-UiGKhx9pUYc.en.vtt |
824б |
02. Training Optimization-UiGKhx9pUYc.mp4 |
2.96Мб |
02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt |
874б |
02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt |
840б |
02. Troubleshooting Possible Errors.html |
6.18Кб |
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.ar.vtt |
3.89Кб |
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.en.vtt |
3.30Кб |
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.mp4 |
4.41Мб |
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.pt-BR.vtt |
2.75Кб |
02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.zh-CN.vtt |
3.08Кб |
02. Use Your Story to Stand Out.html |
7.91Кб |
02. Vectors, what even are they Part 2.html |
6.15Кб |
02. Vectors 2-R7WiQYixvRQ.en.vtt |
2.82Кб |
02. Vectors 2-R7WiQYixvRQ.mp4 |
2.52Мб |
02. Vectors 2-R7WiQYixvRQ.pt-BR.vtt |
2.55Кб |
02. Vectors 2-R7WiQYixvRQ.zh-CN.vtt |
2.29Кб |
02. Version Control In Daily Use.html |
10.20Кб |
02. Video + Text Example Recommendation Engines.html |
10.00Кб |
02. Video CRISP-DM.html |
11.23Кб |
02. Video Descriptive vs. Inferential Statistics.html |
9.73Кб |
02. Video First Things First.html |
6.62Кб |
02. Video Fitting Logistic Regression.html |
8.77Кб |
02. Video From Sampling Distributions to Confidence Intervals.html |
8.17Кб |
02. Video Histograms.html |
9.39Кб |
02. Video Introduction to Machine Learning.html |
8.44Кб |
02. Video Introduction to NULLs.html |
8.29Кб |
02. Video Introduction to Subqueries.html |
7.02Кб |
02. Video LEFT RIGHT.html |
7.58Кб |
02. Video Lesson Topics.html |
7.42Кб |
02. Video Multiple Linear Regression.html |
9.16Кб |
02. Video The Parch Posey Database.html |
9.83Кб |
02. Video Why Would We Want to Split Data Into Separate Tables.html |
9.58Кб |
02. Video Window Functions 1.html |
9.33Кб |
02. Welcome to the Course!.html |
5.83Кб |
02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.en.vtt |
6.25Кб |
02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.mp4 |
40.19Мб |
02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.pt-BR.vtt |
5.97Кб |
02. What is an Experiment.html |
18.87Кб |
02. What Is An Experiment-fH_xF5_SDCE.en.vtt |
2.45Кб |
02. What Is An Experiment-fH_xF5_SDCE.mp4 |
2.91Мб |
02. What Is An Experiment-fH_xF5_SDCE.pt-BR.vtt |
2.63Кб |
02. What Is An Experiment Pt 2-PYzN1usi7QY.en.vtt |
4.16Кб |
02. What Is An Experiment Pt 2-PYzN1usi7QY.mp4 |
6.77Мб |
02. What Is An Experiment Pt 2-PYzN1usi7QY.pt-BR.vtt |
4.31Кб |
02. What Makes a Bad Visual.html |
7.53Кб |
02. What Makes a Bad Visual-zbvB_9f7bFs.ar.vtt |
4.49Кб |
02. What Makes a Bad Visual-zbvB_9f7bFs.en.vtt |
3.32Кб |
02. What Makes a Bad Visual-zbvB_9f7bFs.mp4 |
6.14Мб |
02. What Makes a Bad Visual-zbvB_9f7bFs.pt-BR.vtt |
3.35Кб |
02. What Makes a Bad Visual-zbvB_9f7bFs.zh-CN.vtt |
3.11Кб |
02. Which line is better.html |
7.43Кб |
02. Why Not Store Everything in One Table-rvY4A6FpS40.ar.vtt |
1.12Кб |
02. Why Not Store Everything in One Table-rvY4A6FpS40.en.vtt |
898б |
02. Why Not Store Everything in One Table-rvY4A6FpS40.mp4 |
863.33Кб |
02. Why Not Store Everything in One Table-rvY4A6FpS40.pt-BR.vtt |
834б |
02. Why Not Store Everything in One Table-rvY4A6FpS40.zh-CN.vtt |
761б |
02. Why Use Separate Tables-UIQBtpmqYOs.ar.vtt |
4.17Кб |
02. Why Use Separate Tables-UIQBtpmqYOs.en.vtt |
3.07Кб |
02. Why Use Separate Tables-UIQBtpmqYOs.mp4 |
3.95Мб |
02. Why Use Separate Tables-UIQBtpmqYOs.pt-BR.vtt |
3.26Кб |
02. Why Use Separate Tables-UIQBtpmqYOs.zh-CN.vtt |
2.58Кб |
02. Window Functions-gp0RPgkDHsQ.ar.vtt |
3.50Кб |
02. Window Functions-gp0RPgkDHsQ.en.vtt |
2.64Кб |
02. Window Functions-gp0RPgkDHsQ.mp4 |
3.68Мб |
02. Window Functions-gp0RPgkDHsQ.pt-BR.vtt |
2.47Кб |
02. Window Functions-gp0RPgkDHsQ.zh-CN.vtt |
2.37Кб |
02. Windows Installing Git Bash.html |
8.92Кб |
02. Workspace Portfolio Exercise.html |
5.98Кб |
02-guide-how-transfer-learning-v3-01.png |
251.26Кб |
02-guide-how-transfer-learning-v3-02.png |
219.27Кб |
02-guide-how-transfer-learning-v3-03.png |
228.93Кб |
02-guide-how-transfer-learning-v3-04.png |
255.16Кб |
02-guide-how-transfer-learning-v3-05.png |
232.52Кб |
02-guide-how-transfer-learning-v3-06.png |
259.12Кб |
02-guide-how-transfer-learning-v3-07.png |
233.30Кб |
02-guide-how-transfer-learning-v3-08.png |
241.57Кб |
02-guide-how-transfer-learning-v3-09.png |
228.05Кб |
02-guide-how-transfer-learning-v3-10.png |
241.76Кб |
03. [For Windows] Configuring Git Bash to Run Python.html |
13.25Кб |
03. AB Testing.html |
10.22Кб |
03. Add A Remote Repository.html |
32.05Кб |
03. Admissions 2.html |
8.48Кб |
03. Admissions 2-o91iPvtqt78.ar.vtt |
94б |
03. Admissions 2-o91iPvtqt78.en.vtt |
90б |
03. Admissions 2-o91iPvtqt78.es-ES.vtt |
95б |
03. Admissions 2-o91iPvtqt78.hr.vtt |
85б |
03. Admissions 2-o91iPvtqt78.it.vtt |
88б |
03. Admissions 2-o91iPvtqt78.ja.vtt |
88б |
03. Admissions 2-o91iPvtqt78.mp4 |
339.25Кб |
03. Admissions 2-o91iPvtqt78.pt-BR.vtt |
91б |
03. Admissions 2-o91iPvtqt78.zh-CN.vtt |
83б |
03. Admissions 2-o91iPvtqt78.zh-Hans.vtt |
85б |
03. Admissions 2-pJrwiukN3Ls.ar.vtt |
208б |
03. Admissions 2-pJrwiukN3Ls.en.vtt |
196б |
03. Admissions 2-pJrwiukN3Ls.es-ES.vtt |
227б |
03. Admissions 2-pJrwiukN3Ls.hr.vtt |
209б |
03. Admissions 2-pJrwiukN3Ls.it.vtt |
205б |
03. Admissions 2-pJrwiukN3Ls.ja.vtt |
219б |
03. Admissions 2-pJrwiukN3Ls.mp4 |
1.21Мб |
03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt |
223б |
03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt |
215б |
03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt |
180б |
03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt |
189б |
03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.en.vtt |
2.45Кб |
03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.mp4 |
3.84Мб |
03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.pt-BR.vtt |
2.83Кб |
03. Arvato Final Project-qBR6A0IQXEE.en.vtt |
5.37Кб |
03. Arvato Final Project-qBR6A0IQXEE.mp4 |
25.37Мб |
03. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt |
5.72Кб |
03. Bar Charts.html |
14.42Кб |
03. Better Formula.html |
7.88Кб |
03. Better Formula-vMAl1m8ZtoI.ar.vtt |
650б |
03. Better Formula-vMAl1m8ZtoI.en.vtt |
528б |
03. Better Formula-vMAl1m8ZtoI.es-ES.vtt |
533б |
03. Better Formula-vMAl1m8ZtoI.ja.vtt |
492б |
03. Better Formula-vMAl1m8ZtoI.mp4 |
2.52Мб |
03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt |
523б |
03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt |
456б |
03. Better Formula-z2xsu2Kehyo.ar.vtt |
302б |
03. Better Formula-z2xsu2Kehyo.en.vtt |
216б |
03. Better Formula-z2xsu2Kehyo.es-ES.vtt |
231б |
03. Better Formula-z2xsu2Kehyo.ja.vtt |
202б |
03. Better Formula-z2xsu2Kehyo.mp4 |
1.10Мб |
03. Better Formula-z2xsu2Kehyo.pt-BR.vtt |
240б |
03. Better Formula-z2xsu2Kehyo.zh-CN.vtt |
186б |
03. BMG Inspiration-ulMqa4YWbvc.en.vtt |
2.47Кб |
03. BMG Inspiration-ulMqa4YWbvc.mp4 |
11.56Мб |
03. BMG Inspiration-ulMqa4YWbvc.pt-BR.vtt |
2.35Кб |
03. Branching.html |
19.14Кб |
03. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt |
3.65Кб |
03. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4 |
13.54Мб |
03. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt |
3.44Кб |
03. Building a Funnel.html |
9.05Кб |
03. Case Study Clean and Tokenize.html |
7.70Кб |
03. Changing How Git Log Displays Information.html |
13.14Кб |
03. Class, Object, Method and Attribute.html |
12.43Кб |
03. Classification Example-46PywnGa_cQ.en.vtt |
1.76Кб |
03. Classification Example-46PywnGa_cQ.mp4 |
1.62Мб |
03. Classification Example-46PywnGa_cQ.pt-BR.vtt |
1.60Кб |
03. Classification Example-46PywnGa_cQ.zh-CN.vtt |
1.65Кб |
03. Classification Problems 1.html |
8.74Кб |
03. Classification Problems 1.html |
9.60Кб |
03. Classification Problems 2.html |
5.60Кб |
03. Classsification Example-Dh625piH7Z0.en.vtt |
2.70Кб |
03. Classsification Example-Dh625piH7Z0.en.vtt |
2.70Кб |
03. Classsification Example-Dh625piH7Z0.mp4 |
2.07Мб |
03. Classsification Example-Dh625piH7Z0.mp4 |
2.07Мб |
03. Classsification Example-Dh625piH7Z0.pt-BR.vtt |
2.51Кб |
03. Classsification Example-Dh625piH7Z0.pt-BR.vtt |
2.51Кб |
03. Classsification Example-Dh625piH7Z0.zh-CN.vtt |
2.37Кб |
03. Classsification Example-Dh625piH7Z0.zh-CN.vtt |
2.37Кб |
03. Clone An Existing Repo.html |
16.24Кб |
03. Color Palettes.html |
18.91Кб |
03. Components of a Web App.html |
11.51Кб |
03. Cross Validation.html |
6.08Кб |
03. Dan Frank Interview-Me-KRvZW1QQ.mp4 |
26.13Мб |
03. Dan Frank Interview-Me-KRvZW1QQ.pt-BR.vtt |
5.39Кб |
03. Data Types and NULLs-RgTcYwKqtYI.ar.vtt |
3.07Кб |
03. Data Types and NULLs-RgTcYwKqtYI.en.vtt |
2.25Кб |
03. Data Types and NULLs-RgTcYwKqtYI.mp4 |
2.13Мб |
03. Data Types and NULLs-RgTcYwKqtYI.pt-BR.vtt |
2.23Кб |
03. Data Types and NULLs-RgTcYwKqtYI.zh-CN.vtt |
1.98Кб |
03. DataVis L3 03 V2-srRhFrSPdvs.en.vtt |
6.40Кб |
03. DataVis L3 03 V2-srRhFrSPdvs.mp4 |
6.98Мб |
03. DataVis L3 03 V2-srRhFrSPdvs.pt-BR.vtt |
6.90Кб |
03. DataVis L3 03 V2-srRhFrSPdvs.zh-CN.vtt |
5.45Кб |
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.en.vtt |
3.60Кб |
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.mp4 |
3.75Мб |
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.pt-BR.vtt |
3.38Кб |
03. Data Vis L4 C03 V1-0F6ldBC6Nbs.zh-CN.vtt |
3.15Кб |
03. DataVis L5C03 V2-iokI7HrxeNc.en.vtt |
3.67Кб |
03. DataVis L5C03 V2-iokI7HrxeNc.mp4 |
4.22Мб |
03. DataVis L5C03 V2-iokI7HrxeNc.pt-BR.vtt |
3.78Кб |
03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt |
5.13Кб |
03. Elevator Pitch-S-nAHPrkQrQ.en.vtt |
3.53Кб |
03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt |
3.56Кб |
03. Elevator Pitch-S-nAHPrkQrQ.mp4 |
20.63Мб |
03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt |
3.47Кб |
03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt |
3.40Кб |
03. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt |
1.49Кб |
03. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt |
1.05Кб |
03. Entity Relationship Diagrams-YY2TAJLEINA.mp4 |
1.31Мб |
03. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt |
1.15Кб |
03. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt |
979б |
03. Essence of Linear Algebra.html |
5.38Кб |
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.en.vtt |
7.03Кб |
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4 |
8.60Мб |
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.pt-BR.vtt |
7.08Кб |
03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.zh-CN.vtt |
6.12Кб |
03. Fair Coin.html |
8.74Кб |
03. Fair Coin-9LrlrexpW_o.ar.vtt |
1.09Кб |
03. Fair Coin-9LrlrexpW_o.en.vtt |
879б |
03. Fair Coin-9LrlrexpW_o.es-ES.vtt |
957б |
03. Fair Coin-9LrlrexpW_o.hr.vtt |
957б |
03. Fair Coin-9LrlrexpW_o.it.vtt |
967б |
03. Fair Coin-9LrlrexpW_o.ja.vtt |
911б |
03. Fair Coin-9LrlrexpW_o.mp4 |
5.84Мб |
03. Fair Coin-9LrlrexpW_o.pt-BR.vtt |
884б |
03. Fair Coin-9LrlrexpW_o.th.vtt |
1.78Кб |
03. Fair Coin-9LrlrexpW_o.zh-CN.vtt |
828б |
03. Fair Coin-fSKL742j-zk.ar.vtt |
278б |
03. Fair Coin-fSKL742j-zk.en.vtt |
190б |
03. Fair Coin-fSKL742j-zk.es-ES.vtt |
192б |
03. Fair Coin-fSKL742j-zk.hr.vtt |
155б |
03. Fair Coin-fSKL742j-zk.it.vtt |
178б |
03. Fair Coin-fSKL742j-zk.ja.vtt |
149б |
03. Fair Coin-fSKL742j-zk.mp4 |
797.83Кб |
03. Fair Coin-fSKL742j-zk.pt-BR.vtt |
173б |
03. Fair Coin-fSKL742j-zk.th.vtt |
342б |
03. Fair Coin-fSKL742j-zk.zh-CN.vtt |
197б |
03. Figure 8 Project-QbLVh5GTuJQ.en.vtt |
4.28Кб |
03. Figure 8 Project-QbLVh5GTuJQ.mp4 |
13.64Мб |
03. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt |
4.42Кб |
03. Figure 8 Project V2-adtlHL42AuQ.en.vtt |
3.90Кб |
03. Figure 8 Project V2-adtlHL42AuQ.mp4 |
12.62Мб |
03. Figure 8 Project V2-adtlHL42AuQ.pt-BR.vtt |
4.03Кб |
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.en.vtt |
1.75Кб |
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.mp4 |
4.78Мб |
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.pt-BR.vtt |
1.57Кб |
03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.zh-CN.vtt |
1.45Кб |
03. Further Motivation.html |
6.20Кб |
03. Further Motivation-sjGxUKrbKoI.ar.vtt |
2.03Кб |
03. Further Motivation-sjGxUKrbKoI.en.vtt |
1.46Кб |
03. Further Motivation-sjGxUKrbKoI.mp4 |
3.51Мб |
03. Further Motivation-sjGxUKrbKoI.pt-BR.vtt |
1.63Кб |
03. Further Motivation-sjGxUKrbKoI.zh-CN.vtt |
1.39Кб |
03. Gaussian Distribution in One Dimension.html |
7.53Кб |
03. Git and Version Control Terminology.html |
13.86Кб |
03. Git Commit.html |
21.43Кб |
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.ar.vtt |
3.63Кб |
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.en.vtt |
2.65Кб |
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.mp4 |
10.33Мб |
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.pt-BR.vtt |
2.79Кб |
03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.zh-CN.vtt |
2.42Кб |
03. GitHub profile important items.html |
7.32Кб |
03. GitHub profile important items-prvPVTjVkwQ.ar.vtt |
3.93Кб |
03. GitHub profile important items-prvPVTjVkwQ.en.vtt |
2.93Кб |
03. GitHub profile important items-prvPVTjVkwQ.mp4 |
3.36Мб |
03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt |
3.14Кб |
03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt |
2.65Кб |
03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt |
10.81Кб |
03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 |
11.25Мб |
03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt |
10.84Кб |
03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt |
9.46Кб |
03. Gradient Descent The Math.html |
5.93Кб |
03. Heads Tails 2.html |
7.88Кб |
03. Heads Tails 2-S87Z5DgPJeo.ar.vtt |
250б |
03. Heads Tails 2-S87Z5DgPJeo.en.vtt |
214б |
03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt |
233б |
03. Heads Tails 2-S87Z5DgPJeo.ja.vtt |
243б |
03. Heads Tails 2-S87Z5DgPJeo.mp4 |
1.44Мб |
03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt |
249б |
03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt |
216б |
03. Heads Tails 2-vLhdJtXx060.ar.vtt |
339б |
03. Heads Tails 2-vLhdJtXx060.en.vtt |
244б |
03. Heads Tails 2-vLhdJtXx060.es-ES.vtt |
239б |
03. Heads Tails 2-vLhdJtXx060.ja.vtt |
248б |
03. Heads Tails 2-vLhdJtXx060.mp4 |
1.60Мб |
03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt |
291б |
03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt |
250б |
03. Hierarchical clustering single-link.html |
6.61Кб |
03. History - A Computer Scientist's Perspective.html |
5.89Кб |
03. How Computers Interpret Images.html |
9.02Кб |
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt |
5.52Кб |
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 |
6.18Мб |
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt |
5.95Кб |
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt |
4.91Кб |
03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.en.vtt |
3.16Кб |
03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.mp4 |
4.94Мб |
03. Image Classifier - Part 1 - Development.html |
6.50Кб |
03. Install Python Using Anaconda.html |
9.87Кб |
03. Interview Caroline [BMG].html |
5.14Кб |
03. Interview Dan [Coinbase].html |
4.98Кб |
03. Interview Rachel [Kaggle].html |
5.00Кб |
03. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt |
3.92Кб |
03. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4 |
25.24Мб |
03. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt |
4.01Кб |
03. Knowledge.html |
6.70Кб |
03. Knowledge.html |
6.70Кб |
03. Known and Inferred.html |
6.25Кб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.en.vtt |
1.89Кб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.mp4 |
4.81Мб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.pt-BR.vtt |
1.94Кб |
03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt |
1.70Кб |
03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt |
1.17Кб |
03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4 |
4.03Мб |
03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt |
1.39Кб |
03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt |
1.10Кб |
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.ar.vtt |
2.92Кб |
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.en.vtt |
2.23Кб |
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.mp4 |
2.60Мб |
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.pt-BR.vtt |
2.03Кб |
03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.zh-CN.vtt |
2.10Кб |
03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.mp4 |
7.07Мб |
03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.pt-BR.vtt |
4.96Кб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.en.vtt |
2.44Кб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.mp4 |
9.66Мб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.pt-BR.vtt |
2.74Кб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.en.vtt |
2.17Кб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.mp4 |
7.70Мб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.pt-BR.vtt |
2.68Кб |
03. L3 031 Bar Charts V3-ybXcduB6cXA.en.vtt |
3.41Кб |
03. L3 031 Bar Charts V3-ybXcduB6cXA.mp4 |
6.41Мб |
03. L3 031 Bar Charts V3-ybXcduB6cXA.pt-BR.vtt |
4.01Кб |
03. L3 031 Bar Charts V3-ybXcduB6cXA.zh-CN.vtt |
2.77Кб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.en.vtt |
3.21Кб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.mp4 |
6.49Мб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.pt-BR.vtt |
3.22Кб |
03. L3 - Include Upstream Changes-VvoC6hN6FjU.ar.vtt |
3.98Кб |
03. L3 - Include Upstream Changes-VvoC6hN6FjU.en.vtt |
3.28Кб |
03. L3 - Include Upstream Changes-VvoC6hN6FjU.mp4 |
3.01Мб |
03. L3 - Include Upstream Changes-VvoC6hN6FjU.pt-BR.vtt |
3.77Кб |
03. L3 - Include Upstream Changes-VvoC6hN6FjU.zh-CN.vtt |
3.02Кб |
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.en.vtt |
3.42Кб |
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.mp4 |
4.66Мб |
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.pt-BR.vtt |
3.57Кб |
03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.zh-CN.vtt |
3.01Кб |
03. L4 Components Of A Web App V4-2aJf5sO2ox4.en.vtt |
2.45Кб |
03. L4 Components Of A Web App V4-2aJf5sO2ox4.mp4 |
3.31Мб |
03. L4 Components Of A Web App V4-2aJf5sO2ox4.pt-BR.vtt |
2.65Кб |
03. L5 031 Color Palettes V1-nirOTWkuiSM.en.vtt |
3.55Кб |
03. L5 031 Color Palettes V1-nirOTWkuiSM.mp4 |
4.49Мб |
03. L5 031 Color Palettes V1-nirOTWkuiSM.pt-BR.vtt |
3.54Кб |
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.en.vtt |
1.20Кб |
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.mp4 |
1.14Мб |
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.pt-BR.vtt |
1.30Кб |
03. Levels of Measurement Types of Data.html |
11.38Кб |
03. Linear Combination and Span.html |
9.57Кб |
03. Matrix Addition Quiz.html |
7.94Кб |
03. Medical Example 2.html |
8.41Кб |
03. Medical Example 2-FV_hc3MzS_8.ar.vtt |
3.86Кб |
03. Medical Example 2-FV_hc3MzS_8.en.vtt |
2.84Кб |
03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt |
2.99Кб |
03. Medical Example 2-FV_hc3MzS_8.it.vtt |
3.02Кб |
03. Medical Example 2-FV_hc3MzS_8.ja.vtt |
2.73Кб |
03. Medical Example 2-FV_hc3MzS_8.mp4 |
22.05Мб |
03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt |
3.16Кб |
03. Medical Example 2-FV_hc3MzS_8.th.vtt |
5.40Кб |
03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt |
2.42Кб |
03. Medical Example 2-VLLG0rYC7To.ar.vtt |
491б |
03. Medical Example 2-VLLG0rYC7To.en.vtt |
373б |
03. Medical Example 2-VLLG0rYC7To.es-ES.vtt |
406б |
03. Medical Example 2-VLLG0rYC7To.it.vtt |
409б |
03. Medical Example 2-VLLG0rYC7To.ja.vtt |
373б |
03. Medical Example 2-VLLG0rYC7To.mp4 |
2.49Мб |
03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt |
444б |
03. Medical Example 2-VLLG0rYC7To.th.vtt |
634б |
03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt |
351б |
03. Meet Andrew.html |
4.95Кб |
03. Minimizing Distances.html |
6.44Кб |
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt |
1.56Кб |
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4 |
4.19Мб |
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt |
1.46Кб |
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt |
1.41Кб |
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt |
2.65Кб |
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4 |
9.20Мб |
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt |
2.50Кб |
03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt |
2.50Кб |
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.en.vtt |
6.11Кб |
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.mp4 |
18.13Мб |
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.pt-BR.vtt |
5.49Кб |
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.zh-CN.vtt |
5.35Кб |
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.en.vtt |
2.48Кб |
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.mp4 |
8.39Мб |
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.pt-BR.vtt |
2.32Кб |
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.zh-CN.vtt |
2.09Кб |
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.en-US.vtt |
6.11Кб |
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4 |
9.23Мб |
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.pt-BR.vtt |
5.74Кб |
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.zh-CN.vtt |
5.23Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt |
4.70Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt |
3.55Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4 |
2.60Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt |
3.41Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt |
3.31Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt |
1.57Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt |
1.16Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4 |
908.99Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt |
1.17Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt |
1.06Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt |
2.19Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt |
1.52Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4 |
5.03Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt |
1.57Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt |
1.35Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt |
1.46Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt |
1.14Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4 |
1.85Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt |
1.22Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt |
1.03Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt |
2.15Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt |
1.60Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4 |
4.23Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt |
1.67Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt |
1.49Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.ar.vtt |
6.46Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.en.vtt |
4.92Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.mp4 |
3.55Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.pt-BR.vtt |
4.53Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.zh-CN.vtt |
4.53Кб |
03. Next Steps-kXMCKZ4HqsM.en.vtt |
3.33Кб |
03. Next Steps-kXMCKZ4HqsM.mp4 |
12.96Мб |
03. Next Steps-kXMCKZ4HqsM.pt-BR.vtt |
3.49Кб |
03. Non-Linear Models.html |
7.54Кб |
03. Non-Linear Models-HWuBKCZsCo8.en.vtt |
1.30Кб |
03. Non-Linear Models-HWuBKCZsCo8.mp4 |
1.13Мб |
03. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt |
1.39Кб |
03. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt |
1.12Кб |
03. NumPy 0 V1-vyjMs8KFHlE.en.vtt |
4.14Кб |
03. NumPy 0 V1-vyjMs8KFHlE.mp4 |
4.35Мб |
03. NumPy 0 V1-vyjMs8KFHlE.pt-BR.vtt |
4.71Кб |
03. NumPy 0 V1-vyjMs8KFHlE.zh-CN.vtt |
3.68Кб |
03. Opening a terminal.html |
7.26Кб |
03. Overplotting, Transparency, and Jitter.html |
11.03Кб |
03. Part 1 V2-n4mbZYIfKb4.en.vtt |
10.47Кб |
03. Part 1 V2-n4mbZYIfKb4.mp4 |
13.81Мб |
03. Part 1 V2-n4mbZYIfKb4.pt-BR.vtt |
9.38Кб |
03. Part 1 V2-n4mbZYIfKb4.zh-CN.vtt |
8.57Кб |
03. Practice Conditional Statements.html |
10.15Кб |
03. Pre-Lab Student Admissions in Keras.html |
11.51Кб |
03. Prior And Posterior.html |
10.87Кб |
03. Prior And Posterior-GlmS_jox08s.ar.vtt |
509б |
03. Prior And Posterior-GlmS_jox08s.en.vtt |
351б |
03. Prior And Posterior-GlmS_jox08s.es-ES.vtt |
337б |
03. Prior And Posterior-GlmS_jox08s.it.vtt |
338б |
03. Prior And Posterior-GlmS_jox08s.ja.vtt |
419б |
03. Prior And Posterior-GlmS_jox08s.mp4 |
3.75Мб |
03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt |
433б |
03. Prior And Posterior-GlmS_jox08s.th.vtt |
768б |
03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt |
355б |
03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt |
4.20Кб |
03. Prior And Posterior-o2Tpws5C2Eg.en.vtt |
3.28Кб |
03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt |
3.41Кб |
03. Prior And Posterior-o2Tpws5C2Eg.it.vtt |
3.47Кб |
03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt |
2.86Кб |
03. Prior And Posterior-o2Tpws5C2Eg.mp4 |
14.97Мб |
03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt |
3.24Кб |
03. Prior And Posterior-o2Tpws5C2Eg.th.vtt |
5.61Кб |
03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt |
2.99Кб |
03. Probability Quiz.html |
10.45Кб |
03. Programming in Python.html |
5.58Кб |
03. Program Structure Schedule.html |
12.21Кб |
03. Project Details.html |
10.90Кб |
03. Project Details.html |
11.99Кб |
03. Project Preview.html |
6.01Кб |
03. Project Workspace.html |
5.57Кб |
03. PyTorch Tensors.html |
6.67Кб |
03. Quiz Arithmetic Operators.html |
12.51Кб |
03. Quiz Defining Functions.html |
9.46Кб |
03. Quiz Descriptive vs. Inferential (Udacity Students).html |
10.94Кб |
03. Quiz FULL OUTER JOIN.html |
9.39Кб |
03. Quiz LEFT RIGHT.html |
8.31Кб |
03. Quiz Logistic Regression Quick Check.html |
10.81Кб |
03. Quiz Machine Learning Big Picture.html |
9.19Кб |
03. Quiz Window Functions 1.html |
8.42Кб |
03. Rachel from Kaggle-uVsYYzxbyIg.en.vtt |
6.60Кб |
03. Rachel from Kaggle-uVsYYzxbyIg.mp4 |
26.42Мб |
03. Rachel from Kaggle-uVsYYzxbyIg.pt-BR.vtt |
6.07Кб |
03. Random Forests.html |
5.92Кб |
03. Random Projection in sklearn.html |
5.66Кб |
03. Recommending Apps 2.html |
8.06Кб |
03. Refactoring Code.html |
7.99Кб |
03. Reverting A Commit.html |
8.36Кб |
03. Reviewing Existing Work.html |
20.20Кб |
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt |
2.75Кб |
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4 |
3.74Мб |
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt |
2.57Кб |
03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt |
2.36Кб |
03. Screencast Fitting A Multiple Linear Regression Model.html |
8.16Кб |
03. ScreenCast Sampling Distributions and Confidence Intervals.html |
8.01Кб |
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt |
2.45Кб |
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4 |
5.08Мб |
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt |
2.70Кб |
03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt |
2.07Кб |
03. Setting Up Hypothesis Tests - Part I.html |
10.45Кб |
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt |
1.23Кб |
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4 |
2.62Мб |
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt |
1.21Кб |
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt |
1.12Кб |
03. Software Data Requirements.html |
8.29Кб |
03. Solution Housing Prices.html |
7.59Кб |
03. Solution Housing Prices-uhdTulw9-Nc.en.vtt |
939б |
03. Solution Housing Prices-uhdTulw9-Nc.mp4 |
1001.40Кб |
03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt |
1.00Кб |
03. Starting the Project.html |
6.56Кб |
03. Statistical Significance - Solution.html |
6.75Кб |
03. Stay in sync with source project.html |
19.72Кб |
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.en.vtt |
1.40Кб |
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.mp4 |
2.91Мб |
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.pt-BR.vtt |
1.09Кб |
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.zh-CN.vtt |
1.15Кб |
03. Tell A Story-_IdOUEhjVGI.ar.vtt |
2.35Кб |
03. Tell A Story-_IdOUEhjVGI.en.vtt |
1.89Кб |
03. Tell A Story-_IdOUEhjVGI.mp4 |
6.05Мб |
03. Tell A Story-_IdOUEhjVGI.pt-BR.vtt |
1.88Кб |
03. Tell A Story-_IdOUEhjVGI.zh-CN.vtt |
1.79Кб |
03. Tell A Story.html |
6.04Кб |
03. Term 2 Projects.html |
8.52Кб |
03. Testing.html |
6.09Кб |
03. Testing and Data Science.html |
7.45Кб |
03. Testing-EeBZpb-PSac.en.vtt |
2.41Кб |
03. Testing-EeBZpb-PSac.mp4 |
2.00Мб |
03. Testing-EeBZpb-PSac.pt-BR.vtt |
2.37Кб |
03. Testing-EeBZpb-PSac.zh-CN.vtt |
1.99Кб |
03. Testing-gmxGRJSKEb0.en-US.vtt |
7.63Кб |
03. Testing-gmxGRJSKEb0.mp4 |
5.63Мб |
03. Testing-gmxGRJSKEb0.pt-BR.vtt |
7.34Кб |
03. Testing-gmxGRJSKEb0.zh-CN.vtt |
6.75Кб |
03. Testing your models.html |
11.42Кб |
03. Text Lesson Topics.html |
8.23Кб |
03. Text Processing.html |
10.42Кб |
03. Text Processing-6LO6I5M18PQ.en.vtt |
1.18Кб |
03. Text Processing-6LO6I5M18PQ.mp4 |
1.77Мб |
03. Text Processing-6LO6I5M18PQ.pt-BR.vtt |
1.24Кб |
03. Text Processing-6LO6I5M18PQ.zh-CN.vtt |
1.06Кб |
03. Text Processing-pqheVyctkNQ.en.vtt |
2.63Кб |
03. Text Processing-pqheVyctkNQ.mp4 |
2.96Мб |
03. Text Processing-pqheVyctkNQ.pt-BR.vtt |
2.96Кб |
03. Text Processing-pqheVyctkNQ.zh-CN.vtt |
2.30Кб |
03. Text README Showcase.html |
10.95Кб |
03. Text What's Ahead.html |
9.80Кб |
03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.en.vtt |
1.95Кб |
03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.mp4 |
5.81Мб |
03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.pt-BR.vtt |
1.95Кб |
03. Troubleshooting Possible Errors.html |
6.07Кб |
03. Two Types of Unsupervised Learning-aHK_rpaS_ts.en.vtt |
1.74Кб |
03. Two Types of Unsupervised Learning-aHK_rpaS_ts.mp4 |
2.16Мб |
03. Two Types of Unsupervised Learning-aHK_rpaS_ts.pt-BR.vtt |
1.77Кб |
03. Types of Experiment.html |
9.37Кб |
03. Types Of Experiments-7ihDj4M7EiU.en.vtt |
4.93Кб |
03. Types Of Experiments-7ihDj4M7EiU.mp4 |
7.55Мб |
03. Types Of Experiments-7ihDj4M7EiU.pt-BR.vtt |
5.30Кб |
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.ar.vtt |
2.87Кб |
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.en.vtt |
2.51Кб |
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.mp4 |
3.02Мб |
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.pt-BR.vtt |
2.10Кб |
03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.zh-CN.vtt |
2.26Кб |
03. Univariate Exploration.html |
5.72Кб |
03. Vectors, what even are they Part 3.html |
6.15Кб |
03. Vectors 3-mWV_MpEjz9c.en.vtt |
5.85Кб |
03. Vectors 3-mWV_MpEjz9c.mp4 |
6.29Мб |
03. Vectors 3-mWV_MpEjz9c.pt-BR.vtt |
5.43Кб |
03. Vectors 3-mWV_MpEjz9c.zh-CN.vtt |
4.96Кб |
03. Video + Quiz Write Your First Subquery.html |
14.66Кб |
03. Video + Text The Parch Posey Database.html |
12.22Кб |
03. Video How Do We Know Our Recommendations Are Good.html |
8.88Кб |
03. Video Introduction to JOINs.html |
7.69Кб |
03. Video NULLs and Aggregation.html |
9.12Кб |
03. Video The Data Science Process - Business Data.html |
11.57Кб |
03. Video Two Types of Unsupervised Learning.html |
7.45Кб |
03. Video Weekdays vs. Weekends What is the Difference.html |
9.07Кб |
03. Video Welcome!.html |
8.38Кб |
03. What's Next.html |
4.91Кб |
03. What Is Coming Up-oDJsnQcCPr4.ar.vtt |
1.31Кб |
03. What Is Coming Up-oDJsnQcCPr4.en.vtt |
963б |
03. What Is Coming Up-oDJsnQcCPr4.mp4 |
2.19Мб |
03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt |
1.07Кб |
03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt |
913б |
03. What is the Difference-I3tQvrCgNrQ.ar.vtt |
1.83Кб |
03. What is the Difference-I3tQvrCgNrQ.en.vtt |
1.31Кб |
03. What is the Difference-I3tQvrCgNrQ.mp4 |
1.27Мб |
03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt |
1.46Кб |
03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt |
1.09Кб |
03. Why Use an Elevator Pitch.html |
6.53Кб |
03. Why Use NumPy.html |
8.27Кб |
03. Why Use Pandas.html |
7.28Кб |
03. Workspace.html |
5.23Кб |
03. Workspace.html |
5.29Кб |
03. World Bank Datasets.html |
14.14Кб |
03. World Bank Datasets-lNPzOLzZVbw.en.vtt |
5.14Кб |
03. World Bank Datasets-lNPzOLzZVbw.mp4 |
9.25Мб |
03. World Bank Datasets-lNPzOLzZVbw.pt-BR.vtt |
5.20Кб |
03. Your First JOIN-HkX9fkNRbU8.ar.vtt |
2.56Кб |
03. Your First JOIN-HkX9fkNRbU8.en.vtt |
2.06Кб |
03. Your First JOIN-HkX9fkNRbU8.mp4 |
2.12Мб |
03. Your First JOIN-HkX9fkNRbU8.pt-BR.vtt |
1.81Кб |
03. Your First JOIN-HkX9fkNRbU8.zh-CN.vtt |
1.87Кб |
03. Your First Subquery-cTM1jPYXLoQ.ar.vtt |
4.05Кб |
03. Your First Subquery-cTM1jPYXLoQ.en.vtt |
2.86Кб |
03. Your First Subquery-cTM1jPYXLoQ.mp4 |
4.33Мб |
03. Your First Subquery-cTM1jPYXLoQ.pt-BR.vtt |
3.15Кб |
03. Your First Subquery-cTM1jPYXLoQ.zh-CN.vtt |
2.56Кб |
04. [For Windows] Configuring Git Bash to Run Python.html |
14.49Кб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.en.vtt |
6.71Кб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.mp4 |
8.18Мб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.pt-BR.vtt |
7.48Кб |
04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.en.vtt |
1.46Кб |
04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.mp4 |
3.29Мб |
04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.pt-BR.vtt |
1.61Кб |
04. 06 Unit Tests V1-wb9jggHEvgI.en.vtt |
3.91Кб |
04. 06 Unit Tests V1-wb9jggHEvgI.mp4 |
4.49Мб |
04. 06 Unit Tests V1-wb9jggHEvgI.pt-BR.vtt |
4.04Кб |
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt |
3.02Кб |
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 |
2.83Мб |
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt |
3.34Кб |
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt |
2.76Кб |
04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt |
4.65Кб |
04. 29 Number Summary-gzUN5zKLHjQ.en.vtt |
3.56Кб |
04. 29 Number Summary-gzUN5zKLHjQ.mp4 |
4.36Мб |
04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt |
3.90Кб |
04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt |
2.93Кб |
04. 5 Flips 1 Head.html |
7.90Кб |
04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt |
364б |
04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt |
256б |
04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt |
281б |
04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt |
254б |
04. 5 Flips 1 Head-4LVRNqpdxsw.mp4 |
1.59Мб |
04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt |
356б |
04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt |
268б |
04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt |
222б |
04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt |
146б |
04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt |
160б |
04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt |
180б |
04. 5 Flips 1 Head-VEfOdACY9rA.mp4 |
1.49Мб |
04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt |
223б |
04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt |
153б |
04. Absolute vs. Relative Frequency.html |
11.82Кб |
04. Admissions 3.html |
8.36Кб |
04. Admissions 3-iKTYAsZLbhc.ar.vtt |
738б |
04. Admissions 3-iKTYAsZLbhc.en.vtt |
622б |
04. Admissions 3-iKTYAsZLbhc.es-ES.vtt |
671б |
04. Admissions 3-iKTYAsZLbhc.hr.vtt |
662б |
04. Admissions 3-iKTYAsZLbhc.it.vtt |
671б |
04. Admissions 3-iKTYAsZLbhc.ja.vtt |
625б |
04. Admissions 3-iKTYAsZLbhc.mp4 |
1.57Мб |
04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt |
692б |
04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt |
556б |
04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt |
579б |
04. Admissions 3-rDw0TIpwJ-c.ar.vtt |
108б |
04. Admissions 3-rDw0TIpwJ-c.en.vtt |
95б |
04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt |
104б |
04. Admissions 3-rDw0TIpwJ-c.hr.vtt |
95б |
04. Admissions 3-rDw0TIpwJ-c.it.vtt |
94б |
04. Admissions 3-rDw0TIpwJ-c.ja.vtt |
116б |
04. Admissions 3-rDw0TIpwJ-c.mp4 |
467.38Кб |
04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt |
99б |
04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt |
99б |
04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt |
101б |
04. Arvato Final Project-qBR6A0IQXEE.en.vtt |
5.37Кб |
04. Arvato Final Project-qBR6A0IQXEE.mp4 |
25.37Мб |
04. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt |
5.72Кб |
04. Arvato Terms and Conditions.html |
7.67Кб |
04. Bagging.html |
5.75Кб |
04. Bivariate Exploration.html |
5.72Кб |
04. Branching Effectively.html |
27.90Кб |
04. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt |
3.65Кб |
04. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4 |
13.54Мб |
04. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt |
3.44Кб |
04. Building a Funnel - Discussion.html |
7.72Кб |
04. Business And Data Understanding - Example-bXQTGS61BU8.en.vtt |
1.60Кб |
04. Business And Data Understanding - Example-bXQTGS61BU8.mp4 |
5.51Мб |
04. Business And Data Understanding - Example-bXQTGS61BU8.pt-BR.vtt |
1.67Кб |
04. Business Example.html |
7.20Кб |
04. Business Example-Wzz7omSDfEk.en.vtt |
1.99Кб |
04. Business Example-Wzz7omSDfEk.mp4 |
4.18Мб |
04. Business Example-Wzz7omSDfEk.pt-BR.vtt |
2.22Кб |
04. Business Example-Wzz7omSDfEk.zh-CN.vtt |
1.76Кб |
04. Classification Example-46PywnGa_cQ.en.vtt |
1.76Кб |
04. Classification Example-46PywnGa_cQ.en.vtt |
1.76Кб |
04. Classification Example-46PywnGa_cQ.mp4 |
1.62Мб |
04. Classification Example-46PywnGa_cQ.mp4 |
1.62Мб |
04. Classification Example-46PywnGa_cQ.pt-BR.vtt |
1.60Кб |
04. Classification Example-46PywnGa_cQ.pt-BR.vtt |
1.60Кб |
04. Classification Example-46PywnGa_cQ.zh-CN.vtt |
1.65Кб |
04. Classification Example-46PywnGa_cQ.zh-CN.vtt |
1.65Кб |
04. Classification Problems 2.html |
7.57Кб |
04. Classification Problems 2.html |
8.43Кб |
04. Cleaning.html |
8.56Кб |
04. Cleaning-qawXp9DPV6I.en.vtt |
8.29Кб |
04. Cleaning-qawXp9DPV6I.mp4 |
19.59Мб |
04. Cleaning-qawXp9DPV6I.pt-BR.vtt |
9.05Кб |
04. Cleaning-qawXp9DPV6I.zh-CN.vtt |
7.47Кб |
04. Combinando modelos-Boy3zHVrWB4.en.vtt |
5.29Кб |
04. Combinando modelos-Boy3zHVrWB4.mp4 |
4.73Мб |
04. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt |
5.29Кб |
04. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt |
4.61Кб |
04. Commit Messages.html |
11.25Кб |
04. Confusion Matrix.html |
9.07Кб |
04. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt |
5.71Кб |
04. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt |
5.52Кб |
04. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 |
5.04Мб |
04. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt |
4.76Кб |
04. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt |
4.96Кб |
04. Congratulations.html |
5.90Кб |
04. COUNT-b4FCWAEGmLg.ar.vtt |
1.81Кб |
04. COUNT-b4FCWAEGmLg.en.vtt |
1.43Кб |
04. COUNT-b4FCWAEGmLg.mp4 |
1.29Мб |
04. COUNT-b4FCWAEGmLg.pt-BR.vtt |
1.62Кб |
04. COUNT-b4FCWAEGmLg.zh-CN.vtt |
1.27Кб |
04. Course Overview.html |
6.41Кб |
04. Create Your Elevator Pitch.html |
7.53Кб |
04. Creating and Saving NumPy ndarrays.html |
17.99Кб |
04. Creating Pandas Series.html |
10.18Кб |
04. DataVis L3 04 V2-HLum_ys7RJ0.en.vtt |
3.98Кб |
04. DataVis L3 04 V2-HLum_ys7RJ0.mp4 |
4.32Мб |
04. DataVis L3 04 V2-HLum_ys7RJ0.pt-BR.vtt |
4.27Кб |
04. DataVis L3 04 V2-HLum_ys7RJ0.zh-CN.vtt |
3.45Кб |
04. Data Vis L4 C04 V1-O6ElT4IFXc0.en.vtt |
3.16Кб |
04. Data Vis L4 C04 V1-O6ElT4IFXc0.mp4 |
3.24Мб |
04. Data Vis L4 C04 V1-O6ElT4IFXc0.pt-BR.vtt |
3.12Кб |
04. Data Vis L4 C04 V1-O6ElT4IFXc0.zh-CN.vtt |
2.80Кб |
04. Defining Networks.html |
6.68Кб |
04. Determine A Repo's Status.html |
15.97Кб |
04. Determining What To Work On.html |
21.25Кб |
04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.en.vtt |
5.77Кб |
04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.mp4 |
25.82Мб |
04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.pt-BR.vtt |
5.70Кб |
04. Elevator Pitch-0QtgTG49E9I.ar.vtt |
2.28Кб |
04. Elevator Pitch-0QtgTG49E9I.en.vtt |
2.06Кб |
04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt |
1.99Кб |
04. Elevator Pitch-0QtgTG49E9I.mp4 |
9.98Мб |
04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt |
1.94Кб |
04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt |
1.99Кб |
04. Encodings Practice.html |
6.29Кб |
04. Error Function Intuition.html |
6.42Кб |
04. Examining single-link clustering.html |
6.79Кб |
04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.en.vtt |
4.51Кб |
04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.mp4 |
18.92Мб |
04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.pt-BR.vtt |
4.69Кб |
04. Exploratory vs. Explanatory Analyses.html |
7.12Кб |
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.ar.vtt |
4.93Кб |
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.en.vtt |
3.63Кб |
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.mp4 |
8.22Мб |
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.pt-BR.vtt |
4.18Кб |
04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.zh-CN.vtt |
3.22Кб |
04. Figure 8 Project-QbLVh5GTuJQ.en.vtt |
4.28Кб |
04. Figure 8 Project-QbLVh5GTuJQ.mp4 |
13.64Мб |
04. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt |
4.42Кб |
04. Fitting A Line-gkdoknEEcaI.en.vtt |
1.41Кб |
04. Fitting A Line-gkdoknEEcaI.mp4 |
1.12Мб |
04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt |
1.42Кб |
04. Fitting a Line Through Data.html |
7.56Кб |
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.en.vtt |
3.06Кб |
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.mp4 |
9.70Мб |
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.pt-BR.vtt |
3.00Кб |
04. Fitting Logistic Regression In Python-baQf-XiZQQ4.zh-CN.vtt |
2.71Кб |
04. GMM Clustering in One Dimension.html |
7.49Кб |
04. Good GitHub repository.html |
7.01Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt |
2.56Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt |
1.92Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.mp4 |
3.72Мб |
04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt |
2.07Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt |
1.92Кб |
04. Gradient Descent The Code.html |
10.76Кб |
04. Guess the Person Now.html |
6.54Кб |
04. Heat Maps.html |
13.66Кб |
04. How to Tackle the Exercises.html |
10.58Кб |
04. Image Classifier - Part 1 - Workspace.html |
6.20Кб |
04. Independent Component Analysis (ICA).html |
6.33Кб |
04. Interview Dan [Coinbase].html |
5.18Кб |
04. Interview Richard [Starbucks].html |
5.22Кб |
04. Interview Robert [Figure8].html |
5.04Кб |
04. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt |
3.92Кб |
04. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4 |
25.24Мб |
04. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt |
4.01Кб |
04. Introduction to Linear Regression-RD4zbBvXDnM.en.vtt |
1.88Кб |
04. Introduction to Linear Regression-RD4zbBvXDnM.mp4 |
2.94Мб |
04. Introduction to Linear Regression-RD4zbBvXDnM.pt-BR.vtt |
2.12Кб |
04. Introduction to Linear Regression-RD4zbBvXDnM.zh-CN.vtt |
1.53Кб |
04. Intro To MovieTweetings-cuXvLIkq_W8.en.vtt |
725б |
04. Intro To MovieTweetings-cuXvLIkq_W8.mp4 |
2.18Мб |
04. K-Fold Cross Validation.html |
5.81Кб |
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.mp4 |
1.75Мб |
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.pt-BR.vtt |
2.07Кб |
04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt |
3.43Кб |
04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt |
2.45Кб |
04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4 |
8.37Мб |
04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt |
2.88Кб |
04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt |
2.18Кб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.en.vtt |
4.19Кб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.mp4 |
16.62Мб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.pt-BR.vtt |
4.57Кб |
04. L1 - Git Push In Theory-21TvMEtMRys.ar.vtt |
927б |
04. L1 - Git Push In Theory-21TvMEtMRys.en.vtt |
665б |
04. L1 - Git Push In Theory-21TvMEtMRys.mp4 |
656.11Кб |
04. L1 - Git Push In Theory-21TvMEtMRys.pt-BR.vtt |
666б |
04. L1 - Git Push In Theory-21TvMEtMRys.zh-CN.vtt |
616б |
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.en.vtt |
1.40Кб |
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.mp4 |
2.41Мб |
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.pt-BR.vtt |
1.66Кб |
04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.zh-CN.vtt |
1.18Кб |
04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.en.vtt |
3.64Кб |
04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.mp4 |
3.81Мб |
04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.pt-BR.vtt |
3.32Кб |
04. L4 041 Heat Maps V4-RyCdvsmBjtE.en.vtt |
2.23Кб |
04. L4 041 Heat Maps V4-RyCdvsmBjtE.mp4 |
4.30Мб |
04. L4 041 Heat Maps V4-RyCdvsmBjtE.pt-BR.vtt |
2.30Кб |
04. L4 041 Heat Maps V4-RyCdvsmBjtE.zh-CN.vtt |
1.97Кб |
04. L5 Outro-rW1YP1aSb08.en.vtt |
2.39Кб |
04. L5 Outro-rW1YP1aSb08.mp4 |
9.60Мб |
04. L5 Outro-rW1YP1aSb08.pt-BR.vtt |
2.48Кб |
04. L6 3 ICA V1 V1-ae94x-1JDzg.en.vtt |
3.93Кб |
04. L6 3 ICA V1 V1-ae94x-1JDzg.mp4 |
6.02Мб |
04. L6 3 ICA V1 V1-ae94x-1JDzg.pt-BR.vtt |
3.78Кб |
04. Lab Student Admissions in Keras.html |
5.84Кб |
04. Latent Features-kYLcVgpEwGs.en.vtt |
937б |
04. Latent Features-kYLcVgpEwGs.mp4 |
1.69Мб |
04. Latent Features-kYLcVgpEwGs.pt-BR.vtt |
1.36Кб |
04. Layers-pg99FkXYK0M.en.vtt |
3.40Кб |
04. Layers-pg99FkXYK0M.mp4 |
3.11Мб |
04. Layers-pg99FkXYK0M.pt-BR.vtt |
3.29Кб |
04. Layers-pg99FkXYK0M.zh-CN.vtt |
3.04Кб |
04. Learning Plan - First Two Weeks.html |
6.44Кб |
04. Linear Boundaries.html |
6.30Кб |
04. Linear Boundaries-X-uMlsBi07k.en.vtt |
3.85Кб |
04. Linear Boundaries-X-uMlsBi07k.mp4 |
3.85Мб |
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt |
3.67Кб |
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt |
3.36Кб |
04. Linear Combination -Quiz 1.html |
8.19Кб |
04. Loaded Coin 1.html |
9.04Кб |
04. Loaded Coin 1-sNvQeSikRFY.ar.vtt |
265б |
04. Loaded Coin 1-sNvQeSikRFY.en.vtt |
217б |
04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt |
210б |
04. Loaded Coin 1-sNvQeSikRFY.hr.vtt |
213б |
04. Loaded Coin 1-sNvQeSikRFY.it.vtt |
212б |
04. Loaded Coin 1-sNvQeSikRFY.ja.vtt |
201б |
04. Loaded Coin 1-sNvQeSikRFY.mp4 |
1.24Мб |
04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt |
201б |
04. Loaded Coin 1-sNvQeSikRFY.th.vtt |
252б |
04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt |
192б |
04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt |
591б |
04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt |
425б |
04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt |
417б |
04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt |
384б |
04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt |
444б |
04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt |
415б |
04. Loaded Coin 1-T0EjWSjLGjQ.mp4 |
2.63Мб |
04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt |
442б |
04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt |
578б |
04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt |
380б |
04. MacLinux Setup.html |
11.03Кб |
04. Manage an active PR.html |
8.36Кб |
04. Medical Example 3.html |
8.30Кб |
04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt |
1.21Кб |
04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt |
953б |
04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt |
1003б |
04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt |
1010б |
04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt |
1.05Кб |
04. Medical Example 3-Iz4ViIg9ZlQ.mp4 |
6.61Мб |
04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt |
1.16Кб |
04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt |
1.81Кб |
04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt |
785б |
04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt |
336б |
04. Medical Example 3-Rf6WfB_1EJQ.en.vtt |
279б |
04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt |
301б |
04. Medical Example 3-Rf6WfB_1EJQ.it.vtt |
289б |
04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt |
262б |
04. Medical Example 3-Rf6WfB_1EJQ.mp4 |
2.10Мб |
04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt |
410б |
04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt |
212б |
04. Meet Juno.html |
4.94Кб |
04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.en.vtt |
3.19Кб |
04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.mp4 |
2.34Мб |
04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.pt-BR.vtt |
3.10Кб |
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.en.vtt |
6.14Кб |
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.mp4 |
23.41Мб |
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.pt-BR.vtt |
5.42Кб |
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.zh-CN.vtt |
5.68Кб |
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.en.vtt |
3.07Кб |
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.mp4 |
10.26Мб |
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.pt-BR.vtt |
3.35Кб |
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.zh-CN.vtt |
2.80Кб |
04. MLPs for Image Classification.html |
8.29Кб |
04. MLPs For Image Classification-TIFStebu530.en.vtt |
3.82Кб |
04. MLPs For Image Classification-TIFStebu530.mp4 |
4.40Мб |
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt |
4.06Кб |
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt |
3.42Кб |
04. Multiclass Classification-uNTtvxwfox0.en.vtt |
2.08Кб |
04. Multiclass Classification-uNTtvxwfox0.mp4 |
1.88Мб |
04. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt |
2.12Кб |
04. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt |
1.82Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt |
2.59Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt |
1.97Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4 |
3.63Мб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt |
2.08Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt |
1.87Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt |
1.27Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt |
1023б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4 |
1.61Мб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt |
1.07Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt |
948б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.ar.vtt |
837б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.en.vtt |
651б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.mp4 |
499.47Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.pt-BR.vtt |
617б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.zh-CN.vtt |
639б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.ar.vtt |
3.58Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.en.vtt |
2.80Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.mp4 |
2.10Мб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.pt-BR.vtt |
2.67Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.zh-CN.vtt |
2.49Кб |
04. Neural Network Architecture.html |
12.19Кб |
04. Normalizing 1.html |
10.44Кб |
04. Normalizing 1-5Tbd3_a5Vug.ar.vtt |
562б |
04. Normalizing 1-5Tbd3_a5Vug.en.vtt |
424б |
04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt |
455б |
04. Normalizing 1-5Tbd3_a5Vug.it.vtt |
452б |
04. Normalizing 1-5Tbd3_a5Vug.ja.vtt |
374б |
04. Normalizing 1-5Tbd3_a5Vug.mp4 |
2.92Мб |
04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt |
495б |
04. Normalizing 1-5Tbd3_a5Vug.th.vtt |
653б |
04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt |
369б |
04. Normalizing 1-9SbUxcyDTaQ.ar.vtt |
459б |
04. Normalizing 1-9SbUxcyDTaQ.en.vtt |
336б |
04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt |
348б |
04. Normalizing 1-9SbUxcyDTaQ.it.vtt |
372б |
04. Normalizing 1-9SbUxcyDTaQ.ja.vtt |
353б |
04. Normalizing 1-9SbUxcyDTaQ.mp4 |
2.23Мб |
04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt |
418б |
04. Normalizing 1-9SbUxcyDTaQ.th.vtt |
700б |
04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt |
303б |
04. Notebook + Quiz Building Confidence Intervals.html |
16.24Кб |
04. Notebook + Quiz Fitting A MLR Model.html |
18.63Кб |
04. NumPy 1 V1-EOHW29kDg7w.en.vtt |
7.06Кб |
04. NumPy 1 V1-EOHW29kDg7w.mp4 |
7.53Мб |
04. NumPy 1 V1-EOHW29kDg7w.pt-BR.vtt |
8.09Кб |
04. NumPy 1 V1-EOHW29kDg7w.zh-CN.vtt |
6.31Кб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.en.vtt |
7.90Кб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.mp4 |
8.26Мб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.pt-BR.vtt |
7.47Кб |
04. OOP Syntax.html |
10.02Кб |
04. Overfitting and Underfitting.html |
6.24Кб |
04. Pandas 1 V1-iXnYN8cnhzs.en.vtt |
3.40Кб |
04. Pandas 1 V1-iXnYN8cnhzs.mp4 |
3.80Мб |
04. Pandas 1 V1-iXnYN8cnhzs.pt-BR.vtt |
3.77Кб |
04. Pandas 1 V1-iXnYN8cnhzs.zh-CN.vtt |
3.07Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt |
2.19Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt |
1.94Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt |
1.43Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 |
8.93Мб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt |
1.40Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt |
1.74Кб |
04. Possible Projects.html |
9.73Кб |
04. Practical Significance.html |
10.88Кб |
04. Practical Significance-eJ3idt3AJ7E.en.vtt |
1.70Кб |
04. Practical Significance-eJ3idt3AJ7E.mp4 |
3.21Мб |
04. Program Structure Syllabus.html |
8.92Кб |
04. Project Workspace - ETL.html |
5.94Кб |
04. Push Changes To A Remote.html |
14.30Кб |
04. Py Part 2 V1-u50_ZyKqt8g.en.vtt |
22.87Кб |
04. Py Part 2 V1-u50_ZyKqt8g.mp4 |
34.58Мб |
04. Py Part 2 V1-u50_ZyKqt8g.pt-BR.vtt |
22.06Кб |
04. Py Part 2 V1-u50_ZyKqt8g.zh-CN.vtt |
18.59Кб |
04. Quadratics.html |
8.28Кб |
04. Quadratics-1R44jvxIPJY.ar.vtt |
1.68Кб |
04. Quadratics-1R44jvxIPJY.en.vtt |
1.37Кб |
04. Quadratics-1R44jvxIPJY.es-ES.vtt |
1.35Кб |
04. Quadratics-1R44jvxIPJY.ja.vtt |
1.18Кб |
04. Quadratics-1R44jvxIPJY.mp4 |
7.29Мб |
04. Quadratics-1R44jvxIPJY.pt-BR.vtt |
1.35Кб |
04. Quadratics-1R44jvxIPJY.zh-CN.vtt |
1.17Кб |
04. Quadratics-GzRNoodJZxk.ar.vtt |
802б |
04. Quadratics-GzRNoodJZxk.en.vtt |
571б |
04. Quadratics-GzRNoodJZxk.es-ES.vtt |
565б |
04. Quadratics-GzRNoodJZxk.ja.vtt |
483б |
04. Quadratics-GzRNoodJZxk.mp4 |
863.99Кб |
04. Quadratics-GzRNoodJZxk.pt-BR.vtt |
593б |
04. Quadratics-GzRNoodJZxk.zh-CN.vtt |
460б |
04. Quiz Data Types (Quantitative vs. Categorical).html |
14.05Кб |
04. Quiz Descriptive vs. Inferential (Bagels).html |
17.03Кб |
04. Quiz ERD Fundamentals.html |
12.35Кб |
04. Quiz Setting Up Hypotheses.html |
11.07Кб |
04. Recommending Apps 3.html |
6.82Кб |
04. Recommending Apps-nEvW8B1HNq4.en.vtt |
2.78Кб |
04. Recommending Apps-nEvW8B1HNq4.mp4 |
6.32Мб |
04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt |
2.51Кб |
04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt |
2.57Кб |
04. Resetting Commits.html |
23.12Кб |
04. Same Data, Different Stories.html |
6.87Кб |
04. Same Data Different Stories-jSSnkz3QT5Y.ar.vtt |
2.58Кб |
04. Same Data Different Stories-jSSnkz3QT5Y.en.vtt |
1.83Кб |
04. Same Data Different Stories-jSSnkz3QT5Y.mp4 |
4.68Мб |
04. Same Data Different Stories-jSSnkz3QT5Y.pt-BR.vtt |
1.86Кб |
04. Same Data Different Stories-jSSnkz3QT5Y.zh-CN.vtt |
1.76Кб |
04. Scalar Multiplication of Matrix and Quiz.html |
9.07Кб |
04. Simulating Many Coin Flips.html |
6.75Кб |
04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt |
3.98Кб |
04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt |
3.23Кб |
04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4 |
3.41Мб |
04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt |
3.31Кб |
04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt |
3.01Кб |
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt |
7.22Кб |
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4 |
21.06Мб |
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt |
7.27Кб |
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt |
6.05Кб |
04. Solution Arithmetic Operators.html |
9.30Кб |
04. Solution Clean and Tokenize.html |
9.31Кб |
04. Solution Conditional Statements.html |
9.99Кб |
04. Solution Defining Functions.html |
7.88Кб |
04. Solutions FULL OUTER JOIN.html |
8.08Кб |
04. Solutions LEFT RIGHT.html |
8.40Кб |
04. Solutions Window Functions 1.html |
8.22Кб |
04. Solutions Write Your First Subquery.html |
8.13Кб |
04. Structure of this lesson.html |
6.88Кб |
04. Student Hub.html |
6.30Кб |
04. Student Hub.html |
6.30Кб |
04. Submitting the project.html |
6.87Кб |
04. SVM 03 Error Function V1-l-ahImxoi-U.en.vtt |
2.71Кб |
04. SVM 03 Error Function V1-l-ahImxoi-U.mp4 |
5.88Мб |
04. SVM 03 Error Function V1-l-ahImxoi-U.pt-BR.vtt |
2.37Кб |
04. SVM 03 Error Function V1-l-ahImxoi-U.zh-CN.vtt |
2.34Кб |
04. Term 2 Projects.html |
7.90Кб |
04. Text + Quiz Your First JOIN.html |
12.13Кб |
04. Text Validating Your Recommendations.html |
9.56Кб |
04. The Front-End.html |
7.66Кб |
04. The Front End-CspuxLGFM4U.en.vtt |
1.88Кб |
04. The Front End-CspuxLGFM4U.mp4 |
4.89Мб |
04. The Front End-CspuxLGFM4U.pt-BR.vtt |
1.96Кб |
04. Types of Machine Learning - Supervised.html |
5.78Кб |
04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.en.vtt |
1.64Кб |
04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.mp4 |
2.80Мб |
04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.pt-BR.vtt |
1.99Кб |
04. Types of Sampling.html |
10.59Кб |
04. Types Of Sampling-GF_eQqNoarI.en.vtt |
3.00Кб |
04. Types Of Sampling-GF_eQqNoarI.mp4 |
3.34Мб |
04. Types Of Sampling-GF_eQqNoarI.pt-BR.vtt |
3.27Кб |
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.ar.vtt |
3.12Кб |
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.en.vtt |
2.65Кб |
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.mp4 |
2.09Мб |
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.pt-BR.vtt |
1.99Кб |
04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.zh-CN.vtt |
2.50Кб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt |
7.49Кб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 |
6.42Мб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt |
8.15Кб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt |
6.54Кб |
04. Unit Tests.html |
7.32Кб |
04. Vectors- Mathematical definition .html |
9.44Кб |
04. Video + Text First Aggregation - COUNT.html |
9.61Кб |
04. Video Business Data Understanding - Example.html |
10.85Кб |
04. Video Fitting Logistic Regression in Python.html |
8.84Кб |
04. Video Introduction to Five Number Summary.html |
10.44Кб |
04. Video Introduction to Linear Regression.html |
8.02Кб |
04. Video Introduction to MovieTweetings.html |
9.07Кб |
04. Video K-Means Use Cases.html |
7.40Кб |
04. Video Latent Features.html |
7.79Кб |
04. Video Posting to Github.html |
7.27Кб |
04. Video What is Data Why is it important.html |
8.23Кб |
04. Viewing Modified Files.html |
13.29Кб |
04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.en.vtt |
4.42Кб |
04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.mp4 |
17.07Мб |
04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.pt-BR.vtt |
4.19Кб |
04. What is Anaconda.html |
11.77Кб |
04. What is Data-ldTDAjrVsA8.ar.vtt |
1.91Кб |
04. What is Data-ldTDAjrVsA8.en.vtt |
1.28Кб |
04. What is Data-ldTDAjrVsA8.mp4 |
2.81Мб |
04. What is Data-ldTDAjrVsA8.pt-BR.vtt |
1.45Кб |
04. What is Data-ldTDAjrVsA8.zh-CN.vtt |
1.15Кб |
04. Writing Clean Code.html |
9.88Кб |
04. Your first command (echo).html |
8.00Кб |
05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.en.vtt |
885б |
05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.mp4 |
2.30Мб |
05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.pt-BR.vtt |
985б |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.en.vtt |
1.86Кб |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.mp4 |
2.77Мб |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.pt-BR.vtt |
2.11Кб |
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt |
2.95Кб |
05. 09 Higher Dimensions-eBHunImDmWw.mp4 |
2.59Мб |
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt |
2.66Кб |
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt |
2.38Кб |
05. 5 Flips 2 Heads.html |
7.91Кб |
05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt |
1.39Кб |
05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt |
1.09Кб |
05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt |
1.09Кб |
05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt |
1.06Кб |
05. 5 Flips 2 Heads-69je8wHh2mQ.mp4 |
7.52Мб |
05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt |
1.21Кб |
05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt |
994б |
05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt |
319б |
05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt |
238б |
05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt |
242б |
05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt |
247б |
05. 5 Flips 2 Heads-lhhUjxnbad8.mp4 |
1.90Мб |
05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt |
260б |
05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt |
225б |
05. 6 Screencast HTML Code V2-G7fBus1JSc0.en.vtt |
7.78Кб |
05. 6 Screencast HTML Code V2-G7fBus1JSc0.mp4 |
10.28Мб |
05. 6 Screencast HTML Code V2-G7fBus1JSc0.pt-BR.vtt |
8.14Кб |
05. Accessing and Deleting Elements in Pandas Series.html |
13.71Кб |
05. AdaBoost.html |
5.76Кб |
05. Admissions 4.html |
8.13Кб |
05. Admissions 4-GD6cQhkoqS4.ar.vtt |
90б |
05. Admissions 4-GD6cQhkoqS4.en.vtt |
86б |
05. Admissions 4-GD6cQhkoqS4.hr.vtt |
86б |
05. Admissions 4-GD6cQhkoqS4.it.vtt |
89б |
05. Admissions 4-GD6cQhkoqS4.ja.vtt |
97б |
05. Admissions 4-GD6cQhkoqS4.mp4 |
831.76Кб |
05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt |
100б |
05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt |
90б |
05. Admissions 4--GMhV1twy6Y.ar.vtt |
204б |
05. Admissions 4--GMhV1twy6Y.en.vtt |
138б |
05. Admissions 4--GMhV1twy6Y.es-ES.vtt |
141б |
05. Admissions 4--GMhV1twy6Y.hr.vtt |
144б |
05. Admissions 4--GMhV1twy6Y.it.vtt |
173б |
05. Admissions 4--GMhV1twy6Y.ja.vtt |
154б |
05. Admissions 4--GMhV1twy6Y.mp4 |
523.00Кб |
05. Admissions 4--GMhV1twy6Y.pt-BR.vtt |
149б |
05. Admissions 4--GMhV1twy6Y.zh-CN.vtt |
115б |
05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt |
119б |
05. APIs [advanced version].html |
9.46Кб |
05. Assignment Operators-p_qfzL-x3Cs.ar.vtt |
2.42Кб |
05. Assignment Operators-p_qfzL-x3Cs.en.vtt |
1.79Кб |
05. Assignment Operators-p_qfzL-x3Cs.mp4 |
10.15Мб |
05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt |
2.08Кб |
05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt |
1.59Кб |
05. Bayes Theorem.html |
6.22Кб |
05. Binomial Distributions Quiz.html |
10.28Кб |
05. Categorical Cross-Entropy.html |
9.11Кб |
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt |
4.82Кб |
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 |
5.42Мб |
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt |
5.13Кб |
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt |
4.24Кб |
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.ar.vtt |
2.92Кб |
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.en.vtt |
2.29Кб |
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.mp4 |
3.82Мб |
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.pt-BR.vtt |
2.65Кб |
05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.zh-CN.vtt |
2.06Кб |
05. Complete-link, average-link, Ward.html |
6.79Кб |
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt |
2.19Кб |
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4 |
2.21Мб |
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt |
2.08Кб |
05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt |
1.79Кб |
05. Confusion Matrix 2.html |
6.63Кб |
05. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt |
1.05Кб |
05. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt |
1.10Кб |
05. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 |
1.10Мб |
05. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt |
889б |
05. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt |
959б |
05. Counting Missing Data.html |
8.25Кб |
05. COUNT NULLs-ngxgqfFFFLQ.ar.vtt |
2.50Кб |
05. COUNT NULLs-ngxgqfFFFLQ.en.vtt |
1.86Кб |
05. COUNT NULLs-ngxgqfFFFLQ.mp4 |
2.05Мб |
05. COUNT NULLs-ngxgqfFFFLQ.pt-BR.vtt |
1.98Кб |
05. COUNT NULLs-ngxgqfFFFLQ.zh-CN.vtt |
1.59Кб |
05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt |
959б |
05. Create A Repo - Outro-h7j4STDFCjs.en.vtt |
720б |
05. Create A Repo - Outro-h7j4STDFCjs.mp4 |
2.96Мб |
05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt |
800б |
05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt |
664б |
05. Data Types-gT6EYlsLZkE.ar.vtt |
2.61Кб |
05. Data Types-gT6EYlsLZkE.en.vtt |
1.86Кб |
05. Data Types-gT6EYlsLZkE.mp4 |
2.07Мб |
05. Data Types-gT6EYlsLZkE.pt-BR.vtt |
1.99Кб |
05. Data Types-gT6EYlsLZkE.zh-CN.vtt |
1.78Кб |
05. DataVis L5C05 V1-v19gCP4TvwE.en.vtt |
1.60Кб |
05. DataVis L5C05 V1-v19gCP4TvwE.mp4 |
1.61Мб |
05. DataVis L5C05 V1-v19gCP4TvwE.pt-BR.vtt |
1.56Кб |
05. Deciding on Metrics - Part I.html |
8.43Кб |
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt |
6.17Кб |
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 |
5.33Мб |
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt |
6.76Кб |
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt |
5.33Кб |
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt |
1.97Кб |
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 |
1.72Мб |
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt |
2.12Кб |
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt |
1.69Кб |
05. Early Stopping.html |
6.18Кб |
05. Exercise OOP Syntax Practice - Part 1.html |
8.36Кб |
05. Experiment I.html |
8.04Кб |
05. Experiment I-JLKAdT2JESk.en.vtt |
2.58Кб |
05. Experiment I-JLKAdT2JESk.mp4 |
3.01Мб |
05. Experiment I-JLKAdT2JESk.pt-BR.vtt |
2.96Кб |
05. Experiment I-JLKAdT2JESk.zh-CN.vtt |
2.13Кб |
05. Experiment Size.html |
8.57Кб |
05. Experiment Size-sImRm8e01jA.en.vtt |
4.03Кб |
05. Experiment Size-sImRm8e01jA.mp4 |
6.07Мб |
05. Extract.html |
18.24Кб |
05. Extract Walk Through-Bbj8rQRRVoM.en.vtt |
3.48Кб |
05. Extract Walk Through-Bbj8rQRRVoM.mp4 |
5.34Мб |
05. Extract Walk Through-Bbj8rQRRVoM.pt-BR.vtt |
3.41Кб |
05. Faceting in Two Directions.html |
8.62Кб |
05. FastICA Algorithm.html |
5.85Кб |
05. Feedforward.html |
8.82Кб |
05. Gaussian Distribution in 2D.html |
7.52Кб |
05. Git Diff.html |
7.96Кб |
05. Higher Dimensions.html |
6.77Кб |
05. How Does MLR Work-bvM6eUYyurA.en.vtt |
5.29Кб |
05. How Does MLR Work-bvM6eUYyurA.mp4 |
18.43Мб |
05. How Does MLR Work-bvM6eUYyurA.pt-BR.vtt |
5.10Кб |
05. How Does MLR Work-bvM6eUYyurA.zh-CN.vtt |
4.38Кб |
05. HTML.html |
13.09Кб |
05. Image Classifier - Part 2 - Command Line App.html |
8.11Кб |
05. Implementing Gradient Descent.html |
26.66Кб |
05. Installing Anaconda.html |
8.85Кб |
05. Interview Richard [Starbucks].html |
5.19Кб |
05. Interview with Art - Part 1.html |
7.05Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt |
4.59Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt |
3.82Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 |
21.79Мб |
05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt |
4.00Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt |
3.40Кб |
05. JOINs with Comparison Operators-48AgxPygRuQ.ar.vtt |
3.00Кб |
05. JOINs with Comparison Operators-48AgxPygRuQ.en.vtt |
2.17Кб |
05. JOINs with Comparison Operators-48AgxPygRuQ.mp4 |
4.22Мб |
05. JOINs with Comparison Operators-48AgxPygRuQ.pt-BR.vtt |
2.19Кб |
05. JOINs with Comparison Operators-48AgxPygRuQ.zh-CN.vtt |
1.90Кб |
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.ar.vtt |
1.05Кб |
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.en.vtt |
836б |
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.mp4 |
3.67Мб |
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.pt-BR.vtt |
774б |
05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.zh-CN.vtt |
780б |
05. KMeans-B9jdQFpPEk0.en.vtt |
1.62Кб |
05. KMeans-B9jdQFpPEk0.mp4 |
1.69Мб |
05. KMeans-B9jdQFpPEk0.pt-BR.vtt |
1.86Кб |
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.ar.vtt |
3.60Кб |
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.en.vtt |
2.86Кб |
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.mp4 |
3.29Мб |
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.pt-BR.vtt |
2.68Кб |
05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.zh-CN.vtt |
2.50Кб |
05. L1 - Git Pull In Theory-MjNU2LTDVAA.ar.vtt |
1.52Кб |
05. L1 - Git Pull In Theory-MjNU2LTDVAA.en.vtt |
1.00Кб |
05. L1 - Git Pull In Theory-MjNU2LTDVAA.mp4 |
898.50Кб |
05. L1 - Git Pull In Theory-MjNU2LTDVAA.pt-BR.vtt |
1.00Кб |
05. L1 - Git Pull In Theory-MjNU2LTDVAA.zh-CN.vtt |
1020б |
05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt |
3.35Кб |
05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt |
2.42Кб |
05. L2 04b Variables II V3-4IJqbP8vi6A.mp4 |
16.81Мб |
05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt |
2.82Кб |
05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt |
2.19Кб |
05. L3 - Squashing In Action-cL6ehKtJLUM.ar.vtt |
9.90Кб |
05. L3 - Squashing In Action-cL6ehKtJLUM.en.vtt |
7.23Кб |
05. L3 - Squashing In Action-cL6ehKtJLUM.mp4 |
8.16Мб |
05. L3 - Squashing In Action-cL6ehKtJLUM.pt-BR.vtt |
6.81Кб |
05. L3 - Squashing In Action-cL6ehKtJLUM.zh-CN.vtt |
6.24Кб |
05. L3 - Squashing In Theory-H5JqcdIB5y0.ar.vtt |
4.82Кб |
05. L3 - Squashing In Theory-H5JqcdIB5y0.en.vtt |
3.39Кб |
05. L3 - Squashing In Theory-H5JqcdIB5y0.mp4 |
2.44Мб |
05. L3 - Squashing In Theory-H5JqcdIB5y0.pt-BR.vtt |
3.21Кб |
05. L3 - Squashing In Theory-H5JqcdIB5y0.zh-CN.vtt |
3.07Кб |
05. L3 - Squashing Introduction-mRbeT2XVL9w.ar.vtt |
1.68Кб |
05. L3 - Squashing Introduction-mRbeT2XVL9w.en.vtt |
1.34Кб |
05. L3 - Squashing Introduction-mRbeT2XVL9w.mp4 |
4.40Мб |
05. L3 - Squashing Introduction-mRbeT2XVL9w.pt-BR.vtt |
1.33Кб |
05. L3 - Squashing Introduction-mRbeT2XVL9w.zh-CN.vtt |
1.17Кб |
05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.en.vtt |
1.53Кб |
05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.mp4 |
2.70Мб |
05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.pt-BR.vtt |
1.68Кб |
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.en.vtt |
6.94Кб |
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.mp4 |
7.96Мб |
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.pt-BR.vtt |
7.10Кб |
05. Latent Features.html |
12.01Кб |
05. Learning Curves.html |
6.15Кб |
05. Learning Curves SC V1-ZNhnNVKl8NM.en.vtt |
7.98Кб |
05. Learning Curves SC V1-ZNhnNVKl8NM.mp4 |
6.01Мб |
05. Learning Curves SC V1-ZNhnNVKl8NM.pt-BR.vtt |
8.10Кб |
05. Learning Plan - First Two Weeks.html |
6.15Кб |
05. Lesson Outro.html |
5.02Кб |
05. Lesson Outro.html |
5.22Кб |
05. Linear Boundaries.html |
8.27Кб |
05. Linear Boundaries.html |
9.13Кб |
05. Linear Boundaries-X-uMlsBi07k.en.vtt |
3.85Кб |
05. Linear Boundaries-X-uMlsBi07k.en.vtt |
3.85Кб |
05. Linear Boundaries-X-uMlsBi07k.mp4 |
3.85Мб |
05. Linear Boundaries-X-uMlsBi07k.mp4 |
3.85Мб |
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt |
3.67Кб |
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt |
3.67Кб |
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt |
3.36Кб |
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt |
3.36Кб |
05. Linear Dependency .html |
7.29Кб |
05. Loaded Coin 2.html |
8.72Кб |
05. Loaded Coin 2-dGffszQYzqc.ar.vtt |
1.06Кб |
05. Loaded Coin 2-dGffszQYzqc.en.vtt |
874б |
05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt |
880б |
05. Loaded Coin 2-dGffszQYzqc.hr.vtt |
942б |
05. Loaded Coin 2-dGffszQYzqc.it.vtt |
915б |
05. Loaded Coin 2-dGffszQYzqc.ja.vtt |
762б |
05. Loaded Coin 2-dGffszQYzqc.mp4 |
3.36Мб |
05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt |
866б |
05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt |
817б |
05. Loaded Coin 2-Y7tnbth-gag.ar.vtt |
222б |
05. Loaded Coin 2-Y7tnbth-gag.en.vtt |
180б |
05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt |
185б |
05. Loaded Coin 2-Y7tnbth-gag.hr.vtt |
157б |
05. Loaded Coin 2-Y7tnbth-gag.it.vtt |
171б |
05. Loaded Coin 2-Y7tnbth-gag.ja.vtt |
159б |
05. Loaded Coin 2-Y7tnbth-gag.mp4 |
805.43Кб |
05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt |
184б |
05. Loaded Coin 2-Y7tnbth-gag.th.vtt |
267б |
05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt |
164б |
05. Machine Learning Workflow.html |
7.35Кб |
05. Machine Learning Workflow-0nA6oTIlwaA.en.vtt |
921б |
05. Machine Learning Workflow-0nA6oTIlwaA.mp4 |
1.21Мб |
05. Machine Learning Workflow-0nA6oTIlwaA.pt-BR.vtt |
1.02Кб |
05. Measuring Outcomes.html |
12.31Кб |
05. Measuring Outcomes Pt 1-HPmMEkbT2uE.en.vtt |
1014б |
05. Measuring Outcomes Pt 1-HPmMEkbT2uE.mp4 |
1.59Мб |
05. Measuring Outcomes Pt 1-HPmMEkbT2uE.pt-BR.vtt |
1.10Кб |
05. Measuring Outcomes Pt 2-yLdXcRXcfPw.en.vtt |
2.85Кб |
05. Measuring Outcomes Pt 2-yLdXcRXcfPw.mp4 |
5.19Мб |
05. Measuring Outcomes Pt 2-yLdXcRXcfPw.pt-BR.vtt |
3.36Кб |
05. Medical Example 4.html |
8.41Кб |
05. Medical Example 4-pL8Bf6tck_A.ar.vtt |
405б |
05. Medical Example 4-pL8Bf6tck_A.en.vtt |
310б |
05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt |
332б |
05. Medical Example 4-pL8Bf6tck_A.it.vtt |
308б |
05. Medical Example 4-pL8Bf6tck_A.ja.vtt |
305б |
05. Medical Example 4-pL8Bf6tck_A.mp4 |
1.69Мб |
05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt |
360б |
05. Medical Example 4-pL8Bf6tck_A.th.vtt |
541б |
05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt |
277б |
05. Medical Example 4-udduksMWMB4.ar.vtt |
518б |
05. Medical Example 4-udduksMWMB4.en.vtt |
354б |
05. Medical Example 4-udduksMWMB4.es-ES.vtt |
360б |
05. Medical Example 4-udduksMWMB4.it.vtt |
359б |
05. Medical Example 4-udduksMWMB4.ja.vtt |
331б |
05. Medical Example 4-udduksMWMB4.mp4 |
2.29Мб |
05. Medical Example 4-udduksMWMB4.pt-BR.vtt |
396б |
05. Medical Example 4-udduksMWMB4.th.vtt |
657б |
05. Medical Example 4-udduksMWMB4.zh-CN.vtt |
303б |
05. Merging.html |
17.02Кб |
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt |
1.80Кб |
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4 |
4.16Мб |
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt |
1.59Кб |
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt |
1.64Кб |
05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.en.vtt |
2.98Кб |
05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.mp4 |
2.17Мб |
05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.pt-BR.vtt |
2.96Кб |
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.en.vtt |
7.92Кб |
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.mp4 |
22.51Мб |
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.pt-BR.vtt |
7.64Кб |
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.zh-CN.vtt |
7.17Кб |
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.en.vtt |
1.92Кб |
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.mp4 |
6.99Мб |
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.pt-BR.vtt |
2.03Кб |
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.zh-CN.vtt |
1.66Кб |
05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt |
5.32Кб |
05. Model Complexity Graph-NnS0FJyVcDQ.mp4 |
4.90Мб |
05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt |
5.52Кб |
05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt |
4.65Кб |
05. Moving a Line.html |
7.53Кб |
05. Moving A Line-8EIHFyL2Log.en.vtt |
1.16Кб |
05. Moving A Line-8EIHFyL2Log.mp4 |
981.31Кб |
05. Moving A Line-8EIHFyL2Log.pt-BR.vtt |
1.05Кб |
05. Multiplication of a Square Matrices.html |
10.23Кб |
05. Multivariate Exploration.html |
5.72Кб |
05. Navigating directories (ls, cd, ..).html |
7.86Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt |
3.28Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt |
2.57Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4 |
3.77Мб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt |
2.76Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt |
2.46Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt |
6.92Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt |
5.22Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4 |
6.19Мб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt |
5.56Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt |
4.72Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.ar.vtt |
2.57Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.en.vtt |
1.80Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.mp4 |
1.43Мб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.pt-BR.vtt |
1.68Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.zh-CN.vtt |
1.69Кб |
05. Next Steps On How to Register.html |
5.13Кб |
05. Normalizing 2.html |
10.45Кб |
05. Normalizing 2--pOzdj6pnbA.ar.vtt |
95б |
05. Normalizing 2--pOzdj6pnbA.en.vtt |
89б |
05. Normalizing 2--pOzdj6pnbA.es-ES.vtt |
109б |
05. Normalizing 2--pOzdj6pnbA.it.vtt |
90б |
05. Normalizing 2--pOzdj6pnbA.ja.vtt |
91б |
05. Normalizing 2--pOzdj6pnbA.mp4 |
671.97Кб |
05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt |
92б |
05. Normalizing 2--pOzdj6pnbA.th.vtt |
108б |
05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt |
87б |
05. Normalizing 2-WYA5Zbf8HC4.ar.vtt |
903б |
05. Normalizing 2-WYA5Zbf8HC4.en.vtt |
646б |
05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt |
681б |
05. Normalizing 2-WYA5Zbf8HC4.it.vtt |
712б |
05. Normalizing 2-WYA5Zbf8HC4.ja.vtt |
618б |
05. Normalizing 2-WYA5Zbf8HC4.mp4 |
4.26Мб |
05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt |
769б |
05. Normalizing 2-WYA5Zbf8HC4.th.vtt |
1.09Кб |
05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt |
553б |
05. Notebook + Quiz Fitting Logistic Regression in Python.html |
14.55Кб |
05. Notebook Cleaning.html |
7.83Кб |
05. Notebook MovieTweeting Data.html |
8.97Кб |
05. NumPy 2 V1-KR3hHf9Zxxg.en.vtt |
11.69Кб |
05. NumPy 2 V1-KR3hHf9Zxxg.mp4 |
14.18Мб |
05. NumPy 2 V1-KR3hHf9Zxxg.pt-BR.vtt |
13.35Кб |
05. NumPy 2 V1-KR3hHf9Zxxg.zh-CN.vtt |
10.77Кб |
05. Optimizers in Keras.html |
6.17Кб |
05. Outro.html |
4.91Кб |
05. Outro.html |
5.18Кб |
05. Outro-dVrYQ7o8a-k.en.vtt |
493б |
05. Outro-dVrYQ7o8a-k.mp4 |
1.21Мб |
05. Outro-dVrYQ7o8a-k.pt-BR.vtt |
422б |
05. Outro-xj70jX9Moxs.en.vtt |
1.28Кб |
05. Outro-xj70jX9Moxs.mp4 |
5.54Мб |
05. Outro-xj70jX9Moxs.pt-BR.vtt |
1.26Кб |
05. Pandas 2 V1-B7MuFIwboKU.en.vtt |
3.31Кб |
05. Pandas 2 V1-B7MuFIwboKU.mp4 |
3.77Мб |
05. Pandas 2 V1-B7MuFIwboKU.pt-BR.vtt |
3.84Кб |
05. Pandas 2 V1-B7MuFIwboKU.zh-CN.vtt |
3.00Кб |
05. Perceptron Algorithm.html |
6.96Кб |
05. Pre-assessment.html |
6.70Кб |
05. Project Survey.html |
9.93Кб |
05. Project Workspace.html |
5.85Кб |
05. Project Workspace.html |
6.02Кб |
05. Project Workspace - ML Pipeline.html |
5.96Кб |
05. Pulling Changes From A Remote.html |
14.42Кб |
05. Py Part 3 V2-u8hDj5aJK6I.en.vtt |
17.71Кб |
05. Py Part 3 V2-u8hDj5aJK6I.mp4 |
28.37Мб |
05. Py Part 3 V2-u8hDj5aJK6I.pt-BR.vtt |
16.67Кб |
05. Py Part 3 V2-u8hDj5aJK6I.zh-CN.vtt |
14.56Кб |
05. Quadratics 2.html |
8.25Кб |
05. Quadratics 2-HjpgML5zsUE.ar.vtt |
1.18Кб |
05. Quadratics 2-HjpgML5zsUE.en.vtt |
879б |
05. Quadratics 2-HjpgML5zsUE.es-ES.vtt |
886б |
05. Quadratics 2-HjpgML5zsUE.ja.vtt |
760б |
05. Quadratics 2-HjpgML5zsUE.mp4 |
4.66Мб |
05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt |
933б |
05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt |
763б |
05. Quadratics 2-N-wpkttwcoA.ar.vtt |
1.00Кб |
05. Quadratics 2-N-wpkttwcoA.en.vtt |
738б |
05. Quadratics 2-N-wpkttwcoA.es-ES.vtt |
823б |
05. Quadratics 2-N-wpkttwcoA.ja.vtt |
710б |
05. Quadratics 2-N-wpkttwcoA.mp4 |
1.60Мб |
05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt |
741б |
05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt |
650б |
05. Quiz 5 Number Summary Practice.html |
10.52Кб |
05. Quiz Clean Code.html |
11.18Кб |
05. Quiz Conditional Statements.html |
12.10Кб |
05. Quiz Exploratory vs. Explanatory.html |
9.72Кб |
05. Quiz Github Check.html |
10.00Кб |
05. Quiz Linear Regression Language.html |
9.32Кб |
05. Quiz Regression Metrics.html |
12.73Кб |
05. Quiz Student Admissions.html |
8.20Кб |
05. Quiz Window Functions 2.html |
8.61Кб |
05. Quizzes on Data Story Telling.html |
13.81Кб |
05. Richard Sharp Data Science-r0BCM6vhl0Q.en.vtt |
2.26Кб |
05. Richard Sharp Data Science-r0BCM6vhl0Q.mp4 |
9.29Мб |
05. Richard Sharp Data Science-r0BCM6vhl0Q.pt-BR.vtt |
2.16Кб |
05. Running a Python Script.html |
9.46Кб |
05. Running A Python Script-vMKemwCderg.ar.vtt |
2.98Кб |
05. Running A Python Script-vMKemwCderg.en.vtt |
2.23Кб |
05. Running A Python Script-vMKemwCderg.mp4 |
2.55Мб |
05. Running A Python Script-vMKemwCderg.pt-BR.vtt |
2.54Кб |
05. Running A Python Script-vMKemwCderg.zh-CN.vtt |
2.13Кб |
05. Scatterplot Practice.html |
7.05Кб |
05. Screencast + Text How Does MLR Work.html |
9.29Кб |
05. ScreenCast Difference In Means.html |
8.33Кб |
05. Screencast Using Workspaces.html |
11.08Кб |
05. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt |
2.71Кб |
05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4 |
7.67Мб |
05. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt |
2.79Кб |
05. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt |
2.28Кб |
05. Setting Up Hypothesis Tests - Part II.html |
10.74Кб |
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt |
2.66Кб |
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4 |
7.25Мб |
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt |
2.77Кб |
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt |
2.24Кб |
05. Solution Your First JOIN.html |
8.24Кб |
05. Squash Commits.html |
15.33Кб |
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.en.vtt |
4.64Кб |
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.mp4 |
12.93Мб |
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.pt-BR.vtt |
3.99Кб |
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.zh-CN.vtt |
3.78Кб |
05. Text + Quiz Data Types (Ordinal vs. Nominal).html |
13.26Кб |
05. Text Descriptive vs. Inferential Statistics.html |
9.62Кб |
05. Text Map of SQL Content.html |
12.18Кб |
05. Text Subquery Formatting.html |
9.00Кб |
05. Training Networks.html |
6.68Кб |
05. Transpose.html |
7.62Кб |
05. Types of Machine Learning - Unsupervised Reinforcement.html |
5.89Кб |
05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.en.vtt |
1.30Кб |
05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.mp4 |
1.92Мб |
05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.pt-BR.vtt |
1.52Кб |
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.ar.vtt |
2.72Кб |
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.en.vtt |
2.23Кб |
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.mp4 |
1.82Мб |
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.pt-BR.vtt |
2.10Кб |
05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.zh-CN.vtt |
2.00Кб |
05. Undoing Changes--_PPVk2UZMU.ar.vtt |
904б |
05. Undoing Changes--_PPVk2UZMU.en.vtt |
651б |
05. Undoing Changes--_PPVk2UZMU.mp4 |
2.59Мб |
05. Undoing Changes--_PPVk2UZMU.pt-BR.vtt |
646б |
05. Undoing Changes--_PPVk2UZMU.zh-CN.vtt |
597б |
05. Unit Testing Tools.html |
7.20Кб |
05. Use Your Elevator Pitch on LinkedIn.html |
8.98Кб |
05. Using Built-in Functions to Create ndarrays.html |
28.25Кб |
05. Using Workspaces-45N9NK6kQ0Y.en.vtt |
7.03Кб |
05. Using Workspaces-45N9NK6kQ0Y.mp4 |
9.31Мб |
05. Using Workspaces-45N9NK6kQ0Y.pt-BR.vtt |
5.74Кб |
05. Variables-7pxpUot4x0w.ar.vtt |
2.80Кб |
05. Variables-7pxpUot4x0w.en.vtt |
2.09Кб |
05. Variables-7pxpUot4x0w.mp4 |
15.33Мб |
05. Variables-7pxpUot4x0w.pt-BR.vtt |
2.45Кб |
05. Variables-7pxpUot4x0w.zh-CN.vtt |
1.79Кб |
05. Variables and Assignment Operators.html |
14.58Кб |
05. Variable Scope.html |
9.60Кб |
05. Variable Scope-rYubQlAM-gw.ar.vtt |
1.60Кб |
05. Variable Scope-rYubQlAM-gw.en.vtt |
1.24Кб |
05. Variable Scope-rYubQlAM-gw.mp4 |
9.01Мб |
05. Variable Scope-rYubQlAM-gw.pt-BR.vtt |
1.54Кб |
05. Variable Scope-rYubQlAM-gw.zh-CN.vtt |
1.12Кб |
05. Video COUNT NULLs.html |
8.42Кб |
05. Video Data Types (Quantitative vs. Categorical).html |
8.73Кб |
05. Video JOINs with Comparison Operators.html |
8.54Кб |
05. Video K-Means.html |
7.46Кб |
05. Video POSITION, STRPOS, SUBSTR.html |
7.91Кб |
05. Viewing File Changes.html |
16.56Кб |
05. Windows Setup.html |
10.11Кб |
05. Working with Equations.html |
9.92Кб |
06. [Optional] Kaggle Competition.html |
5.58Кб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.en.vtt |
7.63Кб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.mp4 |
7.65Мб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.pt-BR.vtt |
8.52Кб |
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt |
2.95Кб |
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt |
2.95Кб |
06. 09 Higher Dimensions-eBHunImDmWw.mp4 |
2.59Мб |
06. 09 Higher Dimensions-eBHunImDmWw.mp4 |
2.59Мб |
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt |
2.66Кб |
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt |
2.66Кб |
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt |
2.38Кб |
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt |
2.38Кб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.en.vtt |
7.71Кб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.mp4 |
20.47Мб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.pt-BR.vtt |
7.92Кб |
06. 5 Flips 3 Heads.html |
7.92Кб |
06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt |
167б |
06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt |
122б |
06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt |
130б |
06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt |
157б |
06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4 |
824.92Кб |
06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt |
160б |
06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt |
136б |
06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt |
2.52Кб |
06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt |
1.71Кб |
06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt |
1.74Кб |
06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt |
1.61Кб |
06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4 |
11.94Мб |
06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt |
1.86Кб |
06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt |
1.52Кб |
06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt |
2.22Кб |
06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt |
1.54Кб |
06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4 |
2.88Мб |
06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt |
1.80Кб |
06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt |
1.34Кб |
06. Absolute Trick.html |
7.53Кб |
06. Absolute Trick-DJWjBAqSkZw.en.vtt |
6.58Кб |
06. Absolute Trick-DJWjBAqSkZw.mp4 |
5.17Мб |
06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt |
6.41Кб |
06. Accuracy.html |
7.54Кб |
06. Accuracy-s6SfhPTNOHA.en.vtt |
1.72Кб |
06. Accuracy-s6SfhPTNOHA.en-US.vtt |
2.08Кб |
06. Accuracy-s6SfhPTNOHA.mp4 |
2.34Мб |
06. Accuracy-s6SfhPTNOHA.pt-BR.vtt |
1.87Кб |
06. Accuracy-s6SfhPTNOHA.zh-CN.vtt |
1.63Кб |
06. A Couple of Notes about OOP.html |
14.60Кб |
06. Arithmetic Operations on Pandas Series.html |
13.52Кб |
06. Arvato Final Project-qBR6A0IQXEE.en.vtt |
5.37Кб |
06. Arvato Final Project-qBR6A0IQXEE.mp4 |
25.37Мб |
06. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt |
5.72Кб |
06. Backpropagation.html |
11.63Кб |
06. Backpropagation V2-1SmY3TZTyUk.en.vtt |
7.21Кб |
06. Backpropagation V2-1SmY3TZTyUk.mp4 |
6.52Мб |
06. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt |
7.17Кб |
06. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt |
6.39Кб |
06. Bar Chart Practice.html |
6.82Кб |
06. BertelsmannArvato Project Overview.html |
8.26Кб |
06. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt |
3.41Кб |
06. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 |
3.31Мб |
06. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt |
3.44Кб |
06. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt |
2.88Кб |
06. Cancer Test Results.html |
12.01Кб |
06. Case Study Machine Learning Workflow.html |
7.72Кб |
06. Chain Rule-YAhIBOnbt54.en.vtt |
1.65Кб |
06. Chain Rule-YAhIBOnbt54.mp4 |
1.46Мб |
06. Chain Rule-YAhIBOnbt54.pt-BR.vtt |
1.73Кб |
06. Chain Rule-YAhIBOnbt54.zh-CN.vtt |
1.42Кб |
06. Classification Error.html |
6.44Кб |
06. Course Outro.html |
5.75Кб |
06. Course Outro-twn_cheqoK8.ar.vtt |
1.31Кб |
06. Course Outro-twn_cheqoK8.en.vtt |
998б |
06. Course Outro-twn_cheqoK8.mp4 |
2.67Мб |
06. Course Outro-twn_cheqoK8.pt-BR.vtt |
896б |
06. Course Outro-twn_cheqoK8.zh-CN.vtt |
928б |
06. Course Wrap Up.html |
6.77Кб |
06. Course Wrap Up-66Ut8Bv6kgc.ar.vtt |
1.68Кб |
06. Course Wrap Up-66Ut8Bv6kgc.en.vtt |
1.34Кб |
06. Course Wrap Up-66Ut8Bv6kgc.mp4 |
4.00Мб |
06. Course Wrap Up-66Ut8Bv6kgc.pt-BR.vtt |
1.30Кб |
06. Course Wrap Up-66Ut8Bv6kgc.zh-CN.vtt |
1.17Кб |
06. Create an ndarray.html |
7.38Кб |
06. Create Your Profile With SEO In Mind.html |
8.72Кб |
06. Creating Metrics-__7tzDUY870.en.vtt |
4.06Кб |
06. Creating Metrics-__7tzDUY870.mp4 |
5.53Мб |
06. Creating Metrics-__7tzDUY870.pt-BR.vtt |
4.68Кб |
06. Creating Metrics.html |
11.84Кб |
06. Current working directory (pwd).html |
7.71Кб |
06. Data Types (Continuous vs. Discrete).html |
8.19Кб |
06. Data Vis L4 C06 V2-f8Kh4PByiEA.en.vtt |
3.16Кб |
06. Data Vis L4 C06 V2-f8Kh4PByiEA.mp4 |
3.02Мб |
06. Data Vis L4 C06 V2-f8Kh4PByiEA.pt-BR.vtt |
3.11Кб |
06. Data Vis L4 C06 V2-f8Kh4PByiEA.zh-CN.vtt |
2.68Кб |
06. DataVis L5C06 V2-BzzTlWHMyV0.en.vtt |
3.58Кб |
06. DataVis L5C06 V2-BzzTlWHMyV0.mp4 |
4.12Мб |
06. DataVis L5C06 V2-BzzTlWHMyV0.pt-BR.vtt |
3.54Кб |
06. Deciding on Metrics - Part II.html |
19.55Кб |
06. Deep Learning.html |
5.72Кб |
06. Deep Learning And Neural Networks-4rKw3ekE5Wk.en.vtt |
2.26Кб |
06. Deep Learning And Neural Networks-4rKw3ekE5Wk.mp4 |
6.38Мб |
06. Deep Learning And Neural Networks-4rKw3ekE5Wk.pt-BR.vtt |
2.48Кб |
06. Detecting Overfitting and Underfitting with Learning Curves.html |
18.25Кб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt |
5.89Кб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 |
5.13Мб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt |
5.61Кб |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt |
4.98Кб |
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt |
6.16Кб |
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 |
5.69Мб |
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt |
6.50Кб |
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt |
5.05Кб |
06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt |
1.15Кб |
06. DL 53 Q Regularization-KxROxcRsHL8.mp4 |
1.01Мб |
06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt |
1.16Кб |
06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt |
1.02Кб |
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt |
1.81Кб |
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt |
1.43Кб |
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4 |
3.54Мб |
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt |
1.39Кб |
06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt |
1.23Кб |
06. Exercise CSV.html |
9.44Кб |
06. Exercise HTML.html |
8.08Кб |
06. Experiment Size - Solution.html |
6.73Кб |
06. Explanatory Polishing.html |
5.72Кб |
06. Extracurriculars.html |
6.95Кб |
06. Fashion-MNIST Exercise.html |
6.71Кб |
06. Gender Bias.html |
8.05Кб |
06. Gender Bias-DeWp0hnRq4g.ar.vtt |
399б |
06. Gender Bias-DeWp0hnRq4g.en.vtt |
281б |
06. Gender Bias-DeWp0hnRq4g.hr.vtt |
291б |
06. Gender Bias-DeWp0hnRq4g.it.vtt |
311б |
06. Gender Bias-DeWp0hnRq4g.ja.vtt |
293б |
06. Gender Bias-DeWp0hnRq4g.mp4 |
1.49Мб |
06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt |
276б |
06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt |
257б |
06. Gender Bias-JWl8lPGhlbY.ar.vtt |
549б |
06. Gender Bias-JWl8lPGhlbY.en.vtt |
468б |
06. Gender Bias-JWl8lPGhlbY.hr.vtt |
425б |
06. Gender Bias-JWl8lPGhlbY.it.vtt |
476б |
06. Gender Bias-JWl8lPGhlbY.ja.vtt |
458б |
06. Gender Bias-JWl8lPGhlbY.mp4 |
1.78Мб |
06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt |
447б |
06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt |
355б |
06. GMM in 2D.html |
7.41Кб |
06. Having Git Ignore Files.html |
13.17Кб |
06. Hierarchical clustering implementation.html |
6.84Кб |
06. Higher Dimensions.html |
8.74Кб |
06. Higher Dimensions.html |
9.60Кб |
06. How to Reduce Features-ydhrelgjriI.en.vtt |
1.86Кб |
06. How to Reduce Features-ydhrelgjriI.mp4 |
2.33Мб |
06. How to Reduce Features-ydhrelgjriI.pt-BR.vtt |
1.85Кб |
06. How to Succeed.html |
5.47Кб |
06. ICA.html |
7.03Кб |
06. Identify fixes for example “bad” profile.html |
9.93Кб |
06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt |
490б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt |
371б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 |
569.35Кб |
06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt |
457б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt |
357б |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt |
1.94Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt |
1.39Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 |
1.59Мб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt |
1.48Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt |
1.31Кб |
06. Image Classifier - Part 2 - Workspace.html |
6.20Кб |
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.en.vtt |
3.01Кб |
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.mp4 |
17.26Мб |
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.pt-BR.vtt |
2.88Кб |
06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.zh-CN.vtt |
2.44Кб |
06. Interpreting Results-UPOxxbKu6CQ.en.vtt |
2.06Кб |
06. Interpreting Results-UPOxxbKu6CQ.mp4 |
11.26Мб |
06. Interpreting Results-UPOxxbKu6CQ.pt-BR.vtt |
2.27Кб |
06. Interpreting Results-UPOxxbKu6CQ.zh-CN.vtt |
1.71Кб |
06. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt |
3.40Кб |
06. Kaggle Project Final For Classroom-Ssttix340C8.mp4 |
10.15Мб |
06. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt |
2.89Кб |
06. Keras Lab-a50un22BsLI.en.vtt |
586б |
06. Keras Lab-a50un22BsLI.mp4 |
2.19Мб |
06. Keras Lab-a50un22BsLI.pt-BR.vtt |
574б |
06. Keras Lab-a50un22BsLI.zh-CN.vtt |
540б |
06. L1 061 Visualization In Python V1-MFS-1veFC_c.mp4 |
5.51Мб |
06. L1 061 Visualization In Python V1-MFS-1veFC_c.pt-BR.vtt |
2.63Кб |
06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt |
5.85Кб |
06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4 |
27.11Мб |
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.ar.vtt |
2.09Кб |
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.en.vtt |
1.51Кб |
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.mp4 |
1.29Мб |
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.pt-BR.vtt |
1.51Кб |
06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.zh-CN.vtt |
1.43Кб |
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.en.vtt |
2.10Кб |
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.mp4 |
3.32Мб |
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.pt-BR.vtt |
1.99Кб |
06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.zh-CN.vtt |
2.00Кб |
06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.en.vtt |
1.19Кб |
06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.mp4 |
2.13Мб |
06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.pt-BR.vtt |
1.27Кб |
06. L6 061 Polishing Plots V3-4TixzVx79uk.mp4 |
3.64Мб |
06. L6 061 Polishing Plots V3-4TixzVx79uk.pt-BR.vtt |
1.64Кб |
06. Loaded Coin 3.html |
8.83Кб |
06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt |
279б |
06. Loaded Coin 3-HohMRlmHoMQ.en.vtt |
231б |
06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt |
234б |
06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt |
238б |
06. Loaded Coin 3-HohMRlmHoMQ.it.vtt |
234б |
06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt |
261б |
06. Loaded Coin 3-HohMRlmHoMQ.mp4 |
1.69Мб |
06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt |
265б |
06. Loaded Coin 3-HohMRlmHoMQ.th.vtt |
354б |
06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt |
228б |
06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt |
302б |
06. Loaded Coin 3-P4uljJ_OP6I.en.vtt |
260б |
06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt |
257б |
06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt |
289б |
06. Loaded Coin 3-P4uljJ_OP6I.it.vtt |
291б |
06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt |
247б |
06. Loaded Coin 3-P4uljJ_OP6I.mp4 |
1.35Мб |
06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt |
249б |
06. Loaded Coin 3-P4uljJ_OP6I.th.vtt |
447б |
06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt |
248б |
06. Magnitude and Direction .html |
8.89Кб |
06. Managing packages.html |
9.71Кб |
06. Medical Example 5.html |
8.41Кб |
06. Medical Example 5-fqt7NIvMB0s.ar.vtt |
153б |
06. Medical Example 5-fqt7NIvMB0s.en.vtt |
128б |
06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt |
142б |
06. Medical Example 5-fqt7NIvMB0s.it.vtt |
127б |
06. Medical Example 5-fqt7NIvMB0s.ja.vtt |
138б |
06. Medical Example 5-fqt7NIvMB0s.mp4 |
528.90Кб |
06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt |
169б |
06. Medical Example 5-fqt7NIvMB0s.th.vtt |
204б |
06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt |
123б |
06. Medical Example 5-ys9w-NNKCcU.ar.vtt |
436б |
06. Medical Example 5-ys9w-NNKCcU.en.vtt |
349б |
06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt |
358б |
06. Medical Example 5-ys9w-NNKCcU.it.vtt |
341б |
06. Medical Example 5-ys9w-NNKCcU.ja.vtt |
315б |
06. Medical Example 5-ys9w-NNKCcU.mp4 |
2.36Мб |
06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt |
393б |
06. Medical Example 5-ys9w-NNKCcU.th.vtt |
723б |
06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt |
275б |
06. Merge Conflicts.html |
20.00Кб |
06. Mini Project Intro.html |
5.36Кб |
06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.en.vtt |
2.73Кб |
06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.mp4 |
2.49Мб |
06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.pt-BR.vtt |
2.97Кб |
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.en.vtt |
1.76Кб |
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.mp4 |
7.48Мб |
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.pt-BR.vtt |
1.61Кб |
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.zh-CN.vtt |
1.64Кб |
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.en.vtt |
1.42Кб |
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.mp4 |
6.00Мб |
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.pt-BR.vtt |
1.59Кб |
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.zh-CN.vtt |
1.21Кб |
06. Model Validation in Keras.html |
8.29Кб |
06. Model Validation in Keras-002jNXSM6CU.en.vtt |
5.51Кб |
06. Model Validation in Keras-002jNXSM6CU.mp4 |
5.20Мб |
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt |
6.07Кб |
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt |
4.74Кб |
06. Multilayer Perceptrons.html |
20.99Кб |
06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt |
1.65Кб |
06. Multilayer perceptrons-Rs9petvTBLk.mp4 |
2.85Мб |
06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt |
1.71Кб |
06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt |
1.39Кб |
06. Normalization.html |
8.13Кб |
06. Normalization-eOV2UUY8vtM.en.vtt |
3.24Кб |
06. Normalization-eOV2UUY8vtM.mp4 |
3.13Мб |
06. Normalization-eOV2UUY8vtM.pt-BR.vtt |
3.37Кб |
06. Normalization-eOV2UUY8vtM.zh-CN.vtt |
2.88Кб |
06. Normalizing 3.html |
10.45Кб |
06. Normalizing 3-etrUbOAoh1U.ar.vtt |
110б |
06. Normalizing 3-etrUbOAoh1U.en.vtt |
103б |
06. Normalizing 3-etrUbOAoh1U.es-ES.vtt |
109б |
06. Normalizing 3-etrUbOAoh1U.it.vtt |
96б |
06. Normalizing 3-etrUbOAoh1U.ja.vtt |
94б |
06. Normalizing 3-etrUbOAoh1U.mp4 |
650.53Кб |
06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt |
108б |
06. Normalizing 3-etrUbOAoh1U.th.vtt |
135б |
06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt |
90б |
06. Normalizing 3-V96RcbbVP7Q.ar.vtt |
283б |
06. Normalizing 3-V96RcbbVP7Q.en.vtt |
219б |
06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt |
234б |
06. Normalizing 3-V96RcbbVP7Q.it.vtt |
231б |
06. Normalizing 3-V96RcbbVP7Q.ja.vtt |
199б |
06. Normalizing 3-V96RcbbVP7Q.mp4 |
1.22Мб |
06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt |
253б |
06. Normalizing 3-V96RcbbVP7Q.th.vtt |
339б |
06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt |
198б |
06. Notebook + Quiz Difference in Means.html |
16.01Кб |
06. Notes On OOP-NcgDIWm6iBA.en.vtt |
6.10Кб |
06. Notes On OOP-NcgDIWm6iBA.mp4 |
6.26Мб |
06. Notes On OOP-NcgDIWm6iBA.pt-BR.vtt |
6.08Кб |
06. Onward.html |
5.23Кб |
06. Onward-iXbMaTwfIJI.ar.vtt |
1.43Кб |
06. Onward-iXbMaTwfIJI.en.vtt |
1.06Кб |
06. Onward-iXbMaTwfIJI.mp4 |
3.51Мб |
06. Onward-iXbMaTwfIJI.pt-BR.vtt |
1.12Кб |
06. Onward-iXbMaTwfIJI.zh-CN.vtt |
973б |
06. Other Adaptations of Bivariate Plots.html |
13.22Кб |
06. Outro.html |
5.06Кб |
06. Outro-xj70jX9Moxs.en.vtt |
1.28Кб |
06. Outro-xj70jX9Moxs.mp4 |
5.54Мб |
06. Outro-xj70jX9Moxs.pt-BR.vtt |
1.26Кб |
06. Pandas 3 V1-yhMT0X6YPFA.en.vtt |
2.92Кб |
06. Pandas 3 V1-yhMT0X6YPFA.mp4 |
3.51Мб |
06. Pandas 3 V1-yhMT0X6YPFA.pt-BR.vtt |
3.41Кб |
06. Pandas 3 V1-yhMT0X6YPFA.zh-CN.vtt |
2.59Кб |
06. Perceptrons.html |
6.70Кб |
06. Polishing Plots.html |
14.49Кб |
06. Programming Environment Setup.html |
9.81Кб |
06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt |
6.17Кб |
06. Programming Environment Setup-EKxDnCK0NAk.en.vtt |
4.14Кб |
06. Programming Environment Setup-EKxDnCK0NAk.mp4 |
7.42Мб |
06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt |
4.89Кб |
06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt |
3.93Кб |
06. Project Workspace IDE.html |
6.09Кб |
06. Pull vs Fetch.html |
8.50Кб |
06. Pull Vs Fetch-kxXdk2HcOBo.ar.vtt |
1.24Кб |
06. Pull Vs Fetch-kxXdk2HcOBo.en.vtt |
913б |
06. Pull Vs Fetch-kxXdk2HcOBo.mp4 |
787.86Кб |
06. Pull Vs Fetch-kxXdk2HcOBo.pt-BR.vtt |
938б |
06. Pull Vs Fetch-kxXdk2HcOBo.zh-CN.vtt |
893б |
06. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt |
2.26Кб |
06. PyTorch - Part 4-AEJV_RKZ7VU.mp4 |
3.32Мб |
06. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt |
2.19Кб |
06. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt |
1.91Кб |
06. Quadratics 3.html |
8.31Кб |
06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt |
599б |
06. Quadratics 3-Ny2vcRZ6Aws.en.vtt |
461б |
06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt |
459б |
06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt |
389б |
06. Quadratics 3-Ny2vcRZ6Aws.mp4 |
2.61Мб |
06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt |
465б |
06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt |
403б |
06. Quadratics 3-YSMWpFM92S0.ar.vtt |
974б |
06. Quadratics 3-YSMWpFM92S0.en.vtt |
752б |
06. Quadratics 3-YSMWpFM92S0.es-ES.vtt |
746б |
06. Quadratics 3-YSMWpFM92S0.ja.vtt |
587б |
06. Quadratics 3-YSMWpFM92S0.mp4 |
2.54Мб |
06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt |
673б |
06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt |
638б |
06. Quiz + Notebook A Look at the Data.html |
11.03Кб |
06. Quiz Data Types (Quantitative vs. Categorical).html |
15.52Кб |
06. Quiz Experiment I.html |
15.65Кб |
06. Quiz False Positives.html |
7.44Кб |
06. Quiz Identifying Clusters.html |
7.43Кб |
06. Quiz JOINs with Comparison Operators.html |
9.72Кб |
06. Quiz POSITION, STRPOS, SUBSTR - AME DATA AS QUIZ 1.html |
7.66Кб |
06. Quiz Setting Up Hypothesis Tests.html |
16.67Кб |
06. Quiz Unit Tests.html |
6.41Кб |
06. Quiz Variables and Assignment Operators.html |
14.06Кб |
06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.en.vtt |
5.56Кб |
06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.mp4 |
8.86Мб |
06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.en.vtt |
11.88Кб |
06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.mp4 |
17.93Мб |
06. Regularization.html |
7.21Кб |
06. Scatter Plots.html |
8.58Кб |
06. Scatter Plots -DvlxZ37O4i8.ar.vtt |
3.07Кб |
06. Scatter Plots -DvlxZ37O4i8.en.vtt |
2.39Кб |
06. Scatter Plots -DvlxZ37O4i8.mp4 |
3.45Мб |
06. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt |
2.50Кб |
06. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt |
1.89Кб |
06. Screencast Solution MovieTweeting Data .html |
9.33Кб |
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt |
1.93Кб |
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4 |
5.41Мб |
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt |
1.94Кб |
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt |
1.67Кб |
06. Solution Conditional Statements.html |
9.52Кб |
06. Solution Student Admissions.html |
7.06Кб |
06. Solutions Window Functions 2.html |
8.58Кб |
06. Solving a Simplified Set of Equations.html |
13.45Кб |
06. Square Matrix Multiplication Quiz.html |
8.86Кб |
06. Student Admissions-TdgBi6LtOB8.en.vtt |
2.50Кб |
06. Student Admissions-TdgBi6LtOB8.mp4 |
5.41Мб |
06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt |
2.31Кб |
06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt |
2.33Кб |
06. Subqueries Part II-jko-RrZd0R8.ar.vtt |
2.11Кб |
06. Subqueries Part II-jko-RrZd0R8.en.vtt |
1.61Кб |
06. Subqueries Part II-jko-RrZd0R8.mp4 |
2.34Мб |
06. Subqueries Part II-jko-RrZd0R8.pt-BR.vtt |
1.90Кб |
06. Subqueries Part II-jko-RrZd0R8.zh-CN.vtt |
1.50Кб |
06. SUM-0zUP14PeiXk.ar.vtt |
1.42Кб |
06. SUM-0zUP14PeiXk.en.vtt |
1.10Кб |
06. SUM-0zUP14PeiXk.mp4 |
918.81Кб |
06. SUM-0zUP14PeiXk.pt-BR.vtt |
1.17Кб |
06. SUM-0zUP14PeiXk.zh-CN.vtt |
1003б |
06. SVM 05 Classification Error V1-nWGVAGXwvGE.en.vtt |
3.59Кб |
06. SVM 05 Classification Error V1-nWGVAGXwvGE.mp4 |
12.57Мб |
06. SVM 05 Classification Error V1-nWGVAGXwvGE.pt-BR.vtt |
3.03Кб |
06. SVM 05 Classification Error V1-nWGVAGXwvGE.zh-CN.vtt |
2.91Кб |
06. Text ERD Reminder.html |
9.66Кб |
06. Try our workspace out!.html |
6.73Кб |
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.ar.vtt |
2.69Кб |
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.en.vtt |
2.10Кб |
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.mp4 |
2.18Мб |
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.pt-BR.vtt |
2.03Кб |
06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.zh-CN.vtt |
1.86Кб |
06. Up and Running On Medium-0QzbxjAcMq0.en.vtt |
1.18Кб |
06. Up and Running On Medium-0QzbxjAcMq0.mp4 |
2.83Мб |
06. Up and Running On Medium-0QzbxjAcMq0.pt-BR.vtt |
1.25Кб |
06. Variable Scope.html |
7.20Кб |
06. Video + Quiz Introduction to Sampling Distributions Part I.html |
11.01Кб |
06. Video How to Reduce Features.html |
7.27Кб |
06. Video Interpreting Results - Part I.html |
8.74Кб |
06. Video More On Subqueries.html |
7.85Кб |
06. Video Multiple Linear Regression Model Results.html |
9.09Кб |
06. Video SUM.html |
8.79Кб |
06. Video Up And Running On Medium.html |
6.86Кб |
06. Video What if We Only Want One Number.html |
9.08Кб |
06. Video Why SQL.html |
14.25Кб |
06. Video Why SVD.html |
8.37Кб |
06. Viewing A Specific Commit.html |
11.10Кб |
06. Violin Plots.html |
10.99Кб |
06. Visualization in Python.html |
7.09Кб |
06. Weighting the Data.html |
5.82Кб |
06. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt |
3.06Кб |
06. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt |
2.17Кб |
06. Why Businesses Choose Databases-j4ey7--h9r8.mp4 |
2.03Мб |
06. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt |
2.68Кб |
06. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt |
2.06Кб |
06. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt |
4.30Кб |
06. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt |
2.87Кб |
06. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4 |
3.94Мб |
06. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt |
3.25Кб |
06. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt |
2.76Кб |
06. Why SVD-WdW1-rRQrLk.en.vtt |
2.12Кб |
06. Why SVD-WdW1-rRQrLk.mp4 |
5.58Мб |
06. World Bank API [advanced version].html |
7.52Кб |
06. Writing Modular Code.html |
9.67Кб |
07. [Lab] Hierarchical clustering .html |
6.90Кб |
07. [Optional] Kaggle Competition.html |
6.71Кб |
07. 07 Changing K 1 V3-Bd3M-xUlqEI.en.vtt |
1.84Кб |
07. 07 Changing K 1 V3-Bd3M-xUlqEI.mp4 |
2.10Мб |
07. 07 Changing K 1 V3-Bd3M-xUlqEI.pt-BR.vtt |
1.94Кб |
07. 10 Flips 5 Heads.html |
7.93Кб |
07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt |
1.14Кб |
07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt |
908б |
07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt |
900б |
07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt |
923б |
07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4 |
9.25Мб |
07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt |
1.24Кб |
07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt |
914б |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt |
342б |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt |
256б |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt |
251б |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt |
304б |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4 |
3.37Мб |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt |
383б |
07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt |
215б |
07. Accessing, Deleting, and Inserting Elements Into ndarrays.html |
16.94Кб |
07. Accuracy 2.html |
6.63Кб |
07. Accuracy 2-ueYCLfd_aNQ.en.vtt |
688б |
07. Accuracy 2-ueYCLfd_aNQ.en-US.vtt |
716б |
07. Accuracy 2-ueYCLfd_aNQ.mp4 |
573.82Кб |
07. Accuracy 2-ueYCLfd_aNQ.pt.vtt |
656б |
07. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt |
618б |
07. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt |
524б |
07. Adapted Plot Practice.html |
6.29Кб |
07. Aggregation.html |
7.87Кб |
07. Aggregation-55eZrE82TqA.ar.vtt |
1.05Кб |
07. Aggregation-55eZrE82TqA.en.vtt |
799б |
07. Aggregation-55eZrE82TqA.hr.vtt |
748б |
07. Aggregation-55eZrE82TqA.it.vtt |
797б |
07. Aggregation-55eZrE82TqA.ja.vtt |
708б |
07. Aggregation-55eZrE82TqA.mp4 |
4.66Мб |
07. Aggregation-55eZrE82TqA.pt-BR.vtt |
797б |
07. Aggregation-55eZrE82TqA.zh-CN.vtt |
673б |
07. Aggregation-8j5hria6Rc8.ar.vtt |
98б |
07. Aggregation-8j5hria6Rc8.en.vtt |
90б |
07. Aggregation-8j5hria6Rc8.hr.vtt |
85б |
07. Aggregation-8j5hria6Rc8.it.vtt |
89б |
07. Aggregation-8j5hria6Rc8.ja.vtt |
89б |
07. Aggregation-8j5hria6Rc8.mp4 |
447.99Кб |
07. Aggregation-8j5hria6Rc8.pt-BR.vtt |
89б |
07. Aggregation-8j5hria6Rc8.zh-CN.vtt |
84б |
07. A Look at the Data-vPHVUYvCNGE.en.vtt |
11.67Кб |
07. A Look at the Data-vPHVUYvCNGE.mp4 |
16.36Мб |
07. A Look at the Data-vPHVUYvCNGE.pt-BR.vtt |
9.91Кб |
07. AND And OR Perceptrons-45K5N0P9wJk.en.vtt |
3.00Кб |
07. AND And OR Perceptrons-45K5N0P9wJk.mp4 |
2.68Мб |
07. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt |
3.15Кб |
07. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt |
2.48Кб |
07. A Repository's History - Outro-9rUf2HbdAd8.ar.vtt |
1.47Кб |
07. A Repository's History - Outro-9rUf2HbdAd8.en.vtt |
1.01Кб |
07. A Repository's History - Outro-9rUf2HbdAd8.mp4 |
4.39Мб |
07. A Repository's History - Outro-9rUf2HbdAd8.pt-BR.vtt |
1.06Кб |
07. A Repository's History - Outro-9rUf2HbdAd8.zh-CN.vtt |
933б |
07. Arvato Terms and Conditions.html |
8.40Кб |
07. Backpropagation.html |
19.36Кб |
07. Backpropagation-MZL97-2joxQ.en-US.vtt |
2.42Кб |
07. Backpropagation-MZL97-2joxQ.mp4 |
3.44Мб |
07. Backpropagation-MZL97-2joxQ.pt-BR.vtt |
2.41Кб |
07. Backpropagation-MZL97-2joxQ.zh-CN.vtt |
2.14Кб |
07. Boolean Expressions for Conditions.html |
15.16Кб |
07. Box Plots.html |
12.25Кб |
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt |
1.22Кб |
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt |
988б |
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4 |
1.74Мб |
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt |
1.14Кб |
07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt |
935б |
07. Complementary Outcomes.html |
7.14Кб |
07. Complementary Outcomes-YseJqD-1oUg.ar.vtt |
838б |
07. Complementary Outcomes-YseJqD-1oUg.en.vtt |
682б |
07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt |
671б |
07. Complementary Outcomes-YseJqD-1oUg.hr.vtt |
640б |
07. Complementary Outcomes-YseJqD-1oUg.it.vtt |
697б |
07. Complementary Outcomes-YseJqD-1oUg.ja.vtt |
669б |
07. Complementary Outcomes-YseJqD-1oUg.mp4 |
4.50Мб |
07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt |
695б |
07. Complementary Outcomes-YseJqD-1oUg.th.vtt |
1.22Кб |
07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt |
582б |
07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt |
3.12Кб |
07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt |
2.35Кб |
07. Complex Boolean Expressions-gWmIKWgzFqI.mp4 |
15.06Мб |
07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt |
2.45Кб |
07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt |
2.13Кб |
07. Conclusion.html |
5.06Кб |
07. Conditional Probability Bayes Rule Quiz.html |
11.00Кб |
07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt |
1.54Кб |
07. Confidence Intervals Applications-C0wgmeRx9yE.mp4 |
6.08Мб |
07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt |
1.64Кб |
07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt |
1.31Кб |
07. Controlling Variables.html |
7.83Кб |
07. Controlling Variables-pLTneSg2MRY.en.vtt |
2.35Кб |
07. Controlling Variables-pLTneSg2MRY.mp4 |
4.68Мб |
07. Controlling Variables-pLTneSg2MRY.pt-BR.vtt |
2.58Кб |
07. Course Structure.html |
7.21Кб |
07. Data Vis L4 C07 V1-f6v3L3IDo24.en.vtt |
1.83Кб |
07. Data Vis L4 C07 V1-f6v3L3IDo24.mp4 |
1.83Мб |
07. Data Vis L4 C07 V1-f6v3L3IDo24.pt-BR.vtt |
2.01Кб |
07. Data Vis L4 C07 V1-f6v3L3IDo24.zh-CN.vtt |
1.59Кб |
07. Deciding on Metrics - Discussion.html |
8.50Кб |
07. Dimensionality Reduction-mANti9veGtc.en.vtt |
2.33Кб |
07. Dimensionality Reduction-mANti9veGtc.mp4 |
2.96Мб |
07. Dimensionality Reduction-mANti9veGtc.pt-BR.vtt |
2.40Кб |
07. Div and Span.html |
8.48Кб |
07. Div and Span-cbKA_dvthcY.en.vtt |
2.35Кб |
07. Div and Span-cbKA_dvthcY.mp4 |
2.91Мб |
07. Div and Span-cbKA_dvthcY.pt-BR.vtt |
2.40Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt |
5.89Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt |
5.89Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 |
5.13Мб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 |
5.13Мб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt |
5.61Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt |
5.61Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt |
4.98Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt |
4.98Кб |
07. Editing a Python Script.html |
8.55Кб |
07. Entropy.html |
6.74Кб |
07. Entropy-piLpj1V1HEk.en.vtt |
4.78Кб |
07. Entropy-piLpj1V1HEk.mp4 |
12.59Мб |
07. Entropy-piLpj1V1HEk.pt-BR.vtt |
4.19Кб |
07. Entropy-piLpj1V1HEk.zh-CN.vtt |
4.32Кб |
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt |
1.33Кб |
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt |
1017б |
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4 |
3.87Мб |
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt |
1.04Кб |
07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt |
905б |
07. Exercise JSON and XML.html |
9.46Кб |
07. Exercise OOP Syntax Practice - Part 2.html |
8.36Кб |
07. Good And Bad Examples-95oLh3WtdhY.ar.vtt |
4.14Кб |
07. Good And Bad Examples-95oLh3WtdhY.en.vtt |
2.92Кб |
07. Good And Bad Examples-95oLh3WtdhY.mp4 |
19.91Мб |
07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt |
3.29Кб |
07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt |
2.56Кб |
07. How Databases Store Data-H0C9z_sRvLE.ar.vtt |
1.80Кб |
07. How Databases Store Data-H0C9z_sRvLE.en.vtt |
1.28Кб |
07. How Databases Store Data-H0C9z_sRvLE.mp4 |
1.24Мб |
07. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt |
1.38Кб |
07. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt |
1.18Кб |
07. ICA in sklearn.html |
5.59Кб |
07. Identifying Data Types.html |
11.58Кб |
07. Inference Validation.html |
6.70Кб |
07. Interpreting Results in Python-IY88UTiJltQ.en.vtt |
2.63Кб |
07. Interpreting Results in Python-IY88UTiJltQ.mp4 |
10.96Мб |
07. Interpreting Results in Python-IY88UTiJltQ.pt-BR.vtt |
2.67Кб |
07. Interpreting Results in Python-IY88UTiJltQ.zh-CN.vtt |
2.25Кб |
07. Keras.html |
17.71Кб |
07. Knowledge Based Recommendations-C_vU1tjQHZI.en.vtt |
2.13Кб |
07. Knowledge Based Recommendations-C_vU1tjQHZI.mp4 |
2.65Мб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.en.vtt |
3.26Кб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.mp4 |
5.90Мб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.pt-BR.vtt |
3.68Кб |
07. L3 071 Pie Charts V3-kSrJGJHTKV8.en.vtt |
2.55Кб |
07. L3 071 Pie Charts V3-kSrJGJHTKV8.mp4 |
6.05Мб |
07. L3 071 Pie Charts V3-kSrJGJHTKV8.pt-BR.vtt |
2.91Кб |
07. L3 071 Pie Charts V3-kSrJGJHTKV8.zh-CN.vtt |
2.13Кб |
07. L4 071 Box Plots V4-3gxJag12T0g.en.vtt |
3.09Кб |
07. L4 071 Box Plots V4-3gxJag12T0g.mp4 |
4.02Мб |
07. L4 071 Box Plots V4-3gxJag12T0g.pt-BR.vtt |
3.12Кб |
07. L4 071 Box Plots V4-3gxJag12T0g.zh-CN.vtt |
2.73Кб |
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.en.vtt |
938б |
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.mp4 |
1.04Мб |
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.pt-BR.vtt |
955б |
07. L7 0F1 Congrats V3-LF-obnL7CI0.mp4 |
2.79Мб |
07. L7 0F1 Congrats V3-LF-obnL7CI0.pt-BR.vtt |
859б |
07. Latent Factors-jZz7tFEF2Dc.en.vtt |
2.12Кб |
07. Latent Factors-jZz7tFEF2Dc.mp4 |
2.96Мб |
07. Lesson Wrap Up.html |
5.36Кб |
07. Lesson Wrap Up-6Koa4nAu-04.ar.vtt |
946б |
07. Lesson Wrap Up-6Koa4nAu-04.en.vtt |
737б |
07. Lesson Wrap Up-6Koa4nAu-04.mp4 |
2.82Мб |
07. Lesson Wrap Up-6Koa4nAu-04.pt-BR.vtt |
820б |
07. Lesson Wrap Up-6Koa4nAu-04.zh-CN.vtt |
695б |
07. Linear Combination - Quiz 2.html |
7.70Кб |
07. Manipulate a Series.html |
8.20Кб |
07. Margin Error.html |
6.39Кб |
07. Matrix Multiplication - General.html |
10.07Кб |
07. Medical Example 6.html |
8.41Кб |
07. Medical Example 6-iyE5h48qPFQ.ar.vtt |
191б |
07. Medical Example 6-iyE5h48qPFQ.en.vtt |
169б |
07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt |
166б |
07. Medical Example 6-iyE5h48qPFQ.it.vtt |
164б |
07. Medical Example 6-iyE5h48qPFQ.ja.vtt |
141б |
07. Medical Example 6-iyE5h48qPFQ.mp4 |
639.69Кб |
07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt |
164б |
07. Medical Example 6-iyE5h48qPFQ.th.vtt |
305б |
07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt |
163б |
07. Medical Example 6--lC9xztr4zA.ar.vtt |
473б |
07. Medical Example 6--lC9xztr4zA.en.vtt |
433б |
07. Medical Example 6--lC9xztr4zA.es-ES.vtt |
426б |
07. Medical Example 6--lC9xztr4zA.it.vtt |
414б |
07. Medical Example 6--lC9xztr4zA.ja.vtt |
264б |
07. Medical Example 6--lC9xztr4zA.mp4 |
1.68Мб |
07. Medical Example 6--lC9xztr4zA.pt-BR.vtt |
339б |
07. Medical Example 6--lC9xztr4zA.th.vtt |
604б |
07. Medical Example 6--lC9xztr4zA.zh-CN.vtt |
376б |
07. Meet the Careers Team.html |
6.85Кб |
07. Meet the Careers Team-cuKecPpZ7PM.en.vtt |
3.63Кб |
07. Meet the Careers Team-cuKecPpZ7PM.mp4 |
10.12Мб |
07. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt |
3.83Кб |
07. Meet The Instructors-ndyjFUF2e9Q.en.vtt |
246б |
07. Meet The Instructors-ndyjFUF2e9Q.mp4 |
14.41Мб |
07. Meet The Instructors-ndyjFUF2e9Q.pt-BR.vtt |
1.98Кб |
07. Meet Your Instructors.html |
5.85Кб |
07. Metric - Click Through Rate.html |
7.44Кб |
07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt |
3.60Кб |
07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4 |
3.90Мб |
07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt |
4.04Кб |
07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt |
2.92Кб |
07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.en.vtt |
1.26Кб |
07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.mp4 |
1.04Мб |
07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.pt-BR.vtt |
1.16Кб |
07. Notebook Normalization.html |
7.84Кб |
07. NumPy 3 V1-Rt4aydeo9F8.en.vtt |
6.90Кб |
07. NumPy 3 V1-Rt4aydeo9F8.mp4 |
8.50Мб |
07. NumPy 3 V1-Rt4aydeo9F8.pt-BR.vtt |
7.25Кб |
07. NumPy 3 V1-Rt4aydeo9F8.zh-CN.vtt |
6.33Кб |
07. On Python versions at Udacity.html |
8.25Кб |
07. Outro.html |
5.19Кб |
07. Outro.html |
5.19Кб |
07. Outro.html |
5.53Кб |
07. Outro-5eyvsMvAPYs.ar.vtt |
1.55Кб |
07. Outro-5eyvsMvAPYs.en.vtt |
1.33Кб |
07. Outro-5eyvsMvAPYs.mp4 |
4.96Мб |
07. Outro-5eyvsMvAPYs.pt-BR.vtt |
1.39Кб |
07. Outro-5eyvsMvAPYs.zh-CN.vtt |
1.25Кб |
07. Outro-ot4fPX1jzOI.ar.vtt |
1.43Кб |
07. Outro-ot4fPX1jzOI.en.vtt |
1.19Кб |
07. Outro-ot4fPX1jzOI.mp4 |
3.80Мб |
07. Outro-ot4fPX1jzOI.pt-BR.vtt |
1.08Кб |
07. Outro-ot4fPX1jzOI.zh-CN.vtt |
1.10Кб |
07. Parameters and options (ls -l).html |
9.43Кб |
07. Perceptrons.html |
8.67Кб |
07. Perceptrons.html |
9.53Кб |
07. Perceptrons as Logical Operators.html |
17.25Кб |
07. Pie Charts.html |
12.37Кб |
07. Polishing Plots Practice.html |
6.10Кб |
07. Pre-Lab IMDB Data in Keras.html |
9.58Кб |
07. Profile Essentials.html |
10.50Кб |
07. Project 1-PNsxDWtpQTk.en.vtt |
5.22Кб |
07. Project 1-PNsxDWtpQTk.mp4 |
6.42Мб |
07. Project 1-PNsxDWtpQTk.pt-BR.vtt |
4.87Кб |
07. Py Part 5 V2-coBbbrGZXI0.en.vtt |
17.41Кб |
07. Py Part 5 V2-coBbbrGZXI0.mp4 |
27.08Мб |
07. Py Part 5 V2-coBbbrGZXI0.pt-BR.vtt |
17.58Кб |
07. Py Part 5 V2-coBbbrGZXI0.zh-CN.vtt |
13.89Кб |
07. Python and APIs [advanced version].html |
5.99Кб |
07. Quadratics 4.html |
7.84Кб |
07. Quadratics 4-yimIE9fCvi8.ar.vtt |
752б |
07. Quadratics 4-yimIE9fCvi8.en.vtt |
591б |
07. Quadratics 4-yimIE9fCvi8.es-ES.vtt |
595б |
07. Quadratics 4-yimIE9fCvi8.ja.vtt |
449б |
07. Quadratics 4-yimIE9fCvi8.mp4 |
2.00Мб |
07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt |
547б |
07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt |
522б |
07. Quadratics 4-zB2Y-5YEIec.ar.vtt |
623б |
07. Quadratics 4-zB2Y-5YEIec.en.vtt |
496б |
07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt |
516б |
07. Quadratics 4-zB2Y-5YEIec.ja.vtt |
389б |
07. Quadratics 4-zB2Y-5YEIec.mp4 |
519.05Кб |
07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt |
481б |
07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt |
389б |
07. Quick Fixes #1.html |
6.93Кб |
07. Quick Fixes-Lb9e2KemR6I.ar.vtt |
2.61Кб |
07. Quick Fixes-Lb9e2KemR6I.en.vtt |
1.89Кб |
07. Quick Fixes-Lb9e2KemR6I.mp4 |
3.99Мб |
07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt |
2.06Кб |
07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt |
1.87Кб |
07. Quiz Gaussian Mixtures.html |
10.37Кб |
07. Quiz Interpreting Coefficients in MLR.html |
17.16Кб |
07. Quiz More On Subqueries.html |
12.58Кб |
07. Quiz Refactoring - Wine Quality.html |
7.63Кб |
07. Quiz SUM.html |
9.45Кб |
07. Quizzes On Scatter Plots.html |
15.78Кб |
07. Regularization 2.html |
6.15Кб |
07. Regularization-ndYnUrx8xvs.en.vtt |
8.07Кб |
07. Regularization-ndYnUrx8xvs.mp4 |
7.57Мб |
07. Regularization-ndYnUrx8xvs.pt-BR.vtt |
8.78Кб |
07. Regularization-ndYnUrx8xvs.zh-CN.vtt |
6.96Кб |
07. Rubric.html |
9.81Кб |
07. Running Totals And Count-rNJwmnzUTxg.ar.vtt |
3.40Кб |
07. Running Totals And Count-rNJwmnzUTxg.en.vtt |
2.63Кб |
07. Running Totals And Count-rNJwmnzUTxg.mp4 |
3.26Мб |
07. Running Totals And Count-rNJwmnzUTxg.pt-BR.vtt |
2.61Кб |
07. Running Totals And Count-rNJwmnzUTxg.zh-CN.vtt |
2.40Кб |
07. Scikit Learn.html |
5.63Кб |
07. Scikit Learn-kxvmG8ZsOVg.en.vtt |
1.01Кб |
07. Scikit Learn-kxvmG8ZsOVg.mp4 |
2.34Мб |
07. Scikit Learn-kxvmG8ZsOVg.pt-BR.vtt |
1.15Кб |
07. Screencast A Look at the Data.html |
11.45Кб |
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt |
6.46Кб |
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4 |
14.35Мб |
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt |
6.53Кб |
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt |
5.41Кб |
07. Solution Detecting Overfitting and Underfitting.html |
8.88Кб |
07. Solution False Positives.html |
6.26Кб |
07. Solution Machine Learning Workflow.html |
9.21Кб |
07. Solutions JOINs with Comparison Operators.html |
7.97Кб |
07. Solutions POSITION, STRPOS, SUBSTR.html |
7.39Кб |
07. Solution Variables and Assignment Operators.html |
11.03Кб |
07. Solution Variable Scope.html |
7.38Кб |
07. Square Trick.html |
7.52Кб |
07. Square Trick-AGZEq-yQgRM.en.vtt |
3.91Кб |
07. Square Trick-AGZEq-yQgRM.mp4 |
3.28Мб |
07. Square Trick-AGZEq-yQgRM.pt-BR.vtt |
3.78Кб |
07. SVM 06 Margin Error V2-dSac8Gfgbok.en.vtt |
6.55Кб |
07. SVM 06 Margin Error V2-dSac8Gfgbok.mp4 |
18.79Мб |
07. SVM 06 Margin Error V2-dSac8Gfgbok.pt-BR.vtt |
5.61Кб |
07. SVM 06 Margin Error V2-dSac8Gfgbok.zh-CN.vtt |
5.72Кб |
07. Test Driven Development and Data Science.html |
7.91Кб |
07. Text Medium Getting Started Post and Links.html |
11.42Кб |
07. Text Primary and Foreign Keys.html |
8.54Кб |
07. Total Probability-_hXCgF-aMB0.ar.vtt |
176б |
07. Total Probability-_hXCgF-aMB0.en.vtt |
140б |
07. Total Probability-_hXCgF-aMB0.es-ES.vtt |
143б |
07. Total Probability-_hXCgF-aMB0.it.vtt |
129б |
07. Total Probability-_hXCgF-aMB0.ja.vtt |
142б |
07. Total Probability-_hXCgF-aMB0.mp4 |
672.27Кб |
07. Total Probability-_hXCgF-aMB0.pt-BR.vtt |
164б |
07. Total Probability-_hXCgF-aMB0.th.vtt |
240б |
07. Total Probability-_hXCgF-aMB0.zh-CN.vtt |
127б |
07. Total Probability.html |
10.53Кб |
07. Total Probability-fAaE5K9OZJc.ar.vtt |
404б |
07. Total Probability-fAaE5K9OZJc.en.vtt |
313б |
07. Total Probability-fAaE5K9OZJc.es-ES.vtt |
333б |
07. Total Probability-fAaE5K9OZJc.it.vtt |
324б |
07. Total Probability-fAaE5K9OZJc.ja.vtt |
345б |
07. Total Probability-fAaE5K9OZJc.mp4 |
2.08Мб |
07. Total Probability-fAaE5K9OZJc.pt-BR.vtt |
391б |
07. Total Probability-fAaE5K9OZJc.th.vtt |
579б |
07. Total Probability-fAaE5K9OZJc.zh-CN.vtt |
297б |
07. Truth Value Testing-e52uw7ejV8k.ar.vtt |
2.63Кб |
07. Truth Value Testing-e52uw7ejV8k.en.vtt |
1.77Кб |
07. Truth Value Testing-e52uw7ejV8k.mp4 |
12.78Мб |
07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt |
2.09Кб |
07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt |
1.60Кб |
07. Try our workspace again!.html |
8.08Кб |
07. Types of Errors - Part I.html |
8.85Кб |
07. Types Of Errors - Part I-aw6GMxIvENc.en.vtt |
2.13Кб |
07. Types Of Errors - Part I-aw6GMxIvENc.mp4 |
3.07Мб |
07. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt |
1.99Кб |
07. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt |
1.80Кб |
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.ar.vtt |
1.95Кб |
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.en.vtt |
1.68Кб |
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.mp4 |
2.06Мб |
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.pt-BR.vtt |
1.58Кб |
07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.zh-CN.vtt |
1.59Кб |
07. Using Dummy Tests.html |
7.94Кб |
07. Using Dummy Tests-rURTLjh3Hlc.en.vtt |
3.23Кб |
07. Using Dummy Tests-rURTLjh3Hlc.mp4 |
5.99Мб |
07. Vectors- Quiz 1.html |
7.50Кб |
07. Video (ScreenCast) Interpret Results - Part II.html |
8.81Кб |
07. Video + Quiz Introduction to Sampling Distributions Part II.html |
10.89Кб |
07. Video Changing K.html |
7.58Кб |
07. Video Confidence Interval Applications.html |
7.80Кб |
07. Video Data Types (Ordinal vs. Nominal).html |
8.94Кб |
07. Video Dimensionality Reduction.html |
7.77Кб |
07. Video How Databases Store Data.html |
11.12Кб |
07. Video Introduction to Standard Deviation and Variance.html |
9.93Кб |
07. Video Latent Factors.html |
8.55Кб |
07. Video ROW_NUMBER RANK.html |
7.62Кб |
07. Video Ways to Recommend Knowledge Based.html |
9.64Кб |
07. Weighting the Models 1.html |
7.23Кб |
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt |
3.38Кб |
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt |
2.70Кб |
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4 |
5.20Мб |
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt |
2.83Кб |
07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt |
2.22Кб |
07. When do MLPs (not) work well .html |
7.93Кб |
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt |
3.61Кб |
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 |
5.54Мб |
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt |
3.84Кб |
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt |
3.11Кб |
07. XOR Perceptron-TF83GfjYLdw.en.vtt |
1.01Кб |
07. XOR Perceptron-TF83GfjYLdw.mp4 |
947.00Кб |
07. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt |
1.00Кб |
07. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt |
1021б |
08. (Optional) Margin Error Calculation.html |
11.26Кб |
08. [Lab] Independent Component Analysis.html |
6.11Кб |
08. [Lab Solution] Hierarchical Clustering.html |
6.91Кб |
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt |
4.11Кб |
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 |
3.66Мб |
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt |
4.17Кб |
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt |
3.50Кб |
08. Access Your Career Portal.html |
6.75Кб |
08. Advanced API Code Walk-through-AkqO534YooE.en.vtt |
11.39Кб |
08. Advanced API Code Walk-through-AkqO534YooE.mp4 |
17.73Мб |
08. Advanced API Code Walk-through-AkqO534YooE.pt-BR.vtt |
11.66Кб |
08. Aggregation 2.html |
7.91Кб |
08. Aggregation 2-udXhxyls5Dw.ar.vtt |
166б |
08. Aggregation 2-udXhxyls5Dw.en.vtt |
155б |
08. Aggregation 2-udXhxyls5Dw.hr.vtt |
149б |
08. Aggregation 2-udXhxyls5Dw.it.vtt |
151б |
08. Aggregation 2-udXhxyls5Dw.ja.vtt |
137б |
08. Aggregation 2-udXhxyls5Dw.mp4 |
751.89Кб |
08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt |
168б |
08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt |
155б |
08. Aggregation 2-xhpEqsHTf3g.ar.vtt |
184б |
08. Aggregation 2-xhpEqsHTf3g.en.vtt |
148б |
08. Aggregation 2-xhpEqsHTf3g.hr.vtt |
163б |
08. Aggregation 2-xhpEqsHTf3g.it.vtt |
187б |
08. Aggregation 2-xhpEqsHTf3g.ja.vtt |
156б |
08. Aggregation 2-xhpEqsHTf3g.mp4 |
719.39Кб |
08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt |
173б |
08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt |
126б |
08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt |
3.00Кб |
08. AND And OR Perceptrons-45K5N0P9wJk.mp4 |
2.68Мб |
08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt |
3.15Кб |
08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt |
2.48Кб |
08. Bayesian Learning 1.html |
9.48Кб |
08. Bayes Rule Diagram.html |
8.80Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt |
2.42Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt |
1.92Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt |
1.95Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt |
2.09Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt |
1.98Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4 |
12.52Мб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt |
2.17Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt |
3.48Кб |
08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt |
1.70Кб |
08. BertelsmannArvato Project Workspace.html |
6.61Кб |
08. Checking Validity.html |
7.97Кб |
08. Checking Validity-H3H1SZXqDmQ.en.vtt |
2.99Кб |
08. Checking Validity-H3H1SZXqDmQ.mp4 |
4.65Мб |
08. Checking Validity-H3H1SZXqDmQ.pt-BR.vtt |
3.28Кб |
08. Click Through Rate.html |
7.78Кб |
08. Commenting Object-Oriented Code.html |
10.24Кб |
08. CONCAT-bCxZnQN28Y4.ar.vtt |
822б |
08. CONCAT-bCxZnQN28Y4.en.vtt |
630б |
08. CONCAT-bCxZnQN28Y4.mp4 |
1.16Мб |
08. CONCAT-bCxZnQN28Y4.pt-BR.vtt |
737б |
08. CONCAT-bCxZnQN28Y4.zh-CN.vtt |
536б |
08. Conclusion.html |
5.61Кб |
08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt |
2.23Кб |
08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt |
1.54Кб |
08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4 |
3.81Мб |
08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt |
1.70Кб |
08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt |
1.37Кб |
08. Correlation Coefficients.html |
9.30Кб |
08. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt |
2.16Кб |
08. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt |
1.76Кб |
08. Correlation Coefficients-rL5Bn8Fi-zE.mp4 |
3.04Мб |
08. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt |
1.96Кб |
08. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt |
1.47Кб |
08. Creating a Slide Deck with Jupyter.html |
11.20Кб |
08. Creating Pandas DataFrames.html |
21.49Кб |
08. DataVis L3 08 V2-f1we_0dUSXg.en.vtt |
4.89Кб |
08. DataVis L3 08 V2-f1we_0dUSXg.mp4 |
5.17Мб |
08. DataVis L3 08 V2-f1we_0dUSXg.pt-BR.vtt |
5.22Кб |
08. DataVis L3 08 V2-f1we_0dUSXg.zh-CN.vtt |
4.13Кб |
08. DataVis L5C08 V2-fq-hakwfpZw.mp4 |
5.55Мб |
08. DataVis L5C08 V2-fq-hakwfpZw.pt-BR.vtt |
3.79Кб |
08. Data Vis L6 C06 V1-qIot9qrvcF8.en.vtt |
3.82Кб |
08. Data Vis L6 C06 V1-qIot9qrvcF8.mp4 |
6.18Мб |
08. Data Vis L6 C06 V1-qIot9qrvcF8.pt-BR.vtt |
3.90Кб |
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt |
420б |
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 |
260.01Кб |
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt |
364б |
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt |
390б |
08. Documentation-_Vl9NJkA6JQ.ar.vtt |
3.42Кб |
08. Documentation-_Vl9NJkA6JQ.en.vtt |
2.70Кб |
08. Documentation-_Vl9NJkA6JQ.mp4 |
15.93Мб |
08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt |
3.03Кб |
08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt |
2.36Кб |
08. Documentation.html |
8.74Кб |
08. Dropout.html |
6.09Кб |
08. Dropout-Ty6K6YiGdBs.en.vtt |
4.71Кб |
08. Dropout-Ty6K6YiGdBs.mp4 |
4.22Мб |
08. Dropout-Ty6K6YiGdBs.pt-BR.vtt |
4.66Кб |
08. Dropout-Ty6K6YiGdBs.zh-CN.vtt |
4.06Кб |
08. Dummy Variables--QTgDd-fZuA.en.vtt |
2.05Кб |
08. Dummy Variables--QTgDd-fZuA.mp4 |
16.17Мб |
08. Dummy Variables--QTgDd-fZuA.pt-BR.vtt |
2.00Кб |
08. Dummy Variables--QTgDd-fZuA.zh-CN.vtt |
1.67Кб |
08. Elbow Method For Finding K-e7fqXpo63n8.en.vtt |
2.71Кб |
08. Elbow Method For Finding K-e7fqXpo63n8.mp4 |
4.34Мб |
08. Elbow Method For Finding K-e7fqXpo63n8.pt-BR.vtt |
2.63Кб |
08. Entropy Formula 1.html |
8.56Кб |
08. Entropy Formula-iZiSYrOKvpo.en.vtt |
1.80Кб |
08. Entropy Formula-iZiSYrOKvpo.mp4 |
4.30Мб |
08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt |
1.69Кб |
08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt |
1.77Кб |
08. Ethics in Machine Learning.html |
5.66Кб |
08. Ethics in ML-fNcTTXR8T08.en.vtt |
1.52Кб |
08. Ethics in ML-fNcTTXR8T08.mp4 |
4.42Мб |
08. Ethics in ML-fNcTTXR8T08.pt-BR.vtt |
1.94Кб |
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt |
1.06Кб |
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt |
821б |
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4 |
3.57Мб |
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt |
965б |
08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt |
704б |
08. Exercise SQL Databases.html |
9.46Кб |
08. Experiment Sizing.html |
8.26Кб |
08. Formula.html |
8.42Кб |
08. Formula-DTdS-LlMTQ0.ar.vtt |
1.26Кб |
08. Formula-DTdS-LlMTQ0.en.vtt |
931б |
08. Formula-DTdS-LlMTQ0.es-ES.vtt |
948б |
08. Formula-DTdS-LlMTQ0.ja.vtt |
984б |
08. Formula-DTdS-LlMTQ0.mp4 |
10.75Мб |
08. Formula-DTdS-LlMTQ0.pt-BR.vtt |
1.19Кб |
08. Formula-DTdS-LlMTQ0.zh-CN.vtt |
745б |
08. Formula-yTr8zCHdo5M.ar.vtt |
334б |
08. Formula-yTr8zCHdo5M.en.vtt |
240б |
08. Formula-yTr8zCHdo5M.es-ES.vtt |
236б |
08. Formula-yTr8zCHdo5M.ja.vtt |
217б |
08. Formula-yTr8zCHdo5M.mp4 |
1.28Мб |
08. Formula-yTr8zCHdo5M.pt-BR.vtt |
249б |
08. Formula-yTr8zCHdo5M.zh-CN.vtt |
210б |
08. Grid Search.html |
6.27Кб |
08. Grid Search SC V1-zDw-ZGiHW5I.en.vtt |
4.05Кб |
08. Grid Search SC V1-zDw-ZGiHW5I.mp4 |
3.44Мб |
08. Grid Search SC V1-zDw-ZGiHW5I.pt-BR.vtt |
4.15Кб |
08. Histograms.html |
15.97Кб |
08. How to Succeed.html |
5.75Кб |
08. IDs and Classes.html |
9.85Кб |
08. IDs and Classes-jnfDqdxDbO4.en.vtt |
3.41Кб |
08. IDs and Classes-jnfDqdxDbO4.mp4 |
4.43Мб |
08. IDs and Classes-jnfDqdxDbO4.pt-BR.vtt |
3.84Кб |
08. Implementing Backpropagation.html |
21.42Кб |
08. Integers and Floats.html |
12.60Кб |
08. Know Your Audience-OjmrU5HlFD8.en.vtt |
2.14Кб |
08. Know Your Audience-OjmrU5HlFD8.mp4 |
4.09Мб |
08. Know Your Audience-OjmrU5HlFD8.pt-BR.vtt |
2.14Кб |
08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt |
5.85Кб |
08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4 |
27.11Мб |
08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.mp4 |
2.44Мб |
08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.pt-BR.vtt |
986б |
08. L2 2 11 Logging V2-9qKQdRoIMbU.en.vtt |
1.05Кб |
08. L2 2 11 Logging V2-9qKQdRoIMbU.mp4 |
3.02Мб |
08. L2 2 11 Logging V2-9qKQdRoIMbU.pt-BR.vtt |
1.25Кб |
08. L3 081 Histograms V2-RLez9L0htGQ.en.vtt |
1.82Кб |
08. L3 081 Histograms V2-RLez9L0htGQ.mp4 |
2.88Мб |
08. L3 081 Histograms V2-RLez9L0htGQ.pt-BR.vtt |
2.08Кб |
08. L3 081 Histograms V2-RLez9L0htGQ.zh-CN.vtt |
1.52Кб |
08. L5 081 Plot Matrices V3-2wY-euTIE5g.en.vtt |
2.40Кб |
08. L5 081 Plot Matrices V3-2wY-euTIE5g.mp4 |
3.19Мб |
08. L5 081 Plot Matrices V3-2wY-euTIE5g.pt-BR.vtt |
2.58Кб |
08. Lab IMDB Data in Keras.html |
5.82Кб |
08. Lesson Summary.html |
5.31Кб |
08. Linear Combination - Quiz 3.html |
8.00Кб |
08. Logging.html |
6.34Кб |
08. Matrix Multiplication Quiz.html |
9.19Кб |
08. Maximum.html |
8.23Кб |
08. Maximum-02v8ui9riew.ar.vtt |
1.62Кб |
08. Maximum-02v8ui9riew.en.vtt |
1.27Кб |
08. Maximum-02v8ui9riew.es-ES.vtt |
1.28Кб |
08. Maximum-02v8ui9riew.ja.vtt |
1.10Кб |
08. Maximum-02v8ui9riew.mp4 |
6.58Мб |
08. Maximum-02v8ui9riew.pt-BR.vtt |
1.29Кб |
08. Maximum-02v8ui9riew.zh-CN.vtt |
1.07Кб |
08. Maximum-MZoYGBZTh-g.ar.vtt |
684б |
08. Maximum-MZoYGBZTh-g.en.vtt |
599б |
08. Maximum-MZoYGBZTh-g.es-ES.vtt |
629б |
08. Maximum-MZoYGBZTh-g.ja.vtt |
589б |
08. Maximum-MZoYGBZTh-g.mp4 |
2.67Мб |
08. Maximum-MZoYGBZTh-g.pt-BR.vtt |
736б |
08. Maximum-MZoYGBZTh-g.zh-CN.vtt |
522б |
08. Medical Example 7.html |
8.62Кб |
08. Medical Example 7-cw_zgQbAWNU.ar.vtt |
238б |
08. Medical Example 7-cw_zgQbAWNU.en.vtt |
167б |
08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt |
174б |
08. Medical Example 7-cw_zgQbAWNU.it.vtt |
171б |
08. Medical Example 7-cw_zgQbAWNU.ja.vtt |
187б |
08. Medical Example 7-cw_zgQbAWNU.mp4 |
803.67Кб |
08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt |
183б |
08. Medical Example 7-cw_zgQbAWNU.th.vtt |
228б |
08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt |
152б |
08. Medical Example 7-jPspIs-fNxg.ar.vtt |
399б |
08. Medical Example 7-jPspIs-fNxg.en.vtt |
325б |
08. Medical Example 7-jPspIs-fNxg.es-ES.vtt |
350б |
08. Medical Example 7-jPspIs-fNxg.it.vtt |
314б |
08. Medical Example 7-jPspIs-fNxg.ja.vtt |
260б |
08. Medical Example 7-jPspIs-fNxg.mp4 |
1.29Мб |
08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt |
293б |
08. Medical Example 7-jPspIs-fNxg.th.vtt |
548б |
08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt |
304б |
08. Mini project Training an MLP on MNIST.html |
10.96Кб |
08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.en.vtt |
3.72Кб |
08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.mp4 |
3.56Мб |
08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.pt-BR.vtt |
4.03Кб |
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.en.vtt |
1.76Кб |
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.mp4 |
6.42Мб |
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.pt-BR.vtt |
1.98Кб |
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.zh-CN.vtt |
1.43Кб |
08. Non-Parametric Tests Part I.html |
6.74Кб |
08. Notebook + Quiz Interpret Results.html |
15.31Кб |
08. Notebook Knowledge Based.html |
8.97Кб |
08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt |
6.62Кб |
08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt |
4.83Кб |
08. Números inteiros e floats-MiJ1vfWp-Ts.mp4 |
15.41Мб |
08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt |
5.02Кб |
08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt |
4.26Кб |
08. NumPy 4 V1-jeU7lLgyMms.en.vtt |
8.00Кб |
08. NumPy 4 V1-jeU7lLgyMms.mp4 |
9.80Мб |
08. NumPy 4 V1-jeU7lLgyMms.pt-BR.vtt |
8.41Кб |
08. NumPy 4 V1-jeU7lLgyMms.zh-CN.vtt |
7.24Кб |
08. Operations in the Field.html |
7.07Кб |
08. Organizing your files (mkdir, mv).html |
9.12Кб |
08. Overview of The Expectation Maximization (EM) Algorithm.html |
7.68Кб |
08. Pandas 4 V1-eMHUn9v9dds.en.vtt |
6.89Кб |
08. Pandas 4 V1-eMHUn9v9dds.mp4 |
6.93Мб |
08. Pandas 4 V1-eMHUn9v9dds.pt-BR.vtt |
8.18Кб |
08. Pandas 4 V1-eMHUn9v9dds.zh-CN.vtt |
6.13Кб |
08. PCA Properties-1oaaq-0wdB0.en.vtt |
3.06Кб |
08. PCA Properties-1oaaq-0wdB0.mp4 |
5.22Мб |
08. PCA Properties-1oaaq-0wdB0.pt-BR.vtt |
3.17Кб |
08. Perceptron Algorithm--zhTROHtscQ.en.vtt |
2.64Кб |
08. Perceptron Algorithm--zhTROHtscQ.mp4 |
1.92Мб |
08. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt |
2.41Кб |
08. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt |
2.35Кб |
08. Perceptrons as Logical Operators.html |
19.23Кб |
08. Perceptron Trick.html |
9.37Кб |
08. Plot Matrices.html |
11.41Кб |
08. Pre-Lab Student Admissions in Keras.html |
13.65Кб |
08. Py Part 6 V1-HiTih59dCWQ.en.vtt |
7.76Кб |
08. Py Part 6 V1-HiTih59dCWQ.mp4 |
15.94Мб |
08. Py Part 6 V1-HiTih59dCWQ.pt-BR.vtt |
7.95Кб |
08. Python Probability Conclusion-4JYar5GykXk.ar.vtt |
851б |
08. Python Probability Conclusion-4JYar5GykXk.en.vtt |
690б |
08. Python Probability Conclusion-4JYar5GykXk.mp4 |
2.05Мб |
08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt |
769б |
08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt |
617б |
08. Quick Fixes #2.html |
7.87Кб |
08. Quick Fixes #2-It6AEuSDQw0.ar.vtt |
608б |
08. Quick Fixes #2-It6AEuSDQw0.en.vtt |
435б |
08. Quick Fixes #2-It6AEuSDQw0.mp4 |
2.25Мб |
08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt |
453б |
08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt |
410б |
08. Quiz Absolute and Square Trick.html |
9.31Кб |
08. Quiz Boolean Expressions for Conditions.html |
16.85Кб |
08. Quiz Latent Factors.html |
10.27Кб |
08. Quiz Primary - Foreign Key Relationship.html |
13.51Кб |
08. Quiz ROW_NUMBER RANK.html |
8.40Кб |
08. Quiz Types of Errors - Part I.html |
11.04Кб |
08. Running a Python Script.html |
8.23Кб |
08. Running A Python Script-vMKemwCderg.ar.vtt |
2.98Кб |
08. Running A Python Script-vMKemwCderg.en.vtt |
2.23Кб |
08. Running A Python Script-vMKemwCderg.mp4 |
2.55Мб |
08. Running A Python Script-vMKemwCderg.pt-BR.vtt |
2.54Кб |
08. Running A Python Script-vMKemwCderg.zh-CN.vtt |
2.13Кб |
08. Saving and Loading Trained Networks.html |
6.60Кб |
08. Scripting with Raw Input.html |
9.37Кб |
08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt |
3.88Кб |
08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt |
2.73Кб |
08. Scripting With Raw Input-Fs9uLV2qfgI.mp4 |
5.25Мб |
08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt |
3.28Кб |
08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt |
2.49Кб |
08. Self JOINs-tw_VzEGBOvI.ar.vtt |
2.88Кб |
08. Self JOINs-tw_VzEGBOvI.en.vtt |
2.27Кб |
08. Self JOINs-tw_VzEGBOvI.mp4 |
2.58Мб |
08. Self JOINs-tw_VzEGBOvI.pt-BR.vtt |
2.24Кб |
08. Self JOINs-tw_VzEGBOvI.zh-CN.vtt |
2.08Кб |
08. Slicing ndarrays.html |
16.25Кб |
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt |
2.38Кб |
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4 |
6.09Мб |
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt |
2.22Кб |
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt |
2.21Кб |
08. Solution Refactoring - Wine Quality.html |
7.64Кб |
08. Solutions More On Subqueries.html |
7.77Кб |
08. Solution SUM.html |
9.92Кб |
08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt |
4.83Кб |
08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt |
3.67Кб |
08. Standard Deviation Calculation-H5zA1A-XPoY.mp4 |
6.78Мб |
08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt |
3.93Кб |
08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt |
2.97Кб |
08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt |
3.13Кб |
08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4 |
8.26Мб |
08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt |
3.31Кб |
08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt |
2.60Кб |
08. Text + Quiz Types of Databases.html |
12.60Кб |
08. Tokenization.html |
7.70Кб |
08. Tokenization-4Ieotbeh4u8.en.vtt |
2.89Кб |
08. Tokenization-4Ieotbeh4u8.mp4 |
3.22Мб |
08. Tokenization-4Ieotbeh4u8.pt-BR.vtt |
3.28Кб |
08. Tokenization-4Ieotbeh4u8.zh-CN.vtt |
2.59Кб |
08. Two Flips 1.html |
8.79Кб |
08. Two Flips 1-1txkcmxk3vU.ar.vtt |
2.19Кб |
08. Two Flips 1-1txkcmxk3vU.en.vtt |
1.72Кб |
08. Two Flips 1-1txkcmxk3vU.es-ES.vtt |
1.79Кб |
08. Two Flips 1-1txkcmxk3vU.hr.vtt |
1.68Кб |
08. Two Flips 1-1txkcmxk3vU.it.vtt |
1.87Кб |
08. Two Flips 1-1txkcmxk3vU.ja.vtt |
1.62Кб |
08. Two Flips 1-1txkcmxk3vU.mp4 |
4.01Мб |
08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt |
1.91Кб |
08. Two Flips 1-1txkcmxk3vU.th.vtt |
3.35Кб |
08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt |
1.45Кб |
08. Two Flips 1-yUIz7SgUwJg.ar.vtt |
663б |
08. Two Flips 1-yUIz7SgUwJg.en.vtt |
495б |
08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt |
535б |
08. Two Flips 1-yUIz7SgUwJg.hr.vtt |
530б |
08. Two Flips 1-yUIz7SgUwJg.it.vtt |
552б |
08. Two Flips 1-yUIz7SgUwJg.ja.vtt |
532б |
08. Two Flips 1-yUIz7SgUwJg.mp4 |
3.42Мб |
08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt |
530б |
08. Two Flips 1-yUIz7SgUwJg.th.vtt |
1021б |
08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt |
516б |
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.ar.vtt |
3.21Кб |
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.en.vtt |
2.31Кб |
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.mp4 |
2.55Мб |
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.pt-BR.vtt |
2.06Кб |
08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.zh-CN.vtt |
2.16Кб |
08. Using Pipeline.html |
11.93Кб |
08. Using Pipelines-mxFrS8qpZ6Y.en.vtt |
4.35Кб |
08. Using Pipelines-mxFrS8qpZ6Y.mp4 |
5.71Мб |
08. Using Pipelines-mxFrS8qpZ6Y.pt-BR.vtt |
4.77Кб |
08. Video CONCAT.html |
6.95Кб |
08. Video Data Types (Continuous vs. Discrete).html |
9.03Кб |
08. Video Dummy Variables.html |
9.20Кб |
08. Video Elbow Method.html |
7.81Кб |
08. Video Introduction to Sampling Distributions Part III.html |
9.16Кб |
08. Video Know Your Audience.html |
6.62Кб |
08. Video PCA Properties.html |
8.07Кб |
08. Video Self JOINs.html |
7.25Кб |
08. Video Standard Deviation Calculation.html |
9.31Кб |
08. Video Statistical vs. Practical Significance.html |
8.11Кб |
08. Violin and Box Plot Practice.html |
7.06Кб |
08. Weighting the Models 2.html |
8.87Кб |
08. What Experts Say About Visual Encodings.html |
7.68Кб |
08. What Experts Say About Visual Encodings-98aog0eVcC4.ar.vtt |
2.84Кб |
08. What Experts Say About Visual Encodings-98aog0eVcC4.en.vtt |
2.23Кб |
08. What Experts Say About Visual Encodings-98aog0eVcC4.mp4 |
5.97Мб |
08. What Experts Say About Visual Encodings-98aog0eVcC4.pt-BR.vtt |
2.44Кб |
08. What Experts Say About Visual Encodings-98aog0eVcC4.zh-CN.vtt |
2.03Кб |
08. What Should You Check.html |
12.02Кб |
08. When accuracy won't work.html |
6.38Кб |
08. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt |
2.81Кб |
08. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 |
2.15Мб |
08. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt |
2.79Кб |
08. Whitespace-UxkIwcOczQQ.ar.vtt |
3.96Кб |
08. Whitespace-UxkIwcOczQQ.en.vtt |
2.99Кб |
08. Whitespace-UxkIwcOczQQ.mp4 |
20.96Мб |
08. Whitespace-UxkIwcOczQQ.pt-BR.vtt |
3.23Кб |
08. Whitespace-UxkIwcOczQQ.zh-CN.vtt |
2.63Кб |
08. Why Neural Networks.html |
8.42Кб |
08. Why Neural Networks-zAkzOZntK6Y.en.vtt |
1.38Кб |
08. Why Neural Networks-zAkzOZntK6Y.mp4 |
982.27Кб |
08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt |
1.27Кб |
08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt |
1.18Кб |
08. Work Experiences Accomplishments.html |
8.96Кб |
08. World Bank Data Dashboard [advanced version].html |
7.54Кб |
08. XOR Perceptron-TF83GfjYLdw.en.vtt |
1.01Кб |
08. XOR Perceptron-TF83GfjYLdw.mp4 |
947.00Кб |
08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt |
1.00Кб |
08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt |
1021б |
09. [Solution] Independent Component Analysis.html |
6.12Кб |
09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt |
2.88Кб |
09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 |
2.22Мб |
09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt |
2.67Кб |
09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.en.vtt |
1.61Кб |
09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.mp4 |
5.40Мб |
09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.pt-BR.vtt |
1.93Кб |
09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.en.vtt |
2.08Кб |
09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.mp4 |
7.03Мб |
09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.pt-BR.vtt |
2.43Кб |
09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.en.vtt |
7.08Кб |
09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.mp4 |
9.01Мб |
09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.pt-BR.vtt |
5.81Кб |
09. Accessing Elements in Pandas DataFrames.html |
29.43Кб |
09. Advantages of Using Pipeline.html |
10.43Кб |
09. A Gaussian Class.html |
15.02Кб |
09. Aggregation 3.html |
7.91Кб |
09. Aggregation 3-tPSj6_m-0_M.ar.vtt |
92б |
09. Aggregation 3-tPSj6_m-0_M.en.vtt |
86б |
09. Aggregation 3-tPSj6_m-0_M.hr.vtt |
83б |
09. Aggregation 3-tPSj6_m-0_M.it.vtt |
87б |
09. Aggregation 3-tPSj6_m-0_M.ja.vtt |
88б |
09. Aggregation 3-tPSj6_m-0_M.mp4 |
220.29Кб |
09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt |
89б |
09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt |
84б |
09. Aggregation 3-YkaVgZ-yFrM.ar.vtt |
420б |
09. Aggregation 3-YkaVgZ-yFrM.en.vtt |
317б |
09. Aggregation 3-YkaVgZ-yFrM.hr.vtt |
319б |
09. Aggregation 3-YkaVgZ-yFrM.it.vtt |
307б |
09. Aggregation 3-YkaVgZ-yFrM.ja.vtt |
305б |
09. Aggregation 3-YkaVgZ-yFrM.mp4 |
2.16Мб |
09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt |
349б |
09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt |
293б |
09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt |
3.00Кб |
09. AND And OR Perceptrons-45K5N0P9wJk.mp4 |
2.68Мб |
09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt |
3.15Кб |
09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt |
2.48Кб |
09. Arrangements.html |
7.87Кб |
09. Arrangements-GeINbOOYkF8.ar.vtt |
2.27Кб |
09. Arrangements-GeINbOOYkF8.en.vtt |
1.63Кб |
09. Arrangements-GeINbOOYkF8.es-ES.vtt |
1.69Кб |
09. Arrangements-GeINbOOYkF8.ja.vtt |
1.70Кб |
09. Arrangements-GeINbOOYkF8.mp4 |
15.95Мб |
09. Arrangements-GeINbOOYkF8.pt-BR.vtt |
1.92Кб |
09. Arrangements-GeINbOOYkF8.zh-CN.vtt |
1.36Кб |
09. Arrangements-NRPcnpmFCg8.ar.vtt |
656б |
09. Arrangements-NRPcnpmFCg8.en.vtt |
453б |
09. Arrangements-NRPcnpmFCg8.es-ES.vtt |
493б |
09. Arrangements-NRPcnpmFCg8.ja.vtt |
473б |
09. Arrangements-NRPcnpmFCg8.mp4 |
2.07Мб |
09. Arrangements-NRPcnpmFCg8.pt-BR.vtt |
599б |
09. Arrangements-NRPcnpmFCg8.zh-CN.vtt |
408б |
09. Bayesian Learning 2.html |
6.27Кб |
09. Boolean Indexing, Set Operations, and Sorting.html |
13.22Кб |
09. Build and Strengthen Your Network.html |
9.87Кб |
09. Business And Data Understanding - Part 2-iInjuIgBWIo.en.vtt |
2.44Кб |
09. Business And Data Understanding - Part 2-iInjuIgBWIo.mp4 |
6.79Мб |
09. Business And Data Understanding - Part 2-iInjuIgBWIo.pt-BR.vtt |
2.51Кб |
09. Capstone-bq-H7M5BU3U.en.vtt |
1.59Кб |
09. Capstone-bq-H7M5BU3U.mp4 |
6.64Мб |
09. Careers Team Content.html |
5.98Кб |
09. Chart Junk.html |
7.19Кб |
09. Chart Junk-3BTBEYOG2o8.ar.vtt |
2.97Кб |
09. Chart Junk-3BTBEYOG2o8.en.vtt |
2.13Кб |
09. Chart Junk-3BTBEYOG2o8.mp4 |
5.35Мб |
09. Chart Junk-3BTBEYOG2o8.pt-BR.vtt |
2.19Кб |
09. Chart Junk-3BTBEYOG2o8.zh-CN.vtt |
1.93Кб |
09. Checking Bias.html |
11.06Кб |
09. Checking Bias-ppjNNY4DhPw.en.vtt |
4.44Кб |
09. Checking Bias-ppjNNY4DhPw.mp4 |
5.85Мб |
09. Checking Bias-ppjNNY4DhPw.pt-BR.vtt |
4.81Кб |
09. Clustered Bar Charts.html |
13.70Кб |
09. Correlation Coefficient Quizzes.html |
12.33Кб |
09. Data Types Summary-T-KrQoAJUpI.ar.vtt |
1.14Кб |
09. Data Types Summary-T-KrQoAJUpI.en.vtt |
828б |
09. Data Types Summary-T-KrQoAJUpI.mp4 |
2.21Мб |
09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt |
919б |
09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt |
775б |
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.en.vtt |
3.16Кб |
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.mp4 |
3.74Мб |
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.pt-BR.vtt |
3.36Кб |
09. Data Vis L4 C09 V1-OnzWhpgM9Vs.zh-CN.vtt |
2.77Кб |
09. DataVis L5C09 V1-xlZ9AMV6VUE.mp4 |
3.09Мб |
09. DataVis L5C09 V1-xlZ9AMV6VUE.pt-BR.vtt |
2.77Кб |
09. Downloading (curl).html |
8.22Кб |
09. Efficient Code.html |
7.74Кб |
09. Entropy Formula 2.html |
8.12Кб |
09. Equivalent Diagram.html |
9.09Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt |
1.44Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt |
1.14Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt |
1.93Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt |
1.18Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt |
1.21Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt |
1.08Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.mp4 |
7.38Мб |
09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt |
1.30Кб |
09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt |
1014б |
09. Error Function.html |
6.40Кб |
09. Exercise HTML Div, Span, IDs, Classes.html |
8.13Кб |
09. Expectation Maximization Part 1.html |
7.54Кб |
09. Experiment II.html |
7.36Кб |
09. Experiment II-fq4eO7CybA4.en.vtt |
1.08Кб |
09. Experiment II-fq4eO7CybA4.mp4 |
2.31Мб |
09. Experiment II-fq4eO7CybA4.pt-BR.vtt |
1.29Кб |
09. Experiment II-fq4eO7CybA4.zh-CN.vtt |
987б |
09. Experiment Sizing - Discussion.html |
8.73Кб |
09. Extracting Text Data.html |
9.26Кб |
09. False Negatives and Positives.html |
8.72Кб |
09. Feature Engineering.html |
8.17Кб |
09. Further Reading.html |
5.76Кб |
09. Gaussian Class-TVzNdFYyJIU.en.vtt |
2.11Кб |
09. Gaussian Class-TVzNdFYyJIU.mp4 |
6.04Мб |
09. Gaussian Class-TVzNdFYyJIU.pt-BR.vtt |
2.11Кб |
09. Getting and Using Feedback.html |
6.76Кб |
09. Gradient Descent.html |
7.55Кб |
09. Gradient Descent-4s4x9h6AN5Y.en.vtt |
5.61Кб |
09. Gradient Descent-4s4x9h6AN5Y.mp4 |
4.25Мб |
09. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt |
5.23Кб |
09. Grid Search in sklearn.html |
7.56Кб |
09. HC examples and applications.html |
7.29Кб |
09. Histogram Practice.html |
6.82Кб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.en.vtt |
2.10Кб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.mp4 |
8.40Мб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.pt-BR.vtt |
2.42Кб |
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.en.vtt |
2.02Кб |
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.mp4 |
4.22Мб |
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.pt-BR.vtt |
2.27Кб |
09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.zh-CN.vtt |
1.74Кб |
09. L5 091 Feature Engineering V2-jpMOSFMMga4.en.vtt |
1.38Кб |
09. L5 091 Feature Engineering V2-jpMOSFMMga4.mp4 |
2.16Мб |
09. L5 091 Feature Engineering V2-jpMOSFMMga4.pt-BR.vtt |
1.46Кб |
09. L6 10 V1 V6-LoYT4NMSPGk.mp4 |
3.06Мб |
09. L6 10 V1 V6-LoYT4NMSPGk.pt-BR.vtt |
1.54Кб |
09. Lab Student Admissions in Keras.html |
7.98Кб |
09. Linear Transformation and Matrices . Part 1.html |
6.52Кб |
09. Linear Transformations 1-99jYIxBRDww.en.vtt |
5.54Кб |
09. Linear Transformations 1-99jYIxBRDww.mp4 |
20.77Мб |
09. Linear Transformations 1-99jYIxBRDww.pt-BR.vtt |
5.81Кб |
09. Linear Transformations 1-99jYIxBRDww.zh-CN.vtt |
4.67Кб |
09. Loading Data Sets with Torchvision.html |
6.74Кб |
09. Local Connectivity.html |
7.59Кб |
09. Local Connectivity-z9wiDg0w-Dc.en.vtt |
8.95Кб |
09. Local Connectivity-z9wiDg0w-Dc.mp4 |
12.02Мб |
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt |
9.29Кб |
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt |
7.62Кб |
09. Local Minima.html |
6.13Кб |
09. Local Minima-gF_sW_nY-xw.en.vtt |
1.14Кб |
09. Local Minima-gF_sW_nY-xw.mp4 |
819.86Кб |
09. Local Minima-gF_sW_nY-xw.pt-BR.vtt |
1.05Кб |
09. Local Minima-gF_sW_nY-xw.zh-CN.vtt |
1.01Кб |
09. Log Messages.html |
7.02Кб |
09. Maximum Value.html |
7.69Кб |
09. Maximum Value-rjpcSymYulE.ar.vtt |
532б |
09. Maximum Value-rjpcSymYulE.en.vtt |
364б |
09. Maximum Value-rjpcSymYulE.es-ES.vtt |
389б |
09. Maximum Value-rjpcSymYulE.ja.vtt |
302б |
09. Maximum Value-rjpcSymYulE.mp4 |
771.83Кб |
09. Maximum Value-rjpcSymYulE.pt-BR.vtt |
377б |
09. Maximum Value-rjpcSymYulE.zh-CN.vtt |
314б |
09. Maximum Value-z_eElEkVOPY.ar.vtt |
497б |
09. Maximum Value-z_eElEkVOPY.en.vtt |
387б |
09. Maximum Value-z_eElEkVOPY.es-ES.vtt |
367б |
09. Maximum Value-z_eElEkVOPY.ja.vtt |
304б |
09. Maximum Value-z_eElEkVOPY.mp4 |
1.79Мб |
09. Maximum Value-z_eElEkVOPY.pt-BR.vtt |
422б |
09. Maximum Value-z_eElEkVOPY.zh-CN.vtt |
305б |
09. Measures of Spread (Calculation and Units).html |
10.08Кб |
09. Medical Example 8.html |
8.62Кб |
09. Medical Example 8-7k5oAaZamCA.ar.vtt |
516б |
09. Medical Example 8-7k5oAaZamCA.en.vtt |
416б |
09. Medical Example 8-7k5oAaZamCA.es-ES.vtt |
425б |
09. Medical Example 8-7k5oAaZamCA.it.vtt |
433б |
09. Medical Example 8-7k5oAaZamCA.ja.vtt |
390б |
09. Medical Example 8-7k5oAaZamCA.mp4 |
2.04Мб |
09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt |
397б |
09. Medical Example 8-7k5oAaZamCA.th.vtt |
777б |
09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt |
380б |
09. Medical Example 8-btGdX0ZpkNU.ar.vtt |
899б |
09. Medical Example 8-btGdX0ZpkNU.en.vtt |
704б |
09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt |
728б |
09. Medical Example 8-btGdX0ZpkNU.it.vtt |
764б |
09. Medical Example 8-btGdX0ZpkNU.ja.vtt |
608б |
09. Medical Example 8-btGdX0ZpkNU.mp4 |
3.50Мб |
09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt |
589б |
09. Medical Example 8-btGdX0ZpkNU.th.vtt |
1.17Кб |
09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt |
629б |
09. MIN MAX-1ewVsgWUih8.ar.vtt |
1.05Кб |
09. MIN MAX-1ewVsgWUih8.en.vtt |
824б |
09. MIN MAX-1ewVsgWUih8.mp4 |
693.68Кб |
09. MIN MAX-1ewVsgWUih8.pt-BR.vtt |
847б |
09. MIN MAX-1ewVsgWUih8.zh-CN.vtt |
715б |
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt |
4.88Кб |
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4 |
12.34Мб |
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt |
3.90Кб |
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt |
4.42Кб |
09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.en.vtt |
3.40Кб |
09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.mp4 |
2.85Мб |
09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.pt-BR.vtt |
3.47Кб |
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.en.vtt |
1.98Кб |
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.mp4 |
9.16Мб |
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.pt-BR.vtt |
1.99Кб |
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.zh-CN.vtt |
1.63Кб |
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.en.vtt |
7.81Кб |
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.mp4 |
32.58Мб |
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.pt-BR.vtt |
7.90Кб |
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.zh-CN.vtt |
6.74Кб |
09. Model Diagnostics-XsYFAtzF6e4.en.vtt |
1.31Кб |
09. Model Diagnostics-XsYFAtzF6e4.mp4 |
7.48Мб |
09. Model Diagnostics-XsYFAtzF6e4.pt-BR.vtt |
1.37Кб |
09. Model Diagnostics-XsYFAtzF6e4.zh-CN.vtt |
1.14Кб |
09. Non-Parametric Tests Part I - Solution.html |
6.76Кб |
09. Notebook + Quiz Sampling Distributions Python.html |
15.06Кб |
09. Notebook Tokenization.html |
7.84Кб |
09. NumPy 5 V1-vGjI-WTnEbY.en.vtt |
4.20Кб |
09. NumPy 5 V1-vGjI-WTnEbY.mp4 |
5.09Мб |
09. NumPy 5 V1-vGjI-WTnEbY.pt-BR.vtt |
4.42Кб |
09. NumPy 5 V1-vGjI-WTnEbY.zh-CN.vtt |
3.92Кб |
09. Pandas 5 V1-lClsJnZn_7w.en.vtt |
5.96Кб |
09. Pandas 5 V1-lClsJnZn_7w.mp4 |
7.85Мб |
09. Pandas 5 V1-lClsJnZn_7w.pt-BR.vtt |
7.02Кб |
09. Pandas 5 V1-lClsJnZn_7w.zh-CN.vtt |
5.44Кб |
09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt |
3.45Кб |
09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 |
2.87Мб |
09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt |
3.27Кб |
09. Perceptron Algorithm.html |
13.01Кб |
09. Perceptrons as Logical Operators.html |
20.08Кб |
09. Programming Environment Setup.html |
8.58Кб |
09. Programming Environment Setup-EKxDnCK0NAk.ar.vtt |
6.17Кб |
09. Programming Environment Setup-EKxDnCK0NAk.en.vtt |
4.14Кб |
09. Programming Environment Setup-EKxDnCK0NAk.mp4 |
7.42Мб |
09. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt |
4.89Кб |
09. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt |
3.93Кб |
09. PyTorch - Part 7-hFu7GTfRWks.en.vtt |
10.67Кб |
09. PyTorch - Part 7-hFu7GTfRWks.mp4 |
14.62Мб |
09. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt |
10.86Кб |
09. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt |
8.56Кб |
09. Quiz CONCAT.html |
8.27Кб |
09. Quiz Documentation.html |
7.57Кб |
09. Quiz How Does PCA Work.html |
10.06Кб |
09. Quiz Integers and Floats.html |
12.14Кб |
09. Quiz Scripting with Raw Input.html |
10.00Кб |
09. Quiz Self JOINs.html |
8.63Кб |
09. Recommendations 1 9 03362 V1-MwRSg5RASoc.en.vtt |
13.49Кб |
09. Recommendations 1 9 03362 V1-MwRSg5RASoc.mp4 |
20.16Мб |
09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.en.vtt |
7.54Кб |
09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.mp4 |
12.57Мб |
09. Screencast K-Means in Scikit Learn.html |
6.97Кб |
09. Screencast Solution Knowledge Based.html |
9.42Кб |
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt |
1.58Кб |
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4 |
1.80Мб |
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt |
1.59Кб |
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt |
1.35Кб |
09. Solution Boolean Expressions for Conditions.html |
11.22Кб |
09. Solutions ROW_NUMBER RANK.html |
8.23Кб |
09. Solution Video More On Subqueries.html |
7.59Кб |
09. SQL Subquery Video-10pmKmTI_CA.en.vtt |
8.76Кб |
09. SQL Subquery Video-10pmKmTI_CA.mp4 |
10.75Мб |
09. SQL Subquery Video-10pmKmTI_CA.pt-BR.vtt |
8.58Кб |
09. Starbucks Project Overview.html |
8.73Кб |
09. Statistical vs. Practical Significance.html |
8.14Кб |
09. SVD-t2XTuHq6-xc.en.vtt |
6.63Кб |
09. SVD-t2XTuHq6-xc.mp4 |
9.80Мб |
09. SVM 07 Error Function V1-A1wbrcSYc1c.en.vtt |
517б |
09. SVM 07 Error Function V1-A1wbrcSYc1c.mp4 |
1.72Мб |
09. SVM 07 Error Function V1-A1wbrcSYc1c.pt-BR.vtt |
465б |
09. SVM 07 Error Function V1-A1wbrcSYc1c.zh-CN.vtt |
467б |
09. Text + Quiz JOIN Revisited.html |
10.97Кб |
09. Text Dummy Variables.html |
9.27Кб |
09. Two Flips 2.html |
8.67Кб |
09. Two Flips 2-pT0FXiH_5nI.ar.vtt |
207б |
09. Two Flips 2-pT0FXiH_5nI.en.vtt |
198б |
09. Two Flips 2-pT0FXiH_5nI.hr.vtt |
204б |
09. Two Flips 2-pT0FXiH_5nI.it.vtt |
213б |
09. Two Flips 2-pT0FXiH_5nI.ja.vtt |
194б |
09. Two Flips 2-pT0FXiH_5nI.mp4 |
312.59Кб |
09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt |
186б |
09. Two Flips 2-pT0FXiH_5nI.th.vtt |
603б |
09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt |
196б |
09. Two Flips 2-uhrL5fatt3E.ar.vtt |
1.18Кб |
09. Two Flips 2-uhrL5fatt3E.en.vtt |
883б |
09. Two Flips 2-uhrL5fatt3E.es-ES.vtt |
948б |
09. Two Flips 2-uhrL5fatt3E.hr.vtt |
854б |
09. Two Flips 2-uhrL5fatt3E.it.vtt |
945б |
09. Two Flips 2-uhrL5fatt3E.ja.vtt |
887б |
09. Two Flips 2-uhrL5fatt3E.mp4 |
3.00Мб |
09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt |
988б |
09. Two Flips 2-uhrL5fatt3E.th.vtt |
1.60Кб |
09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt |
787б |
09. Types of Errors - Part II.html |
10.33Кб |
09. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt |
3.11Кб |
09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4 |
11.48Мб |
09. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt |
2.99Кб |
09. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt |
2.58Кб |
09. Types Of Statements-vLvJbIz94C4.ar.vtt |
1.97Кб |
09. Types Of Statements-vLvJbIz94C4.en.vtt |
1.49Кб |
09. Types Of Statements-vLvJbIz94C4.mp4 |
3.64Мб |
09. Types Of Statements-vLvJbIz94C4.pt-BR.vtt |
1.71Кб |
09. Types Of Statements-vLvJbIz94C4.zh-CN.vtt |
1.32Кб |
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.ar.vtt |
1.27Кб |
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.en.vtt |
1.02Кб |
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.mp4 |
806.43Кб |
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.pt-BR.vtt |
830б |
09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.zh-CN.vtt |
892б |
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.ar.vtt |
4.00Кб |
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.en.vtt |
3.04Кб |
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.mp4 |
3.16Мб |
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.pt-BR.vtt |
2.84Кб |
09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.zh-CN.vtt |
2.77Кб |
09. Vector Addition.html |
6.75Кб |
09. Video Business Data Understanding .html |
11.51Кб |
09. Video Data Types Summary.html |
8.23Кб |
09. Video MIN MAX.html |
8.99Кб |
09. Video Model Diagnostics + Performance Metrics.html |
9.29Кб |
09. Video Singular Value Decomposition.html |
12.41Кб |
09. Video Types of Statements.html |
10.42Кб |
09. Weighting the Models 3.html |
5.84Кб |
09. What's Ahead.html |
5.65Кб |
09. What's Ahead-2Hxy2Jlu8nk.en.vtt |
1.20Кб |
09. What's Ahead-2Hxy2Jlu8nk.mp4 |
4.30Мб |
09. What's Ahead-2Hxy2Jlu8nk.pt-BR.vtt |
1.25Кб |
09. Who Is The Audience.html |
10.50Кб |
09. Why Neural Networks.html |
7.56Кб |
09. Why Neural Networks-zAkzOZntK6Y.en.vtt |
1.38Кб |
09. Why Neural Networks-zAkzOZntK6Y.mp4 |
982.27Кб |
09. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt |
1.27Кб |
09. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt |
1.18Кб |
09. Writing READMEs with Walter.html |
7.30Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt |
1.50Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt |
1.34Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 |
6.92Мб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt |
1.22Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt |
1.18Кб |
09. XOR Perceptron-TF83GfjYLdw.en.vtt |
1.01Кб |
09. XOR Perceptron-TF83GfjYLdw.mp4 |
947.00Кб |
09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt |
1.00Кб |
09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt |
1021б |
09. Your Udacity Professional Profile.html |
7.57Кб |
10. [Quiz] Hierarchical clustering.html |
8.19Кб |
10. 03 Optimizing Common Books V1-WF9n_19V08g.en.vtt |
4.90Кб |
10. 03 Optimizing Common Books V1-WF9n_19V08g.mp4 |
8.10Мб |
10. 03 Optimizing Common Books V1-WF9n_19V08g.pt-BR.vtt |
5.58Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt |
4.11Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt |
4.11Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 |
3.66Мб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 |
3.66Мб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt |
4.17Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt |
4.17Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt |
3.50Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt |
3.50Кб |
10. 09 PCA V1-0RLDZWeq5JE.en.vtt |
9.44Кб |
10. 09 PCA V1-0RLDZWeq5JE.mp4 |
12.82Мб |
10. 09 PCA V1-0RLDZWeq5JE.pt-BR.vtt |
9.13Кб |
10. Aggregates in Window Functions-Dxew5w3VF7k.ar.vtt |
3.47Кб |
10. Aggregates in Window Functions-Dxew5w3VF7k.en.vtt |
2.55Кб |
10. Aggregates in Window Functions-Dxew5w3VF7k.mp4 |
3.16Мб |
10. Aggregates in Window Functions-Dxew5w3VF7k.pt-BR.vtt |
2.45Кб |
10. Aggregates in Window Functions-Dxew5w3VF7k.zh-CN.vtt |
2.41Кб |
10. ALIAS-viWHJaxWTvw.ar.vtt |
1.87Кб |
10. ALIAS-viWHJaxWTvw.en.vtt |
1.19Кб |
10. ALIAS-viWHJaxWTvw.mp4 |
1.25Мб |
10. ALIAS-viWHJaxWTvw.pt-BR.vtt |
1.11Кб |
10. ALIAS-viWHJaxWTvw.zh-CN.vtt |
1.11Кб |
10. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt |
2.82Кб |
10. Answer False Negatives And Positives-KOytJL1lvgg.mp4 |
2.23Мб |
10. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt |
2.84Кб |
10. AVG-diqCDztOL64.ar.vtt |
1.82Кб |
10. AVG-diqCDztOL64.en.vtt |
1.43Кб |
10. AVG-diqCDztOL64.mp4 |
975.39Кб |
10. AVG-diqCDztOL64.pt-BR.vtt |
1.38Кб |
10. AVG-diqCDztOL64.zh-CN.vtt |
1.21Кб |
10. Bayesian Learning 3.html |
6.56Кб |
10. Binomial 1.html |
8.00Кб |
10. Binomial 1-07vOaYwecII.ar.vtt |
1.05Кб |
10. Binomial 1-07vOaYwecII.en.vtt |
856б |
10. Binomial 1-07vOaYwecII.es-ES.vtt |
870б |
10. Binomial 1-07vOaYwecII.ja.vtt |
828б |
10. Binomial 1-07vOaYwecII.mp4 |
6.26Мб |
10. Binomial 1-07vOaYwecII.pt-BR.vtt |
974б |
10. Binomial 1-07vOaYwecII.zh-CN.vtt |
751б |
10. Binomial 1-RBfFHxEjsIU.ar.vtt |
533б |
10. Binomial 1-RBfFHxEjsIU.en.vtt |
399б |
10. Binomial 1-RBfFHxEjsIU.es-ES.vtt |
424б |
10. Binomial 1-RBfFHxEjsIU.ja.vtt |
301б |
10. Binomial 1-RBfFHxEjsIU.mp4 |
2.43Мб |
10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt |
427б |
10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt |
362б |
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt |
4.05Кб |
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt |
2.83Кб |
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4 |
21.62Мб |
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt |
3.36Кб |
10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt |
2.47Кб |
10. Booleans, Comparison Operators, and Logical Operators.html |
11.41Кб |
10. Cancer Probabilities.html |
11.07Кб |
10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt |
190б |
10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt |
152б |
10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt |
165б |
10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt |
174б |
10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt |
155б |
10. Cancer Probabilities-7ZLe_JP5wRY.mp4 |
479.60Кб |
10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt |
216б |
10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt |
158б |
10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt |
615б |
10. Cancer Probabilities-CMQBKuYjPBM.en.vtt |
455б |
10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt |
868б |
10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt |
471б |
10. Cancer Probabilities-CMQBKuYjPBM.it.vtt |
456б |
10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt |
420б |
10. Cancer Probabilities-CMQBKuYjPBM.mp4 |
2.85Мб |
10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt |
523б |
10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt |
408б |
10. Case Study Build Pipeline.html |
7.69Кб |
10. Categorical Plot Practice.html |
7.06Кб |
10. Combining the Models.html |
5.83Кб |
10. Confusion Matrices.html |
10.65Кб |
10. Confusion Matrices-bEAaNv-CBQ4.ar.vtt |
352б |
10. Confusion Matrices-bEAaNv-CBQ4.en.vtt |
302б |
10. Confusion Matrices-bEAaNv-CBQ4.mp4 |
770.56Кб |
10. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt |
309б |
10. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt |
283б |
10. Confusion Matrices-bgyN3RO2ICo.ar.vtt |
1.88Кб |
10. Confusion Matrices-bgyN3RO2ICo.en.vtt |
1.48Кб |
10. Confusion Matrices-bgyN3RO2ICo.mp4 |
7.59Мб |
10. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt |
1.49Кб |
10. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt |
1.41Кб |
10. Convolutional Layers (Part 1).html |
7.62Кб |
10. Convolutional Layers-h5R_JvdUrUI.en.vtt |
7.22Кб |
10. Convolutional Layers-h5R_JvdUrUI.mp4 |
8.04Мб |
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt |
7.57Кб |
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt |
6.10Кб |
10. CSS.html |
16.08Кб |
10. CSS-s_sdzHR9cs0.en.vtt |
9.85Кб |
10. CSS-s_sdzHR9cs0.mp4 |
15.91Мб |
10. CSS-s_sdzHR9cs0.pt-BR.vtt |
10.17Кб |
10. Data Ink Ratio.html |
7.07Кб |
10. Data Ink Ratio-gW2FapuYV4A.ar.vtt |
7.52Кб |
10. Data Ink Ratio-gW2FapuYV4A.en.vtt |
5.69Кб |
10. Data Ink Ratio-gW2FapuYV4A.mp4 |
9.78Мб |
10. Data Ink Ratio-gW2FapuYV4A.pt-BR.vtt |
5.69Кб |
10. Data Ink Ratio-gW2FapuYV4A.zh-CN.vtt |
4.88Кб |
10. Dealing with NaN.html |
32.94Кб |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt |
420б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt |
420б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 |
260.01Кб |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 |
260.01Кб |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt |
364б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt |
364б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt |
390б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt |
390б |
10. Dummy Variables.html |
12.69Кб |
10. Entropy Formula 3.html |
7.26Кб |
10. Entropy Formula-w73JTBVeyjE.en.vtt |
2.93Кб |
10. Entropy Formula-w73JTBVeyjE.mp4 |
8.00Мб |
10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt |
2.61Кб |
10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt |
2.54Кб |
10. Ethics in Experimentation.html |
15.03Кб |
10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.en.vtt |
2.11Кб |
10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.mp4 |
4.76Мб |
10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.en.vtt |
1.58Кб |
10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.mp4 |
4.53Мб |
10. Ethics In Experimentation Pt3-_HTolKktaC4.en.vtt |
2.42Кб |
10. Ethics In Experimentation Pt3-_HTolKktaC4.mp4 |
7.83Мб |
10. Exercise APIs.html |
9.45Кб |
10. Expectation Maximization Part 2.html |
7.53Кб |
10. Figures, Axes, and Subplots.html |
18.53Кб |
10. For Loops.html |
14.21Кб |
10. For Loops-UtX0PXSUCdY.ar.vtt |
9.73Кб |
10. For Loops-UtX0PXSUCdY.en.vtt |
6.73Кб |
10. For Loops-UtX0PXSUCdY.mp4 |
18.44Мб |
10. For Loops-UtX0PXSUCdY.pt-BR.vtt |
7.29Кб |
10. For Loops-UtX0PXSUCdY.zh-CN.vtt |
6.20Кб |
10. Gender Bias Revisited.html |
8.23Кб |
10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt |
312б |
10. Gender Bias Revisited-4YY-hmqSz30.en.vtt |
246б |
10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt |
252б |
10. Gender Bias Revisited-4YY-hmqSz30.it.vtt |
239б |
10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt |
236б |
10. Gender Bias Revisited-4YY-hmqSz30.mp4 |
1.21Мб |
10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt |
218б |
10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt |
232б |
10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt |
1.61Кб |
10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt |
1.19Кб |
10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt |
1.11Кб |
10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt |
1.28Кб |
10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt |
1.14Кб |
10. Gender Bias Revisited-dOa4Cl0wM0s.mp4 |
7.49Мб |
10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt |
1.08Кб |
10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt |
1.00Кб |
10. Grid Search Lab.html |
6.41Кб |
10. How Much is Too Much.html |
7.63Кб |
10. How the Gaussian Class Works.html |
8.01Кб |
10. How The Gaussian Class Works-N-5I0d1zJHI.en.vtt |
5.25Кб |
10. How The Gaussian Class Works-N-5I0d1zJHI.mp4 |
8.09Мб |
10. How The Gaussian Class Works-N-5I0d1zJHI.pt-BR.vtt |
4.83Кб |
10. ICA Applications.html |
6.72Кб |
10. Interview with Art - Part 2.html |
7.05Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt |
2.82Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt |
2.16Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 |
13.17Мб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt |
2.40Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt |
2.07Кб |
10. Jupyter-qiYDWFLyXvg.ar.vtt |
3.41Кб |
10. Jupyter-qiYDWFLyXvg.en.vtt |
2.70Кб |
10. Jupyter-qiYDWFLyXvg.mp4 |
7.12Мб |
10. Jupyter-qiYDWFLyXvg.pt-BR.vtt |
2.41Кб |
10. Jupyter-qiYDWFLyXvg.zh-CN.vtt |
2.64Кб |
10. L6 131 Lesson Summary V1-t6ss31RZF34.mp4 |
3.46Мб |
10. L6 131 Lesson Summary V1-t6ss31RZF34.pt-BR.vtt |
1.42Кб |
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.en.vtt |
4.16Кб |
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.mp4 |
9.87Мб |
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.pt-BR.vtt |
4.07Кб |
10. Lesson Summary.html |
5.78Кб |
10. Linear Transformation and Matrices. Part 2.html |
6.38Кб |
10. Linear Transformations 2-imtEd8M6__s.en.vtt |
4.92Кб |
10. Linear Transformations 2-imtEd8M6__s.mp4 |
13.49Мб |
10. Linear Transformations 2-imtEd8M6__s.pt-BR.vtt |
5.20Кб |
10. Linear Transformations 2-imtEd8M6__s.zh-CN.vtt |
4.29Кб |
10. Logging.html |
7.17Кб |
10. Manipulating ndarrays.html |
7.25Кб |
10. Mean Absolute Error.html |
7.56Кб |
10. Mean Absolute Error-vLKiY0Ehors.en.vtt |
3.52Кб |
10. Mean Absolute Error-vLKiY0Ehors.mp4 |
2.57Мб |
10. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt |
3.30Кб |
10. Meet the Careers Team.html |
7.13Кб |
10. Meet the Careers Team-cuKecPpZ7PM.en.vtt |
3.63Кб |
10. Meet the Careers Team-cuKecPpZ7PM.mp4 |
10.12Мб |
10. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt |
3.83Кб |
10. Metric - Enrollment Rate.html |
9.72Кб |
10. Minimum.html |
8.47Кб |
10. Minimum-MEbJxfw3NVs.ar.vtt |
886б |
10. Minimum-MEbJxfw3NVs.en.vtt |
715б |
10. Minimum-MEbJxfw3NVs.es-ES.vtt |
741б |
10. Minimum-MEbJxfw3NVs.ja.vtt |
627б |
10. Minimum-MEbJxfw3NVs.mp4 |
3.51Мб |
10. Minimum-MEbJxfw3NVs.pt-BR.vtt |
699б |
10. Minimum-MEbJxfw3NVs.zh-CN.vtt |
579б |
10. Minimum-tiv8VKPL7jg.ar.vtt |
518б |
10. Minimum-tiv8VKPL7jg.en.vtt |
357б |
10. Minimum-tiv8VKPL7jg.es-ES.vtt |
357б |
10. Minimum-tiv8VKPL7jg.ja.vtt |
310б |
10. Minimum-tiv8VKPL7jg.mp4 |
1.69Мб |
10. Minimum-tiv8VKPL7jg.pt-BR.vtt |
373б |
10. Minimum-tiv8VKPL7jg.zh-CN.vtt |
325б |
10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.en.vtt |
2.50Кб |
10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.mp4 |
2.65Мб |
10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.pt-BR.vtt |
2.43Кб |
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.en.vtt |
6.98Кб |
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.mp4 |
26.30Мб |
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.pt-BR.vtt |
6.94Кб |
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.zh-CN.vtt |
5.98Кб |
10. More Personalized Recommendations-9l8mi7i6iW4.en.vtt |
2.09Кб |
10. More Personalized Recommendations-9l8mi7i6iW4.mp4 |
6.89Мб |
10. Non-Parametric Tests Part II.html |
6.74Кб |
10. Notebook SVD Practice.html |
8.13Кб |
10. Notebook Your Turn.html |
7.42Кб |
10. Optimizing - Common Books.html |
7.43Кб |
10. Outro.html |
5.52Кб |
10. Pandas 6 V1-GS1kj04XQcM.en.vtt |
6.34Кб |
10. Pandas 6 V1-GS1kj04XQcM.mp4 |
7.87Мб |
10. Pandas 6 V1-GS1kj04XQcM.pt-BR.vtt |
7.49Кб |
10. Pandas 6 V1-GS1kj04XQcM.zh-CN.vtt |
5.63Кб |
10. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt |
1.55Кб |
10. Parting Words Of Encouragement-sFF_WOnpsXM.mp4 |
4.65Мб |
10. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt |
1.68Кб |
10. Perceptron Algorithm--zhTROHtscQ.en.vtt |
2.64Кб |
10. Perceptron Algorithm--zhTROHtscQ.en.vtt |
2.64Кб |
10. Perceptron Algorithm--zhTROHtscQ.mp4 |
1.92Мб |
10. Perceptron Algorithm--zhTROHtscQ.mp4 |
1.92Мб |
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt |
2.41Кб |
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt |
2.41Кб |
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt |
2.35Кб |
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt |
2.35Кб |
10. Perceptron Trick.html |
11.34Кб |
10. Perceptron Trick.html |
12.20Кб |
10. Precision and Recall.html |
6.75Кб |
10. Py Part 8 V1-3eqn5sgCOsY.en.vtt |
12.79Кб |
10. Py Part 8 V1-3eqn5sgCOsY.mp4 |
24.88Мб |
10. Py Part 8 V1-3eqn5sgCOsY.pt-BR.vtt |
13.51Кб |
10. Py Part 8 V1-3eqn5sgCOsY.zh-CN.vtt |
10.69Кб |
10. Quiz Subquery Mania.html |
8.75Кб |
10. Quiz Types of Errors - Part II(a).html |
13.37Кб |
10. Random Restart.html |
6.14Кб |
10. Random Restart-idyBBCzXiqg.en.vtt |
466б |
10. Random Restart-idyBBCzXiqg.mp4 |
394.99Кб |
10. Random Restart-idyBBCzXiqg.pt-BR.vtt |
478б |
10. Random Restart-idyBBCzXiqg.zh-CN.vtt |
419б |
10. Reaching Out on LinkedIn.html |
8.61Кб |
10. Screencast PCA.html |
7.74Кб |
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt |
3.21Кб |
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4 |
9.33Мб |
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt |
3.00Кб |
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt |
2.74Кб |
10. Solution Documentation.html |
7.34Кб |
10. Solutions CONCAT.html |
8.11Кб |
10. Solution Scripting with Raw Input.html |
8.23Кб |
10. Solutions Self JOINs.html |
7.90Кб |
10. Starbucks Project Workspace.html |
6.60Кб |
10. Statements.html |
11.38Кб |
10. Stop Word Removal.html |
7.42Кб |
10. Stop Word Removal-WAU_Ij0GJbw.en.vtt |
1.59Кб |
10. Stop Word Removal-WAU_Ij0GJbw.mp4 |
1.96Мб |
10. Stop Word Removal-WAU_Ij0GJbw.pt-BR.vtt |
1.79Кб |
10. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt |
1.40Кб |
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.en.vtt |
2.81Кб |
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.mp4 |
7.03Мб |
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.pt-BR.vtt |
2.47Кб |
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.zh-CN.vtt |
2.45Кб |
10. Text + Quiz Data Types (Ordinal vs. Nominal).html |
14.74Кб |
10. Text Introduction to the Standard Deviation and Variance.html |
12.19Кб |
10. Text Recap.html |
9.47Кб |
10. Text Sampling Distribution Notes.html |
9.91Кб |
10. The C Parameter.html |
6.41Кб |
10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.en.vtt |
1.04Кб |
10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.mp4 |
2.66Мб |
10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.pt-BR.vtt |
1.04Кб |
10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.en.vtt |
855б |
10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.mp4 |
2.75Мб |
10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.pt-BR.vtt |
902б |
10. Total Probability.html |
6.68Кб |
10. Total Probability-YSYpzFR4k1I.ar.vtt |
2.48Кб |
10. Total Probability-YSYpzFR4k1I.en.vtt |
1.90Кб |
10. Total Probability-YSYpzFR4k1I.es-ES.vtt |
1.98Кб |
10. Total Probability-YSYpzFR4k1I.it.vtt |
1.99Кб |
10. Total Probability-YSYpzFR4k1I.ja.vtt |
1.59Кб |
10. Total Probability-YSYpzFR4k1I.mp4 |
11.54Мб |
10. Total Probability-YSYpzFR4k1I.pt-BR.vtt |
1.80Кб |
10. Total Probability-YSYpzFR4k1I.th.vtt |
3.38Кб |
10. Total Probability-YSYpzFR4k1I.zh-CN.vtt |
1.75Кб |
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt |
1.66Кб |
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4 |
7.87Мб |
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt |
1.81Кб |
10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt |
1.37Кб |
10. Training Optimization.html |
7.56Кб |
10. Training Optimization-UiGKhx9pUYc.en.vtt |
824б |
10. Training Optimization-UiGKhx9pUYc.mp4 |
2.96Мб |
10. Training Optimization-UiGKhx9pUYc.pt-BR.vtt |
874б |
10. Training Optimization-UiGKhx9pUYc.zh-CN.vtt |
840б |
10. Transfer Learning.html |
6.68Кб |
10. Two Flips 3.html |
9.45Кб |
10. Two Flips 3-3NSPqjp6pFY.ar.vtt |
547б |
10. Two Flips 3-3NSPqjp6pFY.en.vtt |
432б |
10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt |
473б |
10. Two Flips 3-3NSPqjp6pFY.hr.vtt |
469б |
10. Two Flips 3-3NSPqjp6pFY.it.vtt |
435б |
10. Two Flips 3-3NSPqjp6pFY.ja.vtt |
397б |
10. Two Flips 3-3NSPqjp6pFY.mp4 |
1.12Мб |
10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt |
496б |
10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt |
379б |
10. Two Flips 3-uimwo-puQWY.ar.vtt |
254б |
10. Two Flips 3-uimwo-puQWY.en.vtt |
210б |
10. Two Flips 3-uimwo-puQWY.hr.vtt |
197б |
10. Two Flips 3-uimwo-puQWY.it.vtt |
210б |
10. Two Flips 3-uimwo-puQWY.ja.vtt |
194б |
10. Two Flips 3-uimwo-puQWY.mp4 |
920.84Кб |
10. Two Flips 3-uimwo-puQWY.pt-BR.vtt |
219б |
10. Two Flips 3-uimwo-puQWY.th.vtt |
359б |
10. Two Flips 3-uimwo-puQWY.zh-CN.vtt |
177б |
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.ar.vtt |
2.34Кб |
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.en.vtt |
1.70Кб |
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.mp4 |
1.31Мб |
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.pt-BR.vtt |
1.64Кб |
10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.zh-CN.vtt |
1.56Кб |
10. Validity, Bias, and Ethics - Discussion.html |
8.17Кб |
10. Vectors- Quiz 2.html |
7.83Кб |
10. Video Aggregates in Window Functions.html |
7.68Кб |
10. Video Alias.html |
8.75Кб |
10. Video AVG.html |
8.88Кб |
10. Video Gathering Wrangling.html |
11.68Кб |
10. Video More Personalized Recommendations.html |
9.05Кб |
10. Video Three Steps to Captivate Your Audience.html |
6.74Кб |
10. Video Traditional Confidence Intervals.html |
8.89Кб |
10. Video What Defines A Line.html |
8.48Кб |
10. Viewing files (cat, less).html |
7.42Кб |
10. What are Jupyter notebooks.html |
13.16Кб |
10. What Defines A Line-lTqwhsSNP2c.en.vtt |
2.55Кб |
10. What Defines A Line-lTqwhsSNP2c.mp4 |
3.32Мб |
10. What Defines A Line-lTqwhsSNP2c.pt-BR.vtt |
2.96Кб |
10. What Defines A Line-lTqwhsSNP2c.zh-CN.vtt |
2.22Кб |
10. Words of Encouragement.html |
5.61Кб |
11. [Solution] Grid Search Lab.html |
6.43Кб |
11. 06 Precision SC V1-q2wVorBfefU.en.vtt |
2.69Кб |
11. 06 Precision SC V1-q2wVorBfefU.mp4 |
2.24Мб |
11. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt |
2.64Кб |
11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.en.vtt |
5.80Кб |
11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.mp4 |
9.82Мб |
11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.pt-BR.vtt |
5.73Кб |
11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.en.vtt |
2.06Кб |
11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.mp4 |
4.41Мб |
11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.pt-BR.vtt |
2.28Кб |
11. Access Your Career Portal.html |
7.03Кб |
11. AdaBoost in sklearn.html |
7.09Кб |
11. Additional Plot Practice.html |
6.30Кб |
11. Analyze Data.html |
9.94Кб |
11. Arithmetic operations and Broadcasting.html |
17.27Кб |
11. A SMART Mnemonic for Experiment Design.html |
6.94Кб |
11. Binomial 2.html |
8.00Кб |
11. Binomial 2-d4LWnxyvrTQ.ar.vtt |
265б |
11. Binomial 2-d4LWnxyvrTQ.en.vtt |
222б |
11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt |
238б |
11. Binomial 2-d4LWnxyvrTQ.ja.vtt |
197б |
11. Binomial 2-d4LWnxyvrTQ.mp4 |
1.06Мб |
11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt |
246б |
11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt |
182б |
11. Binomial 2-Uy7b3aMPnEY.ar.vtt |
202б |
11. Binomial 2-Uy7b3aMPnEY.en.vtt |
165б |
11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt |
170б |
11. Binomial 2-Uy7b3aMPnEY.ja.vtt |
190б |
11. Binomial 2-Uy7b3aMPnEY.mp4 |
1.86Мб |
11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt |
284б |
11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt |
150б |
11. Boost Your Visibility.html |
7.86Кб |
11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.en.vtt |
1.34Кб |
11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.mp4 |
4.88Мб |
11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.pt-BR.vtt |
1.49Кб |
11. CAST-LbyOq4ofLng.ar.vtt |
3.88Кб |
11. CAST-LbyOq4ofLng.en.vtt |
2.89Кб |
11. CAST-LbyOq4ofLng.mp4 |
3.61Мб |
11. CAST-LbyOq4ofLng.pt-BR.vtt |
3.19Кб |
11. CAST-LbyOq4ofLng.zh-CN.vtt |
2.57Кб |
11. Choosing a Plot for Discrete Data.html |
10.93Кб |
11. Code Review.html |
6.58Кб |
11. Commit messages best practices.html |
9.35Кб |
11. Confusion Matrix Practice 1.html |
10.77Кб |
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt |
218б |
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt |
182б |
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4 |
569.00Кб |
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt |
177б |
11. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt |
160б |
11. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt |
387б |
11. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt |
292б |
11. Confusion Matrix Practice 1-obhHCeHpysw.mp4 |
1.06Мб |
11. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt |
307б |
11. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt |
256б |
11. Convolutional Layers (Part 2).html |
8.39Кб |
11. Convolutional Layers-RnM1D-XI--8.en.vtt |
9.99Кб |
11. Convolutional Layers-RnM1D-XI--8.mp4 |
17.05Мб |
11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt |
11.00Кб |
11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt |
8.71Кб |
11. Dangers of Statistics.html |
6.06Кб |
11. Dangers Of Statistics-UYZXqP562qg.ar.vtt |
1.07Кб |
11. Dangers Of Statistics-UYZXqP562qg.en.vtt |
754б |
11. Dangers Of Statistics-UYZXqP562qg.mp4 |
2.50Мб |
11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt |
802б |
11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt |
707б |
11. Data Types (Continuous vs. Discrete).html |
9.67Кб |
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.en.vtt |
3.33Кб |
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.mp4 |
3.15Мб |
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.pt-BR.vtt |
3.55Кб |
11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.zh-CN.vtt |
2.76Кб |
11. DBSCAN.html |
6.99Кб |
11. Design Integrity.html |
8.80Кб |
11. Design Integrity-y72_fVFtqlY.ar.vtt |
5.50Кб |
11. Design Integrity-y72_fVFtqlY.en.vtt |
4.22Кб |
11. Design Integrity-y72_fVFtqlY.mp4 |
6.48Мб |
11. Design Integrity-y72_fVFtqlY.pt-BR.vtt |
4.24Кб |
11. Design Integrity-y72_fVFtqlY.zh-CN.vtt |
3.78Кб |
11. Dog Breed Classifier Overview.html |
6.88Кб |
11. Dummy Variable Interpretation-TxP_TD0kbOo.en.vtt |
4.30Кб |
11. Dummy Variable Interpretation-TxP_TD0kbOo.mp4 |
13.37Мб |
11. Dummy Variable Interpretation-TxP_TD0kbOo.pt-BR.vtt |
4.21Кб |
11. Dummy Variable Interpretation-TxP_TD0kbOo.zh-CN.vtt |
3.77Кб |
11. Early Stopping.html |
7.55Кб |
11. Errors and Exceptions.html |
8.72Кб |
11. Errors And Exceptions-DmthSiy2d0U.ar.vtt |
3.67Кб |
11. Errors And Exceptions-DmthSiy2d0U.en.vtt |
2.78Кб |
11. Errors And Exceptions-DmthSiy2d0U.mp4 |
3.39Мб |
11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt |
3.03Кб |
11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt |
2.60Кб |
11. Exercise Code the Gaussian Class.html |
8.35Кб |
11. Exercise CSS.html |
8.08Кб |
11. Faceting.html |
12.08Кб |
11. How To Break Into The Field-0-Y39LZ80VE.en.vtt |
6.63Кб |
11. How To Break Into The Field-0-Y39LZ80VE.mp4 |
8.49Мб |
11. How To Break Into The Field-0-Y39LZ80VE.pt-BR.vtt |
5.94Кб |
11. Installing Jupyter Notebook.html |
6.69Кб |
11. Introduction To Notation-ISkBSUVH49M.ar.vtt |
1.45Кб |
11. Introduction To Notation-ISkBSUVH49M.en.vtt |
1.10Кб |
11. Introduction To Notation-ISkBSUVH49M.mp4 |
3.24Мб |
11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt |
1.22Кб |
11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt |
982б |
11. Intro To Collab Filtering-wGq7dUgJpsc.en.vtt |
1.02Кб |
11. Intro To Collab Filtering-wGq7dUgJpsc.mp4 |
1.33Мб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.en.vtt |
1.02Кб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.mp4 |
3.30Мб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.pt-BR.vtt |
1.21Кб |
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt |
2.18Кб |
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4 |
7.99Мб |
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt |
2.68Кб |
11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt |
1.93Кб |
11. L4 111 Faceting V2-oUYRqI6wFGw.en.vtt |
2.35Кб |
11. L4 111 Faceting V2-oUYRqI6wFGw.mp4 |
4.63Мб |
11. L4 111 Faceting V2-oUYRqI6wFGw.pt-BR.vtt |
2.69Кб |
11. L4 111 Faceting V2-oUYRqI6wFGw.zh-CN.vtt |
2.00Кб |
11. Lambda Expressions.html |
8.30Кб |
11. Linear Transformation and Matrices. Part 3.html |
6.19Кб |
11. Linear Transformations 3-g_yTyRwMzXU.en.vtt |
5.12Кб |
11. Linear Transformations 3-g_yTyRwMzXU.mp4 |
20.09Мб |
11. Linear Transformations 3-g_yTyRwMzXU.pt-BR.vtt |
5.21Кб |
11. Linear Transformations 3-g_yTyRwMzXU.zh-CN.vtt |
4.51Кб |
11. Manipulate a DataFrame.html |
10.29Кб |
11. Mean Squared Error.html |
7.56Кб |
11. Mean Squared Error-MRyxmZDngI4.en.vtt |
2.49Кб |
11. Mean Squared Error-MRyxmZDngI4.mp4 |
1.83Мб |
11. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt |
2.26Кб |
11. Metric - Average Reading Duration.html |
7.48Кб |
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt |
2.58Кб |
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4 |
3.32Мб |
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt |
3.07Кб |
11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt |
2.14Кб |
11. Minimum Value.html |
7.68Кб |
11. Minimum Value-LconwqN7hJs.ar.vtt |
463б |
11. Minimum Value-LconwqN7hJs.en.vtt |
358б |
11. Minimum Value-LconwqN7hJs.es-ES.vtt |
388б |
11. Minimum Value-LconwqN7hJs.ja.vtt |
323б |
11. Minimum Value-LconwqN7hJs.mp4 |
893.30Кб |
11. Minimum Value-LconwqN7hJs.pt-BR.vtt |
332б |
11. Minimum Value-LconwqN7hJs.zh-CN.vtt |
316б |
11. Minimum Value-LNzmJUj8K8w.ar.vtt |
152б |
11. Minimum Value-LNzmJUj8K8w.en.vtt |
130б |
11. Minimum Value-LNzmJUj8K8w.es-ES.vtt |
141б |
11. Minimum Value-LNzmJUj8K8w.ja.vtt |
118б |
11. Minimum Value-LNzmJUj8K8w.mp4 |
661.10Кб |
11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt |
171б |
11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt |
113б |
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt |
6.47Кб |
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4 |
5.14Мб |
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt |
6.23Кб |
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt |
5.56Кб |
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.en.vtt |
6.58Кб |
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.mp4 |
19.97Мб |
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.pt-BR.vtt |
5.79Кб |
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.zh-CN.vtt |
6.11Кб |
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.en.vtt |
3.18Кб |
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.mp4 |
19.74Мб |
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.pt-BR.vtt |
2.95Кб |
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.zh-CN.vtt |
2.88Кб |
11. Model Complexity Graph-NnS0FJyVcDQ.en.vtt |
5.32Кб |
11. Model Complexity Graph-NnS0FJyVcDQ.mp4 |
4.90Мб |
11. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt |
5.52Кб |
11. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt |
4.65Кб |
11. Naive Bayes Algorithm 1.html |
7.66Кб |
11. Non-Parametric Tests Part II - Solution.html |
6.76Кб |
11. Notebook PCA - Your Turn.html |
7.36Кб |
11. Notebook Stop Words.html |
7.83Кб |
11. NumPy 6 V1-wtLRuGK0kW4.en.vtt |
5.58Кб |
11. NumPy 6 V1-wtLRuGK0kW4.mp4 |
6.61Мб |
11. NumPy 6 V1-wtLRuGK0kW4.pt-BR.vtt |
5.81Кб |
11. NumPy 6 V1-wtLRuGK0kW4.zh-CN.vtt |
4.90Кб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt |
3.45Кб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt |
3.45Кб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 |
2.87Мб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 |
2.87Мб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt |
3.27Кб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt |
3.27Кб |
11. Perceptron Algorithm.html |
14.99Кб |
11. Perceptron Algorithm.html |
15.85Кб |
11. Polynomial Kernel 1.html |
6.43Кб |
11. Practice For Loops.html |
10.59Кб |
11. Precision.html |
7.99Кб |
11. Probability Given Test.html |
10.47Кб |
11. Probability Given Test-41HCYR-NW-w.ar.vtt |
524б |
11. Probability Given Test-41HCYR-NW-w.en.vtt |
370б |
11. Probability Given Test-41HCYR-NW-w.es-ES.vtt |
412б |
11. Probability Given Test-41HCYR-NW-w.ja.vtt |
350б |
11. Probability Given Test-41HCYR-NW-w.mp4 |
2.56Мб |
11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt |
501б |
11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt |
298б |
11. Probability Given Test-omC0zbJyzUY.ar.vtt |
1000б |
11. Probability Given Test-omC0zbJyzUY.en.vtt |
790б |
11. Probability Given Test-omC0zbJyzUY.es-ES.vtt |
757б |
11. Probability Given Test-omC0zbJyzUY.ja.vtt |
716б |
11. Probability Given Test-omC0zbJyzUY.mp4 |
6.72Мб |
11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt |
899б |
11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt |
609б |
11. Quiz Aggregates in Window Functions.html |
16.60Кб |
11. Quiz Booleans, Comparison Operators, and Logical Operators.html |
11.37Кб |
11. Quiz Do You Know Your Entropy.html |
6.65Кб |
11. Quiz JOIN Questions Part I.html |
12.87Кб |
11. Quiz MIN, MAX, AVG.html |
9.65Кб |
11. Quiz Optimizing - Common Books.html |
7.63Кб |
11. Quiz Types of Errors - Part II(b).html |
21.64Кб |
11. Quiz What Defines A Line - Notation Quiz.html |
14.52Кб |
11. Recommendations 2 10 0424 V1-x-End5px36M.en.vtt |
2.31Кб |
11. Recommendations 2 10 0424 V1-x-End5px36M.mp4 |
3.50Мб |
11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.en.vtt |
5.36Кб |
11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.mp4 |
10.32Мб |
11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.en.vtt |
7.09Кб |
11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.mp4 |
10.62Мб |
11. Removing things (rm, rmdir).html |
8.18Кб |
11. Scalar by Vector Multiplication.html |
6.63Кб |
11. Screencast Dummy Variables.html |
8.04Кб |
11. Screencast How To Break Into the Field.html |
10.55Кб |
11. Screencast Solution.html |
7.93Кб |
11. Screencast SVD Practice Solution.html |
8.91Кб |
11. ScreenCast Traditional Confidence Interval Methods.html |
7.99Кб |
11. SELECT FROM Statements-urOYuuav4BY.ar.vtt |
4.45Кб |
11. SELECT FROM Statements-urOYuuav4BY.en.vtt |
3.34Кб |
11. SELECT FROM Statements-urOYuuav4BY.mp4 |
5.07Мб |
11. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt |
3.65Кб |
11. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt |
3.08Кб |
11. SMART Mnemonic-B0Bnxyu2aKM.en.vtt |
1.60Кб |
11. SMART Mnemonic-B0Bnxyu2aKM.mp4 |
4.55Мб |
11. Solution Build Pipeline.html |
9.09Кб |
11. Solution Subquery Mania.html |
17.27Кб |
11. Subquery Solution Video-Y6S3S0LsMrw.ar.vtt |
15.96Кб |
11. Subquery Solution Video-Y6S3S0LsMrw.en.vtt |
12.65Кб |
11. Subquery Solution Video-Y6S3S0LsMrw.mp4 |
17.26Мб |
11. Subquery Solution Video-Y6S3S0LsMrw.pt-BR.vtt |
13.37Кб |
11. Subquery Solution Video-Y6S3S0LsMrw.zh-CN.vtt |
10.74Кб |
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.en.vtt |
2.98Кб |
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.mp4 |
7.08Мб |
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.pt-BR.vtt |
2.65Кб |
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.zh-CN.vtt |
2.80Кб |
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt |
3.28Кб |
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4 |
3.89Мб |
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt |
3.00Кб |
11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt |
2.70Кб |
11. Transfer Learning Solution.html |
6.18Кб |
11. Transform.html |
10.42Кб |
11. Transform Walk Through-i9_0kHCCCCE.en.vtt |
1.19Кб |
11. Transform Walk Through-i9_0kHCCCCE.mp4 |
1.42Мб |
11. Transform Walk Through-i9_0kHCCCCE.pt-BR.vtt |
1.26Кб |
11. Two Coins 1.html |
8.59Кб |
11. Two Coins 1-QIQBb4nLsHc.ar.vtt |
847б |
11. Two Coins 1-QIQBb4nLsHc.en.vtt |
655б |
11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt |
729б |
11. Two Coins 1-QIQBb4nLsHc.it.vtt |
702б |
11. Two Coins 1-QIQBb4nLsHc.ja.vtt |
717б |
11. Two Coins 1-QIQBb4nLsHc.mp4 |
4.61Мб |
11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt |
688б |
11. Two Coins 1-QIQBb4nLsHc.th.vtt |
1.54Кб |
11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt |
616б |
11. Two Coins 1-SYnYIjLpbjE.ar.vtt |
286б |
11. Two Coins 1-SYnYIjLpbjE.en.vtt |
245б |
11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt |
258б |
11. Two Coins 1-SYnYIjLpbjE.it.vtt |
240б |
11. Two Coins 1-SYnYIjLpbjE.ja.vtt |
237б |
11. Two Coins 1-SYnYIjLpbjE.mp4 |
1.42Мб |
11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt |
285б |
11. Two Coins 1-SYnYIjLpbjE.th.vtt |
415б |
11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt |
244б |
11. Two Flips 4.html |
8.68Кб |
11. Two Flips 4-bNoS6LQEFrI.ar.vtt |
900б |
11. Two Flips 4-bNoS6LQEFrI.en.vtt |
715б |
11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt |
748б |
11. Two Flips 4-bNoS6LQEFrI.hr.vtt |
690б |
11. Two Flips 4-bNoS6LQEFrI.it.vtt |
742б |
11. Two Flips 4-bNoS6LQEFrI.ja.vtt |
623б |
11. Two Flips 4-bNoS6LQEFrI.mp4 |
2.98Мб |
11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt |
728б |
11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt |
658б |
11. Two Flips 4-rRPwknIDuI0.ar.vtt |
303б |
11. Two Flips 4-rRPwknIDuI0.en.vtt |
247б |
11. Two Flips 4-rRPwknIDuI0.es-ES.vtt |
252б |
11. Two Flips 4-rRPwknIDuI0.hr.vtt |
216б |
11. Two Flips 4-rRPwknIDuI0.it.vtt |
248б |
11. Two Flips 4-rRPwknIDuI0.ja.vtt |
216б |
11. Two Flips 4-rRPwknIDuI0.mp4 |
663.40Кб |
11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt |
209б |
11. Two Flips 4-rRPwknIDuI0.th.vtt |
423б |
11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt |
228б |
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.ar.vtt |
2.03Кб |
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.en.vtt |
1.59Кб |
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.mp4 |
1.74Мб |
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.pt-BR.vtt |
1.35Кб |
11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.zh-CN.vtt |
1.47Кб |
11. UNION 1-APRpwqFpGwI.ar.vtt |
2.23Кб |
11. UNION 1-APRpwqFpGwI.en.vtt |
1.64Кб |
11. UNION 1-APRpwqFpGwI.mp4 |
1.38Мб |
11. UNION 1-APRpwqFpGwI.pt-BR.vtt |
1.54Кб |
11. UNION 1-APRpwqFpGwI.zh-CN.vtt |
1.50Кб |
11. UNION 2-so5zydnbYEg.ar.vtt |
942б |
11. UNION 2-so5zydnbYEg.en.vtt |
682б |
11. UNION 2-so5zydnbYEg.mp4 |
825.59Кб |
11. UNION 2-so5zydnbYEg.pt-BR.vtt |
737б |
11. UNION 2-so5zydnbYEg.zh-CN.vtt |
643б |
11. UNION 3-oVGmi4zBOT8.ar.vtt |
1.32Кб |
11. UNION 3-oVGmi4zBOT8.en.vtt |
940б |
11. UNION 3-oVGmi4zBOT8.mp4 |
1.82Мб |
11. UNION 3-oVGmi4zBOT8.pt-BR.vtt |
917б |
11. UNION 3-oVGmi4zBOT8.zh-CN.vtt |
869б |
11. UNION Motivation-0eRr2K8lo-I.ar.vtt |
902б |
11. UNION Motivation-0eRr2K8lo-I.en.vtt |
650б |
11. UNION Motivation-0eRr2K8lo-I.mp4 |
2.59Мб |
11. UNION Motivation-0eRr2K8lo-I.pt-BR.vtt |
653б |
11. UNION Motivation-0eRr2K8lo-I.zh-CN.vtt |
616б |
11. Vanishing Gradient.html |
6.17Кб |
11. Vanishing Gradient-W_JJm_5syFw.en.vtt |
1.46Кб |
11. Vanishing Gradient-W_JJm_5syFw.mp4 |
1.32Мб |
11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt |
1.56Кб |
11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt |
1.24Кб |
11. Video CAST.html |
8.75Кб |
11. Video First Catch Their Eye.html |
6.74Кб |
11. Video Introduction to Notation.html |
8.68Кб |
11. Video SELECT FROM.html |
10.79Кб |
11. Video UNION.html |
9.91Кб |
11. Video Ways to Recommend Collaborative Filtering.html |
8.39Кб |
11. Video Why the Standard Deviation.html |
9.06Кб |
11. Visual Example of EM Progress.html |
7.53Кб |
11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt |
2.14Кб |
11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt |
1.60Кб |
11. Why the Standard Deviation-XlTBvjQ2t8w.mp4 |
6.54Мб |
11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt |
1.61Кб |
11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt |
1.30Кб |
12. 07 Recall SC V1-0n5wUZiefkQ.en.vtt |
3.05Кб |
12. 07 Recall SC V1-0n5wUZiefkQ.mp4 |
2.15Мб |
12. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt |
2.79Кб |
12. 11 PCA 1 Solution V1-u0rJRmubQ44.en.vtt |
10.65Кб |
12. 11 PCA 1 Solution V1-u0rJRmubQ44.mp4 |
20.23Мб |
12. 11 PCA 1 Solution V1-u0rJRmubQ44.pt-BR.vtt |
10.19Кб |
12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.en.vtt |
1.74Кб |
12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.mp4 |
3.09Мб |
12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.pt-BR.vtt |
2.06Кб |
12. 14 Screencast JavaScript V2-vgXUKgsT_48.en.vtt |
7.92Кб |
12. 14 Screencast JavaScript V2-vgXUKgsT_48.mp4 |
9.67Мб |
12. 14 Screencast JavaScript V2-vgXUKgsT_48.pt-BR.vtt |
7.39Кб |
12. Adaptation of Univariate Plots.html |
14.16Кб |
12. Analyzing Multiple Metrics.html |
11.91Кб |
12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.en.vtt |
1.22Кб |
12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.mp4 |
1.95Мб |
12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.en.vtt |
1.84Кб |
12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.mp4 |
2.12Мб |
12. Bad Visual Quizzes (Part I).html |
12.31Кб |
12. Binomial 3.html |
7.83Кб |
12. Binomial 3-Jp2xJOtNQZ0.ar.vtt |
819б |
12. Binomial 3-Jp2xJOtNQZ0.en.vtt |
628б |
12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt |
665б |
12. Binomial 3-Jp2xJOtNQZ0.ja.vtt |
572б |
12. Binomial 3-Jp2xJOtNQZ0.mp4 |
4.67Мб |
12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt |
694б |
12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt |
554б |
12. Binomial 3-YIELbuet-ZE.ar.vtt |
1.85Кб |
12. Binomial 3-YIELbuet-ZE.en.vtt |
1.27Кб |
12. Binomial 3-YIELbuet-ZE.es-ES.vtt |
1.27Кб |
12. Binomial 3-YIELbuet-ZE.ja.vtt |
1.15Кб |
12. Binomial 3-YIELbuet-ZE.mp4 |
7.14Мб |
12. Binomial 3-YIELbuet-ZE.pt-BR.vtt |
1.46Кб |
12. Binomial 3-YIELbuet-ZE.zh-CN.vtt |
1.06Кб |
12. Combining Data.html |
9.55Кб |
12. Combining Data From Different Sources-IfMydJvU37M.en.vtt |
2.17Кб |
12. Combining Data From Different Sources-IfMydJvU37M.mp4 |
4.53Мб |
12. Combining Data From Different Sources-IfMydJvU37M.pt-BR.vtt |
2.35Кб |
12. Common Table Expressions-qtEKO7B8bXQ.ar.vtt |
1.95Кб |
12. Common Table Expressions-qtEKO7B8bXQ.en.vtt |
1.41Кб |
12. Common Table Expressions-qtEKO7B8bXQ.mp4 |
5.23Мб |
12. Common Table Expressions-qtEKO7B8bXQ.pt-BR.vtt |
1.80Кб |
12. Common Table Expressions-qtEKO7B8bXQ.zh-CN.vtt |
1.24Кб |
12. Conclusions-yMRRXDKb428.en.vtt |
1.80Кб |
12. Conclusions-yMRRXDKb428.mp4 |
5.12Мб |
12. Confusion Matrix Practice 2.html |
10.77Кб |
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt |
535б |
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt |
394б |
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4 |
1.17Мб |
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt |
405б |
12. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt |
366б |
12. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt |
402б |
12. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt |
319б |
12. Confusion Matrix Practice 2-XN1eS7boCNg.mp4 |
1.03Мб |
12. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt |
344б |
12. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt |
335б |
12. Creating ndarrays with Broadcasting.html |
7.13Кб |
12. DataVis L3 11 V1-C8DGwJa_adA.en.vtt |
1.38Кб |
12. DataVis L3 11 V1-C8DGwJa_adA.mp4 |
1.32Мб |
12. DataVis L3 11 V1-C8DGwJa_adA.pt-BR.vtt |
1.36Кб |
12. DataVis L3 11 V1-C8DGwJa_adA.zh-CN.vtt |
1.22Кб |
12. Data Vis L4 C12 V2-aJncRqqJUYI.en.vtt |
2.28Кб |
12. Data Vis L4 C12 V2-aJncRqqJUYI.mp4 |
2.13Мб |
12. Data Vis L4 C12 V2-aJncRqqJUYI.pt-BR.vtt |
2.29Кб |
12. Data Vis L4 C12 V2-aJncRqqJUYI.zh-CN.vtt |
1.88Кб |
12. DBSCAN implementation.html |
6.72Кб |
12. Descriptive Statistics, Outliers and Axis Limits.html |
9.69Кб |
12. DL 53 Q Regularization-KxROxcRsHL8.en.vtt |
1.15Кб |
12. DL 53 Q Regularization-KxROxcRsHL8.mp4 |
1.01Мб |
12. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt |
1.16Кб |
12. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt |
1.02Кб |
12. Dog Breed Workspace.html |
6.58Кб |
12. Draw Conclusions.html |
7.47Кб |
12. Errors and Exceptions.html |
11.98Кб |
12. How Does K-Means Work-pL-pMCDgJuw.en.vtt |
2.26Кб |
12. How Does K-Means Work-pL-pMCDgJuw.mp4 |
3.54Мб |
12. How Does K-Means Work-pL-pMCDgJuw.pt-BR.vtt |
2.34Кб |
12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt |
3.17Кб |
12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt |
2.34Кб |
12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4 |
3.98Мб |
12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt |
2.56Кб |
12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt |
2.07Кб |
12. JavaScript.html |
15.10Кб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.en.vtt |
2.34Кб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.mp4 |
4.95Мб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.pt-BR.vtt |
2.23Кб |
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.en.vtt |
2.95Кб |
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.mp4 |
4.60Мб |
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.pt-BR.vtt |
3.38Кб |
12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.zh-CN.vtt |
2.49Кб |
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.en.vtt |
2.22Кб |
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.mp4 |
4.18Мб |
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.pt-BR.vtt |
2.48Кб |
12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.zh-CN.vtt |
1.95Кб |
12. L5 121 Lesson Summary V1-SOBCduyymkQ.en.vtt |
1.77Кб |
12. L5 121 Lesson Summary V1-SOBCduyymkQ.mp4 |
4.35Мб |
12. L5 121 Lesson Summary V1-SOBCduyymkQ.pt-BR.vtt |
1.89Кб |
12. Launching the notebook server.html |
11.58Кб |
12. Lesson Conclusion.html |
5.82Кб |
12. Lesson Summary.html |
5.77Кб |
12. Linear Transformation Quiz Answers.html |
12.21Кб |
12. Loading Data into a Pandas DataFrame.html |
35.19Кб |
12. Magic Methods.html |
8.51Кб |
12. Magic Methods in Code-oDuXThOqans.en.vtt |
4.09Кб |
12. Magic Methods in Code-oDuXThOqans.mp4 |
4.36Мб |
12. Magic Methods in Code-oDuXThOqans.pt-BR.vtt |
3.77Кб |
12. Metric - Average Classroom Time.html |
10.66Кб |
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt |
1.74Кб |
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4 |
1.41Мб |
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt |
1.70Кб |
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt |
1.50Кб |
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.en.vtt |
842б |
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.mp4 |
3.63Мб |
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.pt-BR.vtt |
786б |
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.zh-CN.vtt |
769б |
12. More Spam Classifying.html |
6.25Кб |
12. Multiclass Entropy.html |
8.71Кб |
12. Naive Bayes Algorithm 2.html |
6.30Кб |
12. Non-Linear Regions.html |
7.54Кб |
12. Non-Linear Regions.html |
8.40Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt |
1.77Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt |
1.77Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 |
1.33Мб |
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 |
1.33Мб |
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt |
1.51Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt |
1.51Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt |
1.57Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt |
1.57Кб |
12. Normalizer.html |
6.17Кб |
12. Normalizer.html |
9.97Кб |
12. Normalizer-G9yQ_URDrDQ.ar.vtt |
144б |
12. Normalizer-G9yQ_URDrDQ.en.vtt |
129б |
12. Normalizer-G9yQ_URDrDQ.es-ES.vtt |
138б |
12. Normalizer-G9yQ_URDrDQ.ja.vtt |
132б |
12. Normalizer-G9yQ_URDrDQ.mp4 |
603.29Кб |
12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt |
125б |
12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt |
129б |
12. Normalizer-mQ_IjrtmmAk.ar.vtt |
2.43Кб |
12. Normalizer-mQ_IjrtmmAk.en.vtt |
1.92Кб |
12. Normalizer-mQ_IjrtmmAk.es-ES.vtt |
2.01Кб |
12. Normalizer-mQ_IjrtmmAk.ja.vtt |
1.76Кб |
12. Normalizer-mQ_IjrtmmAk.mp4 |
7.25Мб |
12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt |
2.10Кб |
12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt |
1.61Кб |
12. Normalizer-W5i-gRAvZxs.ar.vtt |
163б |
12. Normalizer-W5i-gRAvZxs.en.vtt |
136б |
12. Normalizer-W5i-gRAvZxs.es-ES.vtt |
140б |
12. Normalizer-W5i-gRAvZxs.ja.vtt |
134б |
12. Normalizer-W5i-gRAvZxs.mp4 |
754.47Кб |
12. Normalizer-W5i-gRAvZxs.pt-BR.vtt |
162б |
12. Normalizer-W5i-gRAvZxs.zh-CN.vtt |
123б |
12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt |
1.99Кб |
12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt |
1.59Кб |
12. Notation Parameters vs. Statistics-webref_dLrA.mp4 |
6.33Мб |
12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt |
1.71Кб |
12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt |
1.27Кб |
12. Notebook + Quiz Dummy Variables.html |
18.40Кб |
12. Notebook + Quiz How To Break Into the Field.html |
11.05Кб |
12. Other Activation Functions.html |
6.53Кб |
12. Other Activation Functions-kA-1vUt6cvQ.en.vtt |
2.68Кб |
12. Other Activation Functions-kA-1vUt6cvQ.mp4 |
2.30Мб |
12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt |
2.55Кб |
12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt |
2.34Кб |
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt |
2.22Кб |
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4 |
6.30Мб |
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt |
2.17Кб |
12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt |
1.75Кб |
12. Pandas 7 V1-ruTYp-twXO0.en.vtt |
5.40Кб |
12. Pandas 7 V1-ruTYp-twXO0.mp4 |
8.09Мб |
12. Pandas 7 V1-ruTYp-twXO0.pt-BR.vtt |
6.50Кб |
12. Pandas 7 V1-ruTYp-twXO0.zh-CN.vtt |
4.77Кб |
12. Part-of-Speech Tagging.html |
7.99Кб |
12. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt |
1.67Кб |
12. Part-of-Speech Tagging-WFEu8bXI5OA.mp4 |
2.15Мб |
12. Part-of-Speech Tagging-WFEu8bXI5OA.pt-BR.vtt |
1.99Кб |
12. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt |
1.48Кб |
12. Picture First, Title Second.html |
7.48Кб |
12. Pipelines and Feature Unions.html |
8.06Кб |
12. Polynomial Kernel 2.html |
7.60Кб |
12. Putting It All Together.html |
6.42Кб |
12. Questions to Ask Yourself When Conducting a Code Review.html |
7.58Кб |
12. Quiz CAST.html |
10.14Кб |
12. Quiz Expectation Maximization.html |
7.46Кб |
12. Quiz Lambda Expressions.html |
9.45Кб |
12. Quiz Mean Absolute Squared Errors.html |
7.87Кб |
12. Quiz What Defines A Line - Line Basics Quiz.html |
9.66Кб |
12. Quizzes UNION.html |
12.53Кб |
12. Recall.html |
8.15Кб |
12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt |
678б |
12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt |
501б |
12. Reflect on your commit messages-_0AHmKkfjTo.mp4 |
3.03Мб |
12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt |
538б |
12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt |
473б |
12. Reflect on your commit messages.html |
7.66Кб |
12. Regularization.html |
8.59Кб |
12. Screencast PCA Solution.html |
7.80Кб |
12. Searching and pipes (grep, wc).html |
8.23Кб |
12. Solution Booleans, Comparison and Logical Operators.html |
9.29Кб |
12. Solution For Loops Practice.html |
8.89Кб |
12. Solution Optimizing - Common Books.html |
7.63Кб |
12. Solutions Aggregates in Window Functions.html |
8.28Кб |
12. Solutions JOIN Questions Part I.html |
9.44Кб |
12. Solutions MIN, MAX, AVG.html |
10.85Кб |
12. Stride and Padding.html |
7.59Кб |
12. Stride and Padding-0r9o8hprDXQ.en.vtt |
4.41Кб |
12. Stride and Padding-0r9o8hprDXQ.mp4 |
7.98Мб |
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt |
4.55Кб |
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt |
3.74Кб |
12. Subqueries Using WITH-IszTmDKyKHI.ar.vtt |
1.85Кб |
12. Subqueries Using WITH-IszTmDKyKHI.en.vtt |
1.39Кб |
12. Subqueries Using WITH-IszTmDKyKHI.mp4 |
1.84Мб |
12. Subqueries Using WITH-IszTmDKyKHI.pt-BR.vtt |
1.60Кб |
12. Subqueries Using WITH-IszTmDKyKHI.zh-CN.vtt |
1.20Кб |
12. SVD Practice Takeaways-2er0HUDum7k.en.vtt |
2.39Кб |
12. SVD Practice Takeaways-2er0HUDum7k.mp4 |
4.02Мб |
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.en.vtt |
4.16Кб |
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.mp4 |
9.69Мб |
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.pt-BR.vtt |
3.29Кб |
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.zh-CN.vtt |
3.70Кб |
12. Text Recap + Next Steps.html |
6.45Кб |
12. Two Coins 2.html |
8.49Кб |
12. Two Coins 2-hoVOT8qcQ7c.ar.vtt |
2.12Кб |
12. Two Coins 2-hoVOT8qcQ7c.en.vtt |
1.61Кб |
12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt |
1.72Кб |
12. Two Coins 2-hoVOT8qcQ7c.it.vtt |
1.76Кб |
12. Two Coins 2-hoVOT8qcQ7c.ja.vtt |
1.68Кб |
12. Two Coins 2-hoVOT8qcQ7c.mp4 |
10.92Мб |
12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt |
1.53Кб |
12. Two Coins 2-hoVOT8qcQ7c.th.vtt |
3.25Кб |
12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt |
1.55Кб |
12. Two Coins 2-tI0J14yQr1s.ar.vtt |
1.04Кб |
12. Two Coins 2-tI0J14yQr1s.en.vtt |
798б |
12. Two Coins 2-tI0J14yQr1s.es-ES.vtt |
837б |
12. Two Coins 2-tI0J14yQr1s.it.vtt |
832б |
12. Two Coins 2-tI0J14yQr1s.ja.vtt |
819б |
12. Two Coins 2-tI0J14yQr1s.mp4 |
4.52Мб |
12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt |
702б |
12. Two Coins 2-tI0J14yQr1s.th.vtt |
1.64Кб |
12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt |
713б |
12. Two Flips 5.html |
8.79Кб |
12. Two Flips 5-G28YyiGFGWA.ar.vtt |
437б |
12. Two Flips 5-G28YyiGFGWA.en.vtt |
349б |
12. Two Flips 5-G28YyiGFGWA.es-ES.vtt |
366б |
12. Two Flips 5-G28YyiGFGWA.hr.vtt |
383б |
12. Two Flips 5-G28YyiGFGWA.it.vtt |
382б |
12. Two Flips 5-G28YyiGFGWA.ja.vtt |
370б |
12. Two Flips 5-G28YyiGFGWA.mp4 |
2.15Мб |
12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt |
377б |
12. Two Flips 5-G28YyiGFGWA.th.vtt |
654б |
12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt |
348б |
12. Two Flips 5-HB8b7sZQFGs.ar.vtt |
650б |
12. Two Flips 5-HB8b7sZQFGs.en.vtt |
549б |
12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt |
566б |
12. Two Flips 5-HB8b7sZQFGs.hr.vtt |
575б |
12. Two Flips 5-HB8b7sZQFGs.it.vtt |
598б |
12. Two Flips 5-HB8b7sZQFGs.ja.vtt |
527б |
12. Two Flips 5-HB8b7sZQFGs.mp4 |
990.87Кб |
12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt |
516б |
12. Two Flips 5-HB8b7sZQFGs.th.vtt |
729б |
12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt |
558б |
12. Types Of Collaborative Filtering-fZhkWHHP6SM.en.vtt |
1.72Кб |
12. Types Of Collaborative Filtering-fZhkWHHP6SM.mp4 |
3.90Мб |
12. Types of Errors - Part III.html |
10.44Кб |
12. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt |
2.90Кб |
12. Types Of Errors - Part III-Z-srkCPsdaM.mp4 |
3.94Мб |
12. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt |
2.94Кб |
12. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt |
2.54Кб |
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.ar.vtt |
4.81Кб |
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.en.vtt |
3.74Кб |
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.mp4 |
3.10Мб |
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.pt-BR.vtt |
3.42Кб |
12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.zh-CN.vtt |
3.52Кб |
12. Up Next.html |
7.40Кб |
12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt |
2.80Кб |
12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt |
1.91Кб |
12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4 |
5.31Мб |
12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt |
2.14Кб |
12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt |
1.59Кб |
12. Vectors Quiz 3.html |
8.99Кб |
12. Video + Quiz Collaborative Filtering Content Based Recs.html |
11.55Кб |
12. Video How Does K-Means Work.html |
8.02Кб |
12. Video Important Final Points.html |
10.62Кб |
12. Video Introduction to Summary Statistics.html |
8.36Кб |
12. Video Notation for Parameters vs. Statistics.html |
11.78Кб |
12. Video Other Language Associated with Confidence Intervals.html |
8.25Кб |
12. Video SVD Practice Takeaways.html |
8.08Кб |
12. Video WITH.html |
8.09Кб |
12. Your First Queries in SQL Workspace.html |
15.46Кб |
12. Your Udacity Professional Profile.html |
7.85Кб |
1200px-linear-regression.svg.png |
38.24Кб |
13. [Lab] DBSCAN.html |
6.86Кб |
13. 08 F1 Score SC V1-TRzBeL07fSg.en.vtt |
7.93Кб |
13. 08 F1 Score SC V1-TRzBeL07fSg.mp4 |
6.05Мб |
13. 08 F1 Score SC V1-TRzBeL07fSg.pt-BR.vtt |
7.39Кб |
13. 12 Interpret PCA Results V1-ZX6EACfsZbc.en.vtt |
4.71Кб |
13. 12 Interpret PCA Results V1-ZX6EACfsZbc.mp4 |
5.07Мб |
13. 12 Interpret PCA Results V1-ZX6EACfsZbc.pt-BR.vtt |
4.61Кб |
13. 14 How Does KMeans Work V1-y7yZyyHgyYU.en.vtt |
3.53Кб |
13. 14 How Does KMeans Work V1-y7yZyyHgyYU.mp4 |
4.39Мб |
13. 14 How Does KMeans Work V1-y7yZyyHgyYU.pt-BR.vtt |
3.66Кб |
13. Advanced Standard Deviation and Variance.html |
12.41Кб |
13. Aliases for Multiple Window Functions-RWe03bULYnM.ar.vtt |
1008б |
13. Aliases for Multiple Window Functions-RWe03bULYnM.en.vtt |
826б |
13. Aliases for Multiple Window Functions-RWe03bULYnM.mp4 |
2.29Мб |
13. Aliases for Multiple Window Functions-RWe03bULYnM.pt-BR.vtt |
829б |
13. Aliases for Multiple Window Functions-RWe03bULYnM.zh-CN.vtt |
787б |
13. Bad Visual Quizzes (Part II).html |
12.60Кб |
13. Batch vs Stochastic Gradient Descent.html |
6.29Кб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt |
4.64Кб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 |
3.95Мб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt |
4.63Кб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt |
4.10Кб |
13. Binomial 4.html |
7.83Кб |
13. Binomial 4-lPrKmvckG4E.ar.vtt |
1.39Кб |
13. Binomial 4-lPrKmvckG4E.en.vtt |
1.12Кб |
13. Binomial 4-lPrKmvckG4E.es-ES.vtt |
1.11Кб |
13. Binomial 4-lPrKmvckG4E.ja.vtt |
1.08Кб |
13. Binomial 4-lPrKmvckG4E.mp4 |
2.95Мб |
13. Binomial 4-lPrKmvckG4E.pt-BR.vtt |
1.48Кб |
13. Binomial 4-lPrKmvckG4E.zh-CN.vtt |
966б |
13. Binomial 4-mvJUNYfHngY.ar.vtt |
654б |
13. Binomial 4-mvJUNYfHngY.en.vtt |
479б |
13. Binomial 4-mvJUNYfHngY.es-ES.vtt |
502б |
13. Binomial 4-mvJUNYfHngY.ja.vtt |
403б |
13. Binomial 4-mvJUNYfHngY.mp4 |
2.75Мб |
13. Binomial 4-mvJUNYfHngY.pt-BR.vtt |
500б |
13. Binomial 4-mvJUNYfHngY.zh-CN.vtt |
403б |
13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt |
3.11Кб |
13. Calculating the Mean-1nzZxmJ8xvU.en.vtt |
2.36Кб |
13. Calculating the Mean-1nzZxmJ8xvU.mp4 |
5.46Мб |
13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt |
2.56Кб |
13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt |
2.12Кб |
13. Case Study in Python.html |
17.64Кб |
13. Convolutional Layers in Keras.html |
11.95Кб |
13. DataVis L3 12 V2-fo0VIbQRBJk.en.vtt |
2.95Кб |
13. DataVis L3 12 V2-fo0VIbQRBJk.mp4 |
3.05Мб |
13. DataVis L3 12 V2-fo0VIbQRBJk.pt-BR.vtt |
3.11Кб |
13. DataVis L3 12 V2-fo0VIbQRBJk.zh-CN.vtt |
2.60Кб |
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.en.vtt |
3.69Кб |
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.mp4 |
3.75Мб |
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.pt-BR.vtt |
3.90Кб |
13. Data Vis L4 C13 V1-Z7NjwA6jbjU.zh-CN.vtt |
3.08Кб |
13. Draw Conclusions - Discussion.html |
6.99Кб |
13. Dummy Variables Recap-r7Lek8rsIcg.en.vtt |
1.67Кб |
13. Dummy Variables Recap-r7Lek8rsIcg.mp4 |
10.07Мб |
13. Dummy Variables Recap-r7Lek8rsIcg.pt-BR.vtt |
1.78Кб |
13. Dummy Variables Recap-r7Lek8rsIcg.zh-CN.vtt |
1.39Кб |
13. Early Stopping.html |
8.62Кб |
13. Early Stopping-taIJZMNwRsI.en.vtt |
2.47Кб |
13. Early Stopping-taIJZMNwRsI.mp4 |
5.19Мб |
13. Error Functions.html |
7.52Кб |
13. Error Functions.html |
8.38Кб |
13. Error Functions-YfUUunxWIJw.en.vtt |
790б |
13. Error Functions-YfUUunxWIJw.en.vtt |
790б |
13. Error Functions-YfUUunxWIJw.mp4 |
3.54Мб |
13. Error Functions-YfUUunxWIJw.mp4 |
3.54Мб |
13. Error Functions-YfUUunxWIJw.pt-BR.vtt |
804б |
13. Error Functions-YfUUunxWIJw.pt-BR.vtt |
804б |
13. Error Functions-YfUUunxWIJw.zh-CN.vtt |
739б |
13. Error Functions-YfUUunxWIJw.zh-CN.vtt |
739б |
13. Exercise Code Magic Methods.html |
8.34Кб |
13. Exercise Combining Data.html |
9.46Кб |
13. Exercise JavaScript.html |
8.09Кб |
13. F1 Score.html |
7.40Кб |
13. Filling in a Confusion Matrix.html |
11.06Кб |
13. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt |
582б |
13. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt |
449б |
13. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4 |
1.17Мб |
13. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt |
478б |
13. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt |
378б |
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt |
675б |
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt |
491б |
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4 |
2.03Мб |
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt |
529б |
13. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt |
425б |
13. Fitting A Regression Line-xQob80zrT3s.en.vtt |
3.03Кб |
13. Fitting A Regression Line-xQob80zrT3s.mp4 |
5.37Мб |
13. Fitting A Regression Line-xQob80zrT3s.pt-BR.vtt |
3.39Кб |
13. Fitting A Regression Line-xQob80zrT3s.zh-CN.vtt |
2.62Кб |
13. Formula Summary.html |
6.22Кб |
13. Formula Summary-zqo1RJEHT_0.ar.vtt |
2.60Кб |
13. Formula Summary-zqo1RJEHT_0.en.vtt |
2.05Кб |
13. Formula Summary-zqo1RJEHT_0.es-ES.vtt |
2.13Кб |
13. Formula Summary-zqo1RJEHT_0.ja.vtt |
1.86Кб |
13. Formula Summary-zqo1RJEHT_0.mp4 |
12.55Мб |
13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt |
2.21Кб |
13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt |
1.61Кб |
13. Getting Set Up for the Mini-Project.html |
6.61Кб |
13. Getting Set Up for the Mini-Project.html |
6.69Кб |
13. GMM Implementation.html |
7.45Кб |
13. GROUP BY-9vb67TF4WV0.ar.vtt |
3.98Кб |
13. GROUP BY-9vb67TF4WV0.en.vtt |
3.12Кб |
13. GROUP BY-9vb67TF4WV0.mp4 |
5.72Мб |
13. GROUP BY-9vb67TF4WV0.pt-BR.vtt |
3.35Кб |
13. GROUP BY-9vb67TF4WV0.zh-CN.vtt |
2.83Кб |
13. Handling Errors.html |
11.26Кб |
13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt |
2.89Кб |
13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt |
2.04Кб |
13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4 |
3.15Мб |
13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt |
2.31Кб |
13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt |
1.94Кб |
13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt |
4.30Кб |
13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt |
2.97Кб |
13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4 |
4.24Мб |
13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt |
3.39Кб |
13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt |
2.82Кб |
13. How to Break Into the Field Solution-Db_2Lmwo4EY.en.vtt |
15.30Кб |
13. How to Break Into the Field Solution-Db_2Lmwo4EY.mp4 |
24.54Мб |
13. How to Break Into the Field Solution-Db_2Lmwo4EY.pt-BR.vtt |
14.46Кб |
13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.en.vtt |
1.50Кб |
13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.mp4 |
4.42Мб |
13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.pt-BR.vtt |
1.43Кб |
13. L3 121 Scales And Transformations V3-PE53ga2bOME.en.vtt |
4.05Кб |
13. L3 121 Scales And Transformations V3-PE53ga2bOME.mp4 |
4.85Мб |
13. L3 121 Scales And Transformations V3-PE53ga2bOME.pt-BR.vtt |
4.46Кб |
13. L3 121 Scales And Transformations V3-PE53ga2bOME.zh-CN.vtt |
3.46Кб |
13. L4 131 Line Plots V1-kSntEWPuOa0.en.vtt |
1.96Кб |
13. L4 131 Line Plots V1-kSntEWPuOa0.mp4 |
3.82Мб |
13. L4 131 Line Plots V1-kSntEWPuOa0.pt-BR.vtt |
2.42Кб |
13. L4 131 Line Plots V1-kSntEWPuOa0.zh-CN.vtt |
1.72Кб |
13. Line Plots.html |
17.00Кб |
13. Measuring SImilarity-G_Y6IPmp7Xs.en.vtt |
3.01Кб |
13. Measuring SImilarity-G_Y6IPmp7Xs.mp4 |
4.84Мб |
13. Metric - Completion Rate.html |
9.72Кб |
13. Minimizing Error Functions.html |
9.59Кб |
13. Minimizing Error Functions-RbT2TXN_6tY.en.vtt |
4.50Кб |
13. Minimizing Error Functions-RbT2TXN_6tY.mp4 |
3.85Мб |
13. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt |
4.58Кб |
13. MLND Outro-sFvMBncQjr8.en.vtt |
514б |
13. MLND Outro-sFvMBncQjr8.mp4 |
2.05Мб |
13. MLND Outro-sFvMBncQjr8.pt-BR.vtt |
533б |
13. MLND Outro-sFvMBncQjr8.zh-CN.vtt |
437б |
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt |
771б |
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4 |
2.16Мб |
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt |
723б |
13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt |
727б |
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.en.vtt |
635б |
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.mp4 |
2.98Мб |
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.pt-BR.vtt |
694б |
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.zh-CN.vtt |
561б |
13. Motivation for Other JOINs-3qdv1Ojc9Og.ar.vtt |
2.63Кб |
13. Motivation for Other JOINs-3qdv1Ojc9Og.en.vtt |
1.90Кб |
13. Motivation for Other JOINs-3qdv1Ojc9Og.mp4 |
5.32Мб |
13. Motivation for Other JOINs-3qdv1Ojc9Og.pt-BR.vtt |
1.67Кб |
13. Motivation for Other JOINs-3qdv1Ojc9Og.zh-CN.vtt |
1.70Кб |
13. Named Entity Recognition.html |
7.46Кб |
13. Named Entity Recognition-QUQu2nsE7vE.en.vtt |
1.10Кб |
13. Named Entity Recognition-QUQu2nsE7vE.mp4 |
1.17Мб |
13. Named Entity Recognition-QUQu2nsE7vE.pt-BR.vtt |
1.25Кб |
13. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt |
1.00Кб |
13. Normalizing Probability.html |
10.92Кб |
13. Normalizing Probability-V_Gqm42WodI.ar.vtt |
481б |
13. Normalizing Probability-V_Gqm42WodI.en.vtt |
353б |
13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt |
390б |
13. Normalizing Probability-V_Gqm42WodI.ja.vtt |
332б |
13. Normalizing Probability-V_Gqm42WodI.mp4 |
2.17Мб |
13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt |
440б |
13. Normalizing Probability-V_Gqm42WodI.th.vtt |
717б |
13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt |
320б |
13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt |
1.59Кб |
13. Normalizing Probability-yYqN9Mf4jqw.en.vtt |
1.11Кб |
13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt |
1.23Кб |
13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt |
1.16Кб |
13. Normalizing Probability-yYqN9Mf4jqw.mp4 |
9.25Мб |
13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt |
1.35Кб |
13. Normalizing Probability-yYqN9Mf4jqw.th.vtt |
2.05Кб |
13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt |
962б |
13. Notebook interface.html |
10.30Кб |
13. One Head 1.html |
8.76Кб |
13. One Head 1-lHuZpDkfwq8.ar.vtt |
717б |
13. One Head 1-lHuZpDkfwq8.en.vtt |
553б |
13. One Head 1-lHuZpDkfwq8.es-ES.vtt |
575б |
13. One Head 1-lHuZpDkfwq8.hr.vtt |
539б |
13. One Head 1-lHuZpDkfwq8.it.vtt |
618б |
13. One Head 1-lHuZpDkfwq8.ja.vtt |
584б |
13. One Head 1-lHuZpDkfwq8.mp4 |
3.66Мб |
13. One Head 1-lHuZpDkfwq8.pt-BR.vtt |
642б |
13. One Head 1-lHuZpDkfwq8.th.vtt |
970б |
13. One Head 1-lHuZpDkfwq8.zh-CN.vtt |
495б |
13. One Head 1-T4A5uyqesjo.ar.vtt |
845б |
13. One Head 1-T4A5uyqesjo.en.vtt |
617б |
13. One Head 1-T4A5uyqesjo.es-ES.vtt |
656б |
13. One Head 1-T4A5uyqesjo.hr.vtt |
599б |
13. One Head 1-T4A5uyqesjo.it.vtt |
656б |
13. One Head 1-T4A5uyqesjo.ja.vtt |
597б |
13. One Head 1-T4A5uyqesjo.mp4 |
1.51Мб |
13. One Head 1-T4A5uyqesjo.pt-BR.vtt |
705б |
13. One Head 1-T4A5uyqesjo.th.vtt |
1.08Кб |
13. One Head 1-T4A5uyqesjo.zh-CN.vtt |
577б |
13. Other Language Associated with Confidence Intervals.html |
10.58Кб |
13. Outro.html |
5.94Кб |
13. Participating in open source projects.html |
7.40Кб |
13. Participating in open source projects-OxL-gMTizUA.ar.vtt |
768б |
13. Participating in open source projects-OxL-gMTizUA.en.vtt |
476б |
13. Participating in open source projects-OxL-gMTizUA.mp4 |
2.77Мб |
13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt |
551б |
13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt |
438б |
13. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt |
1.55Кб |
13. Parting Words Of Encouragement-sFF_WOnpsXM.mp4 |
4.65Мб |
13. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt |
1.68Кб |
13. Polynomial Kernel 3.html |
6.43Кб |
13. Quiz Bayes Rule .html |
5.98Кб |
13. Quiz For Loops.html |
16.29Кб |
13. Quiz Information Gain.html |
8.96Кб |
13. Quiz Notation.html |
12.03Кб |
13. Quiz Optimizing - Holiday Gifts.html |
7.63Кб |
13. Quiz Types of Errors - Part III.html |
15.06Кб |
13. Recap Additional Resources.html |
8.28Кб |
13. Regularization 2.html |
7.52Кб |
13. Regularization-ndYnUrx8xvs.en.vtt |
8.07Кб |
13. Regularization-ndYnUrx8xvs.mp4 |
7.57Мб |
13. Regularization-ndYnUrx8xvs.pt-BR.vtt |
8.78Кб |
13. Regularization-ndYnUrx8xvs.zh-CN.vtt |
6.96Кб |
13. Scales and Transformations.html |
15.31Кб |
13. Screencast + Text How Does K-Means Work.html |
7.60Кб |
13. Screencast How to Break Into the Field Solution.html |
11.55Кб |
13. Screencast Interpret PCA Results.html |
7.85Кб |
13. Shell and environment variables.html |
7.95Кб |
13. Solution Lambda Expressions.html |
7.17Кб |
13. Solutions CAST.html |
7.69Кб |
13. Solutions UNION.html |
7.85Кб |
13. Solution Your First Queries.html |
10.39Кб |
13. Strings.html |
12.14Кб |
13. Strings-ySZDrs-nNqg.ar.vtt |
7.20Кб |
13. Strings-ySZDrs-nNqg.en.vtt |
5.20Кб |
13. Strings-ySZDrs-nNqg.mp4 |
17.26Мб |
13. Strings-ySZDrs-nNqg.pt-BR.vtt |
5.59Кб |
13. Strings-ySZDrs-nNqg.zh-CN.vtt |
4.77Кб |
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.en.vtt |
10.29Кб |
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.mp4 |
26.81Мб |
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.pt-BR.vtt |
8.21Кб |
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.zh-CN.vtt |
8.71Кб |
13. Text + Quiz WITH vs. Subquery.html |
10.85Кб |
13. Text SVD Closed Form Solution.html |
11.93Кб |
13. Tips for Conducting a Code Review.html |
10.19Кб |
13. Two Coins 3.html |
8.54Кб |
13. Two Coins 3-GO6kbL3QRBE.ar.vtt |
1.45Кб |
13. Two Coins 3-GO6kbL3QRBE.en.vtt |
1.03Кб |
13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt |
1.11Кб |
13. Two Coins 3-GO6kbL3QRBE.it.vtt |
1.12Кб |
13. Two Coins 3-GO6kbL3QRBE.ja.vtt |
841б |
13. Two Coins 3-GO6kbL3QRBE.mp4 |
5.36Мб |
13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt |
1002б |
13. Two Coins 3-GO6kbL3QRBE.th.vtt |
1.84Кб |
13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt |
1004б |
13. Two Coins 3-JIWv5fU3GLA.ar.vtt |
2.47Кб |
13. Two Coins 3-JIWv5fU3GLA.en.vtt |
2.02Кб |
13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt |
2.10Кб |
13. Two Coins 3-JIWv5fU3GLA.it.vtt |
2.11Кб |
13. Two Coins 3-JIWv5fU3GLA.ja.vtt |
1.85Кб |
13. Two Coins 3-JIWv5fU3GLA.mp4 |
12.85Мб |
13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt |
1.83Кб |
13. Two Coins 3-JIWv5fU3GLA.th.vtt |
3.52Кб |
13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt |
1.79Кб |
13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.en.vtt |
2.94Кб |
13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.mp4 |
2.01Мб |
13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.pt-BR.vtt |
2.81Кб |
13. Using Feature Union.html |
12.24Кб |
13. Using Feature Unions-QmE6CMGar1U.en.vtt |
3.41Кб |
13. Using Feature Unions-QmE6CMGar1U.mp4 |
4.56Мб |
13. Using Feature Unions-QmE6CMGar1U.pt-BR.vtt |
3.79Кб |
13. Vectors Quiz Answers.html |
7.13Кб |
13. Video + Text Measuring Similarity.html |
9.34Кб |
13. Video Aliases for Multiple Window Functions.html |
8.04Кб |
13. Video Dummy Variables Recap.html |
8.56Кб |
13. Video Fitting A Regression Line.html |
7.89Кб |
13. Video GROUP BY.html |
9.63Кб |
13. Video Measures of Center (Mean).html |
9.80Кб |
13. Video More Advice.html |
6.70Кб |
13. Video Motivation for Other JOINs.html |
8.08Кб |
13. Words of Encouragement.html |
5.89Кб |
14. [Lab Solution] DBSCAN.html |
6.88Кб |
14. [Optional] Iterators and Generators.html |
9.12Кб |
14. [Optional] Notebook + Quiz Other Encodings.html |
13.09Кб |
14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.en.vtt |
4.03Кб |
14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.mp4 |
2.68Мб |
14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.pt-BR.vtt |
3.72Кб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.en.vtt |
1.93Кб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.mp4 |
2.00Мб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.pt-BR.vtt |
1.91Кб |
14. 14 Funk SVD-H8gdwXy_npI.en.vtt |
6.58Кб |
14. 14 Funk SVD-H8gdwXy_npI.mp4 |
10.66Мб |
14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.en.vtt |
1.84Кб |
14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.mp4 |
5.26Мб |
14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.pt-BR.vtt |
2.16Кб |
14. Additional Plot Practice.html |
7.05Кб |
14. Analyzing Multiple Metrics.html |
6.94Кб |
14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt |
572б |
14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4 |
2.25Мб |
14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt |
780б |
14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt |
499б |
14. Binomial 5.html |
7.83Кб |
14. Binomial 5-8jcCGD986jk.ar.vtt |
396б |
14. Binomial 5-8jcCGD986jk.en.vtt |
342б |
14. Binomial 5-8jcCGD986jk.es-ES.vtt |
355б |
14. Binomial 5-8jcCGD986jk.ja.vtt |
371б |
14. Binomial 5-8jcCGD986jk.mp4 |
2.51Мб |
14. Binomial 5-8jcCGD986jk.pt-BR.vtt |
473б |
14. Binomial 5-8jcCGD986jk.zh-CN.vtt |
296б |
14. Binomial 5-yof0QiP2mzk.ar.vtt |
303б |
14. Binomial 5-yof0QiP2mzk.en.vtt |
219б |
14. Binomial 5-yof0QiP2mzk.es-ES.vtt |
219б |
14. Binomial 5-yof0QiP2mzk.ja.vtt |
212б |
14. Binomial 5-yof0QiP2mzk.mp4 |
1.01Мб |
14. Binomial 5-yof0QiP2mzk.pt-BR.vtt |
254б |
14. Binomial 5-yof0QiP2mzk.zh-CN.vtt |
212б |
14. Bootcamps-l2tYmee3kxo.en.vtt |
7.16Кб |
14. Bootcamps-l2tYmee3kxo.mp4 |
10.17Мб |
14. Bootcamps-l2tYmee3kxo.pt-BR.vtt |
6.87Кб |
14. Bootstrap Library.html |
9.03Кб |
14. Bootstrap Library-KsrqjguHWUI.en.vtt |
18.08Кб |
14. Bootstrap Library-KsrqjguHWUI.mp4 |
26.36Мб |
14. Bootstrap Library-KsrqjguHWUI.pt-BR.vtt |
16.37Кб |
14. Building a Spam Classifier.html |
7.27Кб |
14. Case Study Add Feature Union.html |
7.70Кб |
14. Central Limit Theorem.html |
10.21Кб |
14. Central Limit Theorem-36KLIHioAvA.ar.vtt |
982б |
14. Central Limit Theorem-36KLIHioAvA.en.vtt |
682б |
14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt |
775б |
14. Central Limit Theorem-36KLIHioAvA.ja.vtt |
661б |
14. Central Limit Theorem-36KLIHioAvA.mp4 |
3.67Мб |
14. Central Limit Theorem-36KLIHioAvA.pl.vtt |
715б |
14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt |
684б |
14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt |
765б |
14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt |
582б |
14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt |
1.34Кб |
14. Central Limit Theorem-9I8ysrRlmbA.en.vtt |
1.04Кб |
14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt |
1.16Кб |
14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt |
957б |
14. Central Limit Theorem-9I8ysrRlmbA.mp4 |
5.02Мб |
14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt |
1.05Кб |
14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt |
913б |
14. Cleaning Data.html |
9.06Кб |
14. COALESCE-86vgu-ECBCQ.ar.vtt |
2.04Кб |
14. COALESCE-86vgu-ECBCQ.en.vtt |
1.47Кб |
14. COALESCE-86vgu-ECBCQ.mp4 |
2.26Мб |
14. COALESCE-86vgu-ECBCQ.pt-BR.vtt |
1.75Кб |
14. COALESCE-86vgu-ECBCQ.zh-CN.vtt |
1.33Кб |
14. Common Types of Hypothesis Tests.html |
10.86Кб |
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt |
2.57Кб |
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4 |
10.80Мб |
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt |
2.45Кб |
14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt |
2.18Кб |
14. Conclusion.html |
5.98Кб |
14. Conclusion.html |
6.03Кб |
14. Conclusion-2G6x3oQnjy4.en.vtt |
865б |
14. Conclusion-2G6x3oQnjy4.mp4 |
2.33Мб |
14. Conclusion-XiR_37bYA84.ar.vtt |
894б |
14. Conclusion-XiR_37bYA84.en.vtt |
675б |
14. Conclusion-XiR_37bYA84.mp4 |
1.96Мб |
14. Conclusion-XiR_37bYA84.pt-BR.vtt |
692б |
14. Conclusion-XiR_37bYA84.zh-CN.vtt |
616б |
14. Confusion Matrix False Alarms.html |
10.80Кб |
14. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt |
683б |
14. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt |
534б |
14. Confusion Matrix False Alarms-611qWzIxGmU.mp4 |
2.57Мб |
14. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt |
567б |
14. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt |
505б |
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt |
1.79Кб |
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt |
1.20Кб |
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4 |
4.66Мб |
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt |
1.29Кб |
14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt |
1.03Кб |
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt |
1.58Кб |
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4 |
3.36Мб |
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt |
1.56Кб |
14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt |
1.37Кб |
14. Disease Test 1.html |
10.85Кб |
14. Disease Test 1-05upwXtARuo.ar.vtt |
829б |
14. Disease Test 1-05upwXtARuo.en.vtt |
633б |
14. Disease Test 1-05upwXtARuo.es-ES.vtt |
679б |
14. Disease Test 1-05upwXtARuo.ja.vtt |
621б |
14. Disease Test 1-05upwXtARuo.mp4 |
2.81Мб |
14. Disease Test 1-05upwXtARuo.pt-BR.vtt |
680б |
14. Disease Test 1-05upwXtARuo.th.vtt |
1.16Кб |
14. Disease Test 1-05upwXtARuo.zh-CN.vtt |
572б |
14. Disease Test 1-qDGSvvabN18.ar.vtt |
963б |
14. Disease Test 1-qDGSvvabN18.en.vtt |
734б |
14. Disease Test 1-qDGSvvabN18.es-ES.vtt |
682б |
14. Disease Test 1-qDGSvvabN18.ja.vtt |
730б |
14. Disease Test 1-qDGSvvabN18.mp4 |
3.62Мб |
14. Disease Test 1-qDGSvvabN18.pt-BR.vtt |
753б |
14. Disease Test 1-qDGSvvabN18.th.vtt |
1.19Кб |
14. Disease Test 1-qDGSvvabN18.zh-CN.vtt |
708б |
14. Dropout.html |
7.47Кб |
14. Dropout-Ty6K6YiGdBs.en.vtt |
4.71Кб |
14. Dropout-Ty6K6YiGdBs.mp4 |
4.22Мб |
14. Dropout-Ty6K6YiGdBs.pt-BR.vtt |
4.66Кб |
14. Dropout-Ty6K6YiGdBs.zh-CN.vtt |
4.06Кб |
14. Early Stopping - Solution.html |
6.73Кб |
14. Error Functions-jfKShxGAbok.en.vtt |
9.45Кб |
14. Error Functions-jfKShxGAbok.en.vtt |
9.45Кб |
14. Error Functions-jfKShxGAbok.mp4 |
7.21Мб |
14. Error Functions-jfKShxGAbok.mp4 |
7.21Мб |
14. Error Functions-jfKShxGAbok.pt-BR.vtt |
9.14Кб |
14. Error Functions-jfKShxGAbok.pt-BR.vtt |
9.14Кб |
14. Error Functions-jfKShxGAbok.zh-CN.vtt |
8.35Кб |
14. Error Functions-jfKShxGAbok.zh-CN.vtt |
8.35Кб |
14. F-beta Score.html |
11.00Кб |
14. Formatting Best Practices.html |
13.40Кб |
14. GMM Examples Applications.html |
8.44Кб |
14. How Does K-Means Work.html |
10.70Кб |
14. Information Gain-k9iZL53PAmw.en.vtt |
3.35Кб |
14. Information Gain-k9iZL53PAmw.mp4 |
9.24Мб |
14. Information Gain-k9iZL53PAmw.pt-BR.vtt |
2.81Кб |
14. Information Gain-k9iZL53PAmw.zh-CN.vtt |
2.90Кб |
14. Inheritance.html |
10.10Кб |
14. Inheritance-1gsrxUwPI40.en.vtt |
2.64Кб |
14. Inheritance-1gsrxUwPI40.mp4 |
3.52Мб |
14. Inheritance-1gsrxUwPI40.pt-BR.vtt |
2.44Кб |
14. Interview with Art - Part 3.html |
7.05Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt |
5.33Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt |
4.10Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 |
25.04Мб |
14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt |
4.56Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt |
3.67Кб |
14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt |
3.42Кб |
14. Iterators And Generators-tYH8X4Zeh-0.en.vtt |
2.67Кб |
14. Iterators And Generators-tYH8X4Zeh-0.mp4 |
18.95Мб |
14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt |
2.97Кб |
14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt |
2.42Кб |
14. JOINs-CxuHtd1Daqk.ar.vtt |
3.08Кб |
14. JOINs-CxuHtd1Daqk.en.vtt |
2.32Кб |
14. JOINs-CxuHtd1Daqk.mp4 |
3.09Мб |
14. JOINs-CxuHtd1Daqk.pt-BR.vtt |
2.41Кб |
14. JOINs-CxuHtd1Daqk.zh-CN.vtt |
2.03Кб |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.en.vtt |
671б |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.mp4 |
2.06Мб |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.pt-BR.vtt |
841б |
14. Learning Rate Decay.html |
6.15Кб |
14. Learning Rate-TwJ8aSZoh2U.en.vtt |
1.12Кб |
14. Learning Rate-TwJ8aSZoh2U.mp4 |
927.05Кб |
14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt |
1.26Кб |
14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt |
1020б |
14. Lesson Conclusion.html |
5.88Кб |
14. Log-loss Error Function.html |
9.19Кб |
14. Log-loss Error Function.html |
10.04Кб |
14. Markdown cells.html |
10.41Кб |
14. Mean vs Total Error.html |
8.86Кб |
14. Measures of Center (Mean).html |
10.69Кб |
14. Mini-Project Mean Normalization and Data Separation.html |
6.80Кб |
14. Mini-Project Statistics From Stock Data.html |
6.68Кб |
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.en.vtt |
6.50Кб |
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.mp4 |
31.64Мб |
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.pt-BR.vtt |
6.43Кб |
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.zh-CN.vtt |
5.62Кб |
14. More Advice.html |
7.64Кб |
14. Notebook Interpretation.html |
7.36Кб |
14. Notebook Measuring Similarity.html |
8.98Кб |
14. Notebook POS and NER.html |
7.83Кб |
14. One Head 2.html |
9.65Кб |
14. One Head 2-64EjAbqrtmo.ar.vtt |
640б |
14. One Head 2-64EjAbqrtmo.en.vtt |
508б |
14. One Head 2-64EjAbqrtmo.es-ES.vtt |
480б |
14. One Head 2-64EjAbqrtmo.hr.vtt |
453б |
14. One Head 2-64EjAbqrtmo.it.vtt |
504б |
14. One Head 2-64EjAbqrtmo.ja.vtt |
417б |
14. One Head 2-64EjAbqrtmo.mp4 |
1.04Мб |
14. One Head 2-64EjAbqrtmo.pt-BR.vtt |
547б |
14. One Head 2-64EjAbqrtmo.th.vtt |
1015б |
14. One Head 2-64EjAbqrtmo.zh-CN.vtt |
422б |
14. One Head 2-JHx3ucNS9f4.ar.vtt |
445б |
14. One Head 2-JHx3ucNS9f4.en.vtt |
342б |
14. One Head 2-JHx3ucNS9f4.es-ES.vtt |
393б |
14. One Head 2-JHx3ucNS9f4.hr.vtt |
312б |
14. One Head 2-JHx3ucNS9f4.it.vtt |
375б |
14. One Head 2-JHx3ucNS9f4.ja.vtt |
357б |
14. One Head 2-JHx3ucNS9f4.mp4 |
2.26Мб |
14. One Head 2-JHx3ucNS9f4.pt-BR.vtt |
354б |
14. One Head 2-JHx3ucNS9f4.th.vtt |
677б |
14. One Head 2-JHx3ucNS9f4.zh-CN.vtt |
323б |
14. Other JOINs-4edRxFmWUEw.ar.vtt |
5.96Кб |
14. Other JOINs-4edRxFmWUEw.en.vtt |
4.27Кб |
14. Other JOINs-4edRxFmWUEw.mp4 |
7.51Мб |
14. Other JOINs-4edRxFmWUEw.pt-BR.vtt |
3.79Кб |
14. Other JOINs-4edRxFmWUEw.zh-CN.vtt |
3.79Кб |
14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt |
1.37Кб |
14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt |
1.04Кб |
14. Other Sampling Distributions-Bxl0DonzX8c.mp4 |
4.18Мб |
14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt |
1.28Кб |
14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt |
964б |
14. Performance Tuning Motivation-aY4_uYWEuoE.ar.vtt |
1.28Кб |
14. Performance Tuning Motivation-aY4_uYWEuoE.en.vtt |
976б |
14. Performance Tuning Motivation-aY4_uYWEuoE.mp4 |
3.60Мб |
14. Performance Tuning Motivation-aY4_uYWEuoE.pt-BR.vtt |
972б |
14. Performance Tuning Motivation-aY4_uYWEuoE.zh-CN.vtt |
852б |
14. Practice Handling Input Errors.html |
10.01Кб |
14. Quiz Aliases for Multiple Window Functions.html |
11.20Кб |
14. Quiz Applied Standard Deviation and Variance.html |
14.47Кб |
14. Quiz Dimensionality.html |
16.33Кб |
14. Quiz GROUP BY.html |
10.78Кб |
14. Quiz Strings.html |
15.63Кб |
14. Quiz WITH.html |
9.18Кб |
14. RBF Kernel 1.html |
6.39Кб |
14. Scales and Transformations Practice.html |
6.85Кб |
14. Screencast Bootcamps.html |
10.44Кб |
14. Solution For Loops Quiz.html |
10.27Кб |
14. Solution Information Gain.html |
7.50Кб |
14. Solution Optimizing - Holiday Gifts.html |
7.64Кб |
14. Startup files (.bash_profile).html |
6.87Кб |
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.en.vtt |
7.45Кб |
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.mp4 |
18.60Мб |
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.pt-BR.vtt |
6.21Кб |
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.zh-CN.vtt |
6.40Кб |
14. Text The Regression Closed Form Solution.html |
9.11Кб |
14. Two Coins 4.html |
8.57Кб |
14. Two Coins 4-9R44IyZ-aQI.ar.vtt |
1.69Кб |
14. Two Coins 4-9R44IyZ-aQI.en.vtt |
1.35Кб |
14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt |
1.34Кб |
14. Two Coins 4-9R44IyZ-aQI.it.vtt |
1.38Кб |
14. Two Coins 4-9R44IyZ-aQI.ja.vtt |
1.10Кб |
14. Two Coins 4-9R44IyZ-aQI.mp4 |
8.19Мб |
14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt |
1.17Кб |
14. Two Coins 4-9R44IyZ-aQI.th.vtt |
2.20Кб |
14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt |
1.27Кб |
14. Two Coins 4-cDub-OOrIRE.ar.vtt |
1.01Кб |
14. Two Coins 4-cDub-OOrIRE.en.vtt |
789б |
14. Two Coins 4-cDub-OOrIRE.es-ES.vtt |
845б |
14. Two Coins 4-cDub-OOrIRE.it.vtt |
837б |
14. Two Coins 4-cDub-OOrIRE.ja.vtt |
805б |
14. Two Coins 4-cDub-OOrIRE.mp4 |
4.81Мб |
14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt |
761б |
14. Two Coins 4-cDub-OOrIRE.th.vtt |
1.37Кб |
14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt |
752б |
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.ar.vtt |
5.14Кб |
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.en.vtt |
4.03Кб |
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.mp4 |
3.12Мб |
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.pt-BR.vtt |
3.41Кб |
14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.zh-CN.vtt |
3.82Кб |
14. Using Color.html |
7.17Кб |
14. Using Color-6bAedqD3ilw.en.vtt |
4.68Кб |
14. Using Color-6bAedqD3ilw.mp4 |
8.47Мб |
14. Using Color-6bAedqD3ilw.pt-BR.vtt |
4.88Кб |
14. Using Color-6bAedqD3ilw.zh-CN.vtt |
4.23Кб |
14. Video COALESCE.html |
7.05Кб |
14. Video Correct Interpretations of Confidence Intervals.html |
8.13Кб |
14. Video FunkSVD.html |
12.08Кб |
14. Video LEFT and RIGHT JOINs.html |
9.10Кб |
14. Video Other Sampling Distributions.html |
8.71Кб |
14. Video Performance Tuning Motivation.html |
7.04Кб |
15. [Optional] Quiz Iterators and Generators.html |
9.49Кб |
15. 14 Interpretation Solution V1-wU2duZa0ds0.en.vtt |
6.44Кб |
15. 14 Interpretation Solution V1-wU2duZa0ds0.mp4 |
9.16Мб |
15. 14 Interpretation Solution V1-wU2duZa0ds0.pt-BR.vtt |
6.35Кб |
15. Binomial 6.html |
7.83Кб |
15. Binomial 6-CQHRYIU6v9Q.ar.vtt |
473б |
15. Binomial 6-CQHRYIU6v9Q.en.vtt |
340б |
15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt |
327б |
15. Binomial 6-CQHRYIU6v9Q.ja.vtt |
298б |
15. Binomial 6-CQHRYIU6v9Q.mp4 |
1.73Мб |
15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt |
401б |
15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt |
307б |
15. Binomial 6-n_OrWrZ8tKY.ar.vtt |
706б |
15. Binomial 6-n_OrWrZ8tKY.en.vtt |
540б |
15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt |
538б |
15. Binomial 6-n_OrWrZ8tKY.ja.vtt |
531б |
15. Binomial 6-n_OrWrZ8tKY.mp4 |
4.45Мб |
15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt |
691б |
15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt |
460б |
15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.en.vtt |
1.08Кб |
15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.mp4 |
3.07Мб |
15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.pt-BR.vtt |
1.26Кб |
15. Cluster Analysis Process.html |
7.50Кб |
15. Code cells.html |
6.96Кб |
15. Conclusions-3IFF1GzUq0Y.en.vtt |
1.46Кб |
15. Conclusions-3IFF1GzUq0Y.mp4 |
3.99Мб |
15. Confusion Matrix for Eigenfaces.html |
11.45Кб |
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt |
196б |
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt |
174б |
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4 |
513.65Кб |
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt |
170б |
15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt |
157б |
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt |
3.27Кб |
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt |
2.26Кб |
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4 |
14.57Мб |
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt |
2.42Кб |
15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt |
2.01Кб |
15. Controlling the shell prompt ($PS1).html |
7.30Кб |
15. Correct Interpretations of Confidence Intervals.html |
9.29Кб |
15. DBSCAN examples applications.html |
7.19Кб |
15. Designing for Color Blindness.html |
7.57Кб |
15. Designing for Color Blindness-k4iTzS7t2U4.ar.vtt |
2.30Кб |
15. Designing for Color Blindness-k4iTzS7t2U4.en.vtt |
1.67Кб |
15. Designing for Color Blindness-k4iTzS7t2U4.mp4 |
4.89Мб |
15. Designing for Color Blindness-k4iTzS7t2U4.pt-BR.vtt |
1.70Кб |
15. Designing for Color Blindness-k4iTzS7t2U4.zh-CN.vtt |
1.52Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt |
5.70Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt |
5.70Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 |
5.35Мб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 |
5.35Мб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt |
5.67Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt |
5.67Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt |
4.67Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt |
4.67Кб |
15. Discrete vs Continuous.html |
9.80Кб |
15. Discrete vs Continuous.html |
10.66Кб |
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt |
551б |
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt |
551б |
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 |
2.26Мб |
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 |
2.26Мб |
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt |
584б |
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt |
584б |
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt |
481б |
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt |
481б |
15. Disease Test 2.html |
10.25Кб |
15. Disease Test 2-FQM7i07EqGo.ar.vtt |
325б |
15. Disease Test 2-FQM7i07EqGo.en.vtt |
268б |
15. Disease Test 2-FQM7i07EqGo.es-ES.vtt |
272б |
15. Disease Test 2-FQM7i07EqGo.ja.vtt |
296б |
15. Disease Test 2-FQM7i07EqGo.mp4 |
1.49Мб |
15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt |
262б |
15. Disease Test 2-FQM7i07EqGo.th.vtt |
398б |
15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt |
241б |
15. Disease Test 2-GsneDVJB75E.ar.vtt |
158б |
15. Disease Test 2-GsneDVJB75E.en.vtt |
142б |
15. Disease Test 2-GsneDVJB75E.es-ES.vtt |
155б |
15. Disease Test 2-GsneDVJB75E.ja.vtt |
184б |
15. Disease Test 2-GsneDVJB75E.mp4 |
747.61Кб |
15. Disease Test 2-GsneDVJB75E.pt-BR.vtt |
149б |
15. Disease Test 2-GsneDVJB75E.th.vtt |
178б |
15. Disease Test 2-GsneDVJB75E.zh-CN.vtt |
149б |
15. Documentation.html |
7.82Кб |
15. Exercise Bootstrap.html |
8.09Кб |
15. Exercise Cleaning Data.html |
9.46Кб |
15. Exercise Inheritance with Clothing.html |
8.35Кб |
15. Fitting A Regression Line In Python-0CiMDbEUeS4.en.vtt |
2.02Кб |
15. Fitting A Regression Line In Python-0CiMDbEUeS4.mp4 |
2.10Мб |
15. Fitting A Regression Line In Python-0CiMDbEUeS4.pt-BR.vtt |
2.10Кб |
15. Fitting A Regression Line In Python-0CiMDbEUeS4.zh-CN.vtt |
1.78Кб |
15. Homework 1 Final Quiz on Measures Spread.html |
13.78Кб |
15. Is That The Optimal Solution-g5aPtCpBNmw.en.vtt |
2.20Кб |
15. Is That The Optimal Solution-g5aPtCpBNmw.mp4 |
4.31Мб |
15. Is That The Optimal Solution-g5aPtCpBNmw.pt-BR.vtt |
2.47Кб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.en.vtt |
1.51Кб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.mp4 |
4.38Мб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.pt-BR.vtt |
1.75Кб |
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.en.vtt |
1.78Кб |
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.mp4 |
3.63Мб |
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.pt-BR.vtt |
2.13Кб |
15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.zh-CN.vtt |
1.50Кб |
15. L4 151 Lesson Summary V1-5igqM44KEmw.en.vtt |
2.13Кб |
15. L4 151 Lesson Summary V1-5igqM44KEmw.mp4 |
5.39Мб |
15. L4 151 Lesson Summary V1-5igqM44KEmw.pt-BR.vtt |
2.65Кб |
15. L4 151 Lesson Summary V1-5igqM44KEmw.zh-CN.vtt |
1.85Кб |
15. Lesson Conclusion.html |
6.05Кб |
15. Lesson Summary.html |
6.79Кб |
15. Lesson Summary.html |
7.01Кб |
15. LIMIT Statement-cCPHNNhBgpQ.ar.vtt |
2.56Кб |
15. LIMIT Statement-cCPHNNhBgpQ.en.vtt |
1.82Кб |
15. LIMIT Statement-cCPHNNhBgpQ.mp4 |
5.62Мб |
15. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt |
2.11Кб |
15. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt |
1.59Кб |
15. Local Minima.html |
7.50Кб |
15. Local Minima-gF_sW_nY-xw.en.vtt |
1.14Кб |
15. Local Minima-gF_sW_nY-xw.mp4 |
819.86Кб |
15. Local Minima-gF_sW_nY-xw.pt-BR.vtt |
1.05Кб |
15. Local Minima-gF_sW_nY-xw.zh-CN.vtt |
1.01Кб |
15. Maximizing Information Gain.html |
6.88Кб |
15. Maximizing Information Gain-3FgJOpKfdY8.en.vtt |
4.00Кб |
15. Maximizing Information Gain-3FgJOpKfdY8.mp4 |
13.14Мб |
15. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt |
3.34Кб |
15. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt |
3.69Кб |
15. Mini-batch Gradient Descent.html |
9.18Кб |
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.en.vtt |
4.50Кб |
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.mp4 |
17.78Мб |
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.pt-BR.vtt |
4.37Кб |
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.zh-CN.vtt |
3.98Кб |
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.en.vtt |
4.27Кб |
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.mp4 |
11.70Мб |
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.pt-BR.vtt |
4.37Кб |
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.zh-CN.vtt |
3.71Кб |
15. Momentum.html |
6.10Кб |
15. Momentum-r-rYz_PEWC8.en.vtt |
2.50Кб |
15. Momentum-r-rYz_PEWC8.mp4 |
2.14Мб |
15. Momentum-r-rYz_PEWC8.pt-BR.vtt |
2.70Кб |
15. Momentum-r-rYz_PEWC8.zh-CN.vtt |
2.21Кб |
15. More on Performance Tuning-ZK1FvNH10Ag.ar.vtt |
4.13Кб |
15. More on Performance Tuning-ZK1FvNH10Ag.en.vtt |
3.03Кб |
15. More on Performance Tuning-ZK1FvNH10Ag.mp4 |
11.79Мб |
15. More on Performance Tuning-ZK1FvNH10Ag.pt-BR.vtt |
2.80Кб |
15. More on Performance Tuning-ZK1FvNH10Ag.zh-CN.vtt |
2.68Кб |
15. Notebook Implementing FunkSVD.html |
8.14Кб |
15. One Of Three 1.html |
8.85Кб |
15. One Of Three 1-bDCXSxkochE.ar.vtt |
1.50Кб |
15. One Of Three 1-bDCXSxkochE.en.vtt |
1.15Кб |
15. One Of Three 1-bDCXSxkochE.es-ES.vtt |
1.17Кб |
15. One Of Three 1-bDCXSxkochE.hr.vtt |
1.12Кб |
15. One Of Three 1-bDCXSxkochE.it.vtt |
1.17Кб |
15. One Of Three 1-bDCXSxkochE.ja.vtt |
1.13Кб |
15. One Of Three 1-bDCXSxkochE.mp4 |
9.02Мб |
15. One Of Three 1-bDCXSxkochE.pt-BR.vtt |
1.35Кб |
15. One Of Three 1-bDCXSxkochE.th.vtt |
2.73Кб |
15. One Of Three 1-bDCXSxkochE.zh-CN.vtt |
964б |
15. One Of Three 1-rxfHfjy9Mm4.ar.vtt |
411б |
15. One Of Three 1-rxfHfjy9Mm4.en.vtt |
307б |
15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt |
318б |
15. One Of Three 1-rxfHfjy9Mm4.hr.vtt |
305б |
15. One Of Three 1-rxfHfjy9Mm4.it.vtt |
315б |
15. One Of Three 1-rxfHfjy9Mm4.ja.vtt |
301б |
15. One Of Three 1-rxfHfjy9Mm4.mp4 |
2.08Мб |
15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt |
335б |
15. One Of Three 1-rxfHfjy9Mm4.th.vtt |
772б |
15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt |
280б |
15. Participating in open source projects 2.html |
7.15Кб |
15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt |
2.16Кб |
15. Participating in open source projects 2-elZCLxVvJrY.en.vtt |
1.46Кб |
15. Participating in open source projects 2-elZCLxVvJrY.mp4 |
3.30Мб |
15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt |
1.69Кб |
15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt |
1.30Кб |
15. Performance Tuning 1-5mVfYZ_bfRo.ar.vtt |
4.64Кб |
15. Performance Tuning 1-5mVfYZ_bfRo.en.vtt |
3.17Кб |
15. Performance Tuning 1-5mVfYZ_bfRo.mp4 |
4.25Мб |
15. Performance Tuning 1-5mVfYZ_bfRo.pt-BR.vtt |
3.18Кб |
15. Performance Tuning 1-5mVfYZ_bfRo.zh-CN.vtt |
2.87Кб |
15. Pooling Layers.html |
7.85Кб |
15. Pooling Layers-OkkIZNs7Cyc.en.vtt |
5.40Кб |
15. Pooling Layers-OkkIZNs7Cyc.mp4 |
5.82Мб |
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt |
5.81Кб |
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt |
4.64Кб |
15. Potential Problems-lGwB6YRThbI.en.vtt |
2.35Кб |
15. Potential Problems-lGwB6YRThbI.mp4 |
14.42Мб |
15. Potential Problems-lGwB6YRThbI.pt-BR.vtt |
2.42Кб |
15. Potential Problems-lGwB6YRThbI.zh-CN.vtt |
1.92Кб |
15. Quiz Analyzing Multiple Metrics.html |
9.29Кб |
15. Quiz Bootcamp Takeaways.html |
18.12Кб |
15. Quiz COALESCE.html |
9.50Кб |
15. Quiz Match Inputs To Outputs.html |
12.99Кб |
15. Quiz More Hypothesis Testing Practice.html |
15.63Кб |
15. RBF Kernel 2.html |
6.39Кб |
15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.en.vtt |
6.86Кб |
15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.mp4 |
8.80Мб |
15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.en.vtt |
6.33Кб |
15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.mp4 |
9.21Мб |
15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.en.vtt |
3.54Кб |
15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.mp4 |
4.92Мб |
15. ROC Curve.html |
6.41Кб |
15. ROC Curve-2Iw5TiGzJI4.en.vtt |
8.66Кб |
15. ROC Curve-2Iw5TiGzJI4.mp4 |
6.66Мб |
15. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt |
8.12Кб |
15. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt |
7.30Кб |
15. Screencast Fitting A Regression Line in Python.html |
7.95Кб |
15. Screencast Interpretation Solution.html |
7.86Кб |
15. Screencast Solution Measuring Similarity.html |
9.93Кб |
15. Solution Add Feature Union.html |
9.41Кб |
15. Solution Handling Input Errors.html |
7.99Кб |
15. Solutions Aliases for Multiple Window Functions.html |
8.75Кб |
15. Solutions GROUP BY.html |
11.20Кб |
15. Solution Strings.html |
9.58Кб |
15. Solutions WITH.html |
11.89Кб |
15. Spam Classifier - Workspace.html |
6.60Кб |
15. Stemming and Lemmatization.html |
7.48Кб |
15. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt |
4.77Кб |
15. Stemming And Lemmatization-7Gjf81u5hmw.mp4 |
4.93Мб |
15. Stemming And Lemmatization-7Gjf81u5hmw.pt-BR.vtt |
5.02Кб |
15. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt |
4.26Кб |
15. Summary.html |
6.14Кб |
15. Summary.html |
6.56Кб |
15. Summary-VP-PMcgqhc8.ar.vtt |
2.04Кб |
15. Summary-VP-PMcgqhc8.en.vtt |
1.42Кб |
15. Summary-VP-PMcgqhc8.es-ES.vtt |
1.41Кб |
15. Summary-VP-PMcgqhc8.ja.vtt |
1.27Кб |
15. Summary-VP-PMcgqhc8.mp4 |
6.71Мб |
15. Summary-VP-PMcgqhc8.pt-BR.vtt |
1.57Кб |
15. Summary-VP-PMcgqhc8.zh-CN.vtt |
1.13Кб |
15. Summary-yepMH9VswI8.ar.vtt |
3.47Кб |
15. Summary-yepMH9VswI8.en.vtt |
2.66Кб |
15. Summary-yepMH9VswI8.es-ES.vtt |
2.84Кб |
15. Summary-yepMH9VswI8.it.vtt |
2.87Кб |
15. Summary-yepMH9VswI8.ja.vtt |
2.36Кб |
15. Summary-yepMH9VswI8.mp4 |
15.78Мб |
15. Summary-yepMH9VswI8.pt-BR.vtt |
2.44Кб |
15. Summary-yepMH9VswI8.th.vtt |
4.60Кб |
15. Summary-yepMH9VswI8.zh-CN.vtt |
2.43Кб |
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.en.vtt |
1.27Кб |
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.mp4 |
5.06Мб |
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.pt-BR.vtt |
1.13Кб |
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.zh-CN.vtt |
1.13Кб |
15. Text Other JOIN Notes.html |
8.29Кб |
15. The Median-WlT3eeW0rb0.ar.vtt |
3.19Кб |
15. The Median-WlT3eeW0rb0.en.vtt |
2.48Кб |
15. The Median-WlT3eeW0rb0.mp4 |
3.81Мб |
15. The Median-WlT3eeW0rb0.pt-BR.vtt |
2.63Кб |
15. The Median-WlT3eeW0rb0.zh-CN.vtt |
1.98Кб |
15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt |
1.75Кб |
15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt |
1.40Кб |
15. Two Useful Theorems-jQ5i7CALdRQ.mp4 |
4.16Мб |
15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt |
1.45Кб |
15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt |
1.18Кб |
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.ar.vtt |
3.95Кб |
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.en.vtt |
2.89Кб |
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.mp4 |
3.73Мб |
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.pt-BR.vtt |
2.23Кб |
15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.zh-CN.vtt |
2.71Кб |
15. Video + Quiz Performance Tuning 1.html |
10.50Кб |
15. Video End With A Call To Action.html |
6.76Кб |
15. Video Is that the Optimal Solution.html |
7.57Кб |
15. Video LIMIT.html |
10.48Кб |
15. Video Measures of Center (Median).html |
9.60Кб |
15. Video Potential Problems.html |
7.99Кб |
15. Video Two Useful Theorems - Law of Large Numbers.html |
10.12Кб |
16. [Optional] Solution Iterators and Generators.html |
7.73Кб |
16. [Optional] Text Linear Model Assumptions.html |
14.32Кб |
16. [Quiz] DBSCAN.html |
8.09Кб |
16. 04 Inline Comments V1--G6yg3Xhl8I.en.vtt |
2.38Кб |
16. 04 Inline Comments V1--G6yg3Xhl8I.mp4 |
3.54Мб |
16. 04 Inline Comments V1--G6yg3Xhl8I.pt-BR.vtt |
2.87Кб |
16. 18 Screencast Plotly V2-QsmOW1jNeio.en.vtt |
11.64Кб |
16. 18 Screencast Plotly V2-QsmOW1jNeio.mp4 |
14.79Мб |
16. 18 Screencast Plotly V2-QsmOW1jNeio.pt-BR.vtt |
10.82Кб |
16. Accessing Error Messages.html |
8.51Кб |
16. Aliases.html |
6.74Кб |
16. Binomial Conclusion.html |
6.29Кб |
16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt |
3.89Кб |
16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt |
2.92Кб |
16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4 |
10.23Мб |
16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt |
3.26Кб |
16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt |
2.46Кб |
16. Building Dictionaries.html |
13.57Кб |
16. Calculating Information Gain on a Dataset.html |
8.00Кб |
16. Cluster Validation.html |
7.45Кб |
16. Comparing Row to Previous Row-Z_x5ZJyDZog.ar.vtt |
2.38Кб |
16. Comparing Row to Previous Row-Z_x5ZJyDZog.en.vtt |
1.81Кб |
16. Comparing Row to Previous Row-Z_x5ZJyDZog.mp4 |
2.87Мб |
16. Comparing Row to Previous Row-Z_x5ZJyDZog.pt-BR.vtt |
1.88Кб |
16. Comparing Row to Previous Row-Z_x5ZJyDZog.zh-CN.vtt |
1.64Кб |
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt |
906б |
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4 |
3.70Мб |
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt |
962б |
16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt |
742б |
16. Creating Custom Transformers.html |
11.28Кб |
16. Creating Custom Transformers-TBxUCQdXRjY.en.vtt |
2.46Кб |
16. Creating Custom Transformers-TBxUCQdXRjY.mp4 |
3.57Мб |
16. Creating Custom Transformers-TBxUCQdXRjY.pt-BR.vtt |
2.84Кб |
16. Disease Test 3.html |
10.24Кб |
16. Disease Test 3-a61GPGk-Qy4.ar.vtt |
222б |
16. Disease Test 3-a61GPGk-Qy4.en.vtt |
214б |
16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt |
217б |
16. Disease Test 3-a61GPGk-Qy4.ja.vtt |
300б |
16. Disease Test 3-a61GPGk-Qy4.mp4 |
1.61Мб |
16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt |
212б |
16. Disease Test 3-a61GPGk-Qy4.th.vtt |
299б |
16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt |
218б |
16. Disease Test 3-PfEYA6z-19w.ar.vtt |
129б |
16. Disease Test 3-PfEYA6z-19w.en.vtt |
104б |
16. Disease Test 3-PfEYA6z-19w.es-ES.vtt |
107б |
16. Disease Test 3-PfEYA6z-19w.ja.vtt |
122б |
16. Disease Test 3-PfEYA6z-19w.mp4 |
423.73Кб |
16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt |
99б |
16. Disease Test 3-PfEYA6z-19w.th.vtt |
130б |
16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt |
113б |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt |
5.37Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt |
5.37Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 |
4.01Мб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 |
4.01Мб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt |
5.06Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt |
5.06Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt |
4.37Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt |
4.37Кб |
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt |
2.59Кб |
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt |
2.59Кб |
16. DL 18 S Softmax-n8S-v_LCTms.mp4 |
1.95Мб |
16. DL 18 S Softmax-n8S-v_LCTms.mp4 |
1.95Мб |
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt |
2.52Кб |
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt |
2.52Кб |
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt |
2.30Кб |
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt |
2.30Кб |
16. Drawing Conclusions.html |
7.54Кб |
16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt |
1.27Кб |
16. Drawing Conclusions-s-4ghG9vrGQ.mp4 |
4.51Мб |
16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt |
1.53Кб |
16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt |
1.06Кб |
16. End With A Call To Action.html |
9.27Кб |
16. Error Functions Around the World.html |
6.27Кб |
16. Error Functions Around the World-34AAcTECu2A.en.vtt |
1.17Кб |
16. Error Functions Around the World-34AAcTECu2A.mp4 |
1.73Мб |
16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt |
1.08Кб |
16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt |
1.06Кб |
16. Exercise Data Types.html |
9.46Кб |
16. Extra Kernel Density Estimation.html |
10.67Кб |
16. Extra Q-Q Plots.html |
17.88Кб |
16. Feature Scaling-rpTVp7C8AXo.en.vtt |
1.27Кб |
16. Feature Scaling-rpTVp7C8AXo.mp4 |
4.23Мб |
16. Feature Scaling-rpTVp7C8AXo.pt-BR.vtt |
1.47Кб |
16. GROUP BY Part II-0HQ-TshNNQA.ar.vtt |
1.69Кб |
16. GROUP BY Part II-0HQ-TshNNQA.en.vtt |
1.38Кб |
16. GROUP BY Part II-0HQ-TshNNQA.mp4 |
1.31Мб |
16. GROUP BY Part II-0HQ-TshNNQA.pt-BR.vtt |
1.42Кб |
16. GROUP BY Part II-0HQ-TshNNQA.zh-CN.vtt |
1.21Кб |
16. How Do We Choose Between Hypotheses.html |
10.90Кб |
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt |
1.07Кб |
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4 |
3.92Мб |
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt |
1.03Кб |
16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt |
887б |
16. How Do We Interpret Results-eLk0XGGMaCE.en.vtt |
2.61Кб |
16. How Do We Interpret Results-eLk0XGGMaCE.mp4 |
3.67Мб |
16. How Do We Interpret Results-eLk0XGGMaCE.pt-BR.vtt |
2.94Кб |
16. How Do We Interpret Results-eLk0XGGMaCE.zh-CN.vtt |
2.14Кб |
16. How Many Schroeders.html |
9.98Кб |
16. How Many Schroeders-jO81hfubpXY.en.vtt |
142б |
16. How Many Schroeders-jO81hfubpXY.mp4 |
558.47Кб |
16. How Many Schroeders-jO81hfubpXY.pt-BR.vtt |
155б |
16. How Many Schroeders-jO81hfubpXY.zh-CN.vtt |
150б |
16. How Many Schroeders-T2dveKB64Ho.ar.vtt |
248б |
16. How Many Schroeders-T2dveKB64Ho.en.vtt |
178б |
16. How Many Schroeders-T2dveKB64Ho.mp4 |
787.82Кб |
16. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt |
167б |
16. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt |
142б |
16. Identifying Recommendations-P60qvS_OTMg.en.vtt |
2.39Кб |
16. Identifying Recommendations-P60qvS_OTMg.mp4 |
5.96Мб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.en.vtt |
2.91Кб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.mp4 |
3.47Мб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.pt-BR.vtt |
2.84Кб |
16. Inheritance Probability Distribution.html |
8.02Кб |
16. In-line Comments.html |
8.07Кб |
16. Keyboard shortcuts.html |
6.81Кб |
16. LEFT and RIGHT JOIN.html |
17.80Кб |
16. Max Pooling Layers in Keras.html |
10.75Кб |
16. Measures of Center (Median).html |
9.95Кб |
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.en.vtt |
2.12Кб |
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.mp4 |
5.85Мб |
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.pt-BR.vtt |
2.28Кб |
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.zh-CN.vtt |
1.76Кб |
16. Notebook + Quiz Job Satisfaction.html |
11.02Кб |
16. Notebook + Quiz Law of Large Numbers.html |
10.08Кб |
16. Notebook Stemming and Lemmatization.html |
7.86Кб |
16. One Of Three 2.html |
8.74Кб |
16. One Of Three 2-27Ed1GI4j84.ar.vtt |
1.26Кб |
16. One Of Three 2-27Ed1GI4j84.en.vtt |
964б |
16. One Of Three 2-27Ed1GI4j84.es-ES.vtt |
967б |
16. One Of Three 2-27Ed1GI4j84.hr.vtt |
925б |
16. One Of Three 2-27Ed1GI4j84.it.vtt |
969б |
16. One Of Three 2-27Ed1GI4j84.ja.vtt |
949б |
16. One Of Three 2-27Ed1GI4j84.mp4 |
11.22Мб |
16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt |
1.29Кб |
16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt |
908б |
16. One Of Three 2-gGgqTGZ9TKg.ar.vtt |
1.22Кб |
16. One Of Three 2-gGgqTGZ9TKg.en.vtt |
997б |
16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt |
971б |
16. One Of Three 2-gGgqTGZ9TKg.hr.vtt |
956б |
16. One Of Three 2-gGgqTGZ9TKg.it.vtt |
994б |
16. One Of Three 2-gGgqTGZ9TKg.ja.vtt |
952б |
16. One Of Three 2-gGgqTGZ9TKg.mp4 |
5.49Мб |
16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt |
1.01Кб |
16. One Of Three 2-gGgqTGZ9TKg.th.vtt |
2.00Кб |
16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt |
912б |
16. Outro.html |
6.15Кб |
16. Performance Tuning 2-arMtEhSoq7E.ar.vtt |
2.67Кб |
16. Performance Tuning 2-arMtEhSoq7E.en.vtt |
1.95Кб |
16. Performance Tuning 2-arMtEhSoq7E.mp4 |
3.11Мб |
16. Performance Tuning 2-arMtEhSoq7E.pt-BR.vtt |
1.90Кб |
16. Performance Tuning 2-arMtEhSoq7E.zh-CN.vtt |
1.77Кб |
16. Plotly.html |
10.25Кб |
16. Quiz LIMIT.html |
12.39Кб |
16. Quiz Mini-Batch Gradient Descent.html |
14.44Кб |
16. Quiz - Softmax-NNoezNnAMTY.en.vtt |
495б |
16. Quiz - Softmax-NNoezNnAMTY.en.vtt |
495б |
16. Quiz - Softmax-NNoezNnAMTY.mp4 |
1.73Мб |
16. Quiz - Softmax-NNoezNnAMTY.mp4 |
1.73Мб |
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt |
501б |
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt |
501б |
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt |
548б |
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt |
548б |
16. RBF Kernel 3.html |
6.39Кб |
16. Recommendations 2 16 1051320 V1-_4N6h82szWo.en.vtt |
10.97Кб |
16. Recommendations 2 16 1051320 V1-_4N6h82szWo.mp4 |
18.88Мб |
16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.en.vtt |
4.87Кб |
16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.mp4 |
7.12Мб |
16. Screencast Implementing FunkSVD.html |
8.41Кб |
16. Shape, Size, and other Tools-fzEliHW3ZLM.ar.vtt |
4.64Кб |
16. Shape, Size, and other Tools-fzEliHW3ZLM.en.vtt |
3.47Кб |
16. Shape, Size, and other Tools-fzEliHW3ZLM.mp4 |
5.91Мб |
16. Shape, Size, and other Tools-fzEliHW3ZLM.pt-BR.vtt |
3.75Кб |
16. Shape, Size, and other Tools-fzEliHW3ZLM.zh-CN.vtt |
3.06Кб |
16. Shape, Size, Other Tools.html |
9.38Кб |
16. Sklearn Practice (Classification).html |
6.90Кб |
16. Softmax.html |
11.86Кб |
16. Softmax.html |
12.72Кб |
16. Solutions COALESCE.html |
8.96Кб |
16. Starring interesting repositories.html |
8.45Кб |
16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt |
542б |
16. Starring interesting repositories-U3FUxkm1MxI.en.vtt |
419б |
16. Starring interesting repositories-U3FUxkm1MxI.mp4 |
2.45Мб |
16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt |
460б |
16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt |
392б |
16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt |
812б |
16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt |
634б |
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 |
3.46Мб |
16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt |
705б |
16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt |
556б |
16. Subquery Conclusion-TUYvx2K9-5k.ar.vtt |
727б |
16. Subquery Conclusion-TUYvx2K9-5k.en.vtt |
527б |
16. Subquery Conclusion-TUYvx2K9-5k.mp4 |
2.61Мб |
16. Subquery Conclusion-TUYvx2K9-5k.pt-BR.vtt |
686б |
16. Subquery Conclusion-TUYvx2K9-5k.zh-CN.vtt |
446б |
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.en.vtt |
3.53Кб |
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.mp4 |
9.26Мб |
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.pt-BR.vtt |
2.75Кб |
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.zh-CN.vtt |
2.99Кб |
16. Text Measures of Center and Spread Summary.html |
11.79Кб |
16. Text Summary.html |
7.06Кб |
16. Text What Are EigenValues EigenVectors.html |
8.30Кб |
16. Type and Type Conversion.html |
10.32Кб |
16. Type Type Conversion-yN6Fam_vZrU.ar.vtt |
4.36Кб |
16. Type Type Conversion-yN6Fam_vZrU.en.vtt |
3.19Кб |
16. Type Type Conversion-yN6Fam_vZrU.mp4 |
9.40Мб |
16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt |
3.67Кб |
16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt |
2.95Кб |
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.ar.vtt |
3.69Кб |
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.en.vtt |
2.73Кб |
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.mp4 |
2.46Мб |
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.pt-BR.vtt |
2.19Кб |
16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.zh-CN.vtt |
2.37Кб |
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt |
2.64Кб |
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4 |
2.48Мб |
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt |
2.72Кб |
16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt |
2.30Кб |
16. Vanishing Gradient.html |
7.54Кб |
16. Vanishing Gradient-W_JJm_5syFw.en.vtt |
1.46Кб |
16. Vanishing Gradient-W_JJm_5syFw.mp4 |
1.32Мб |
16. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt |
1.56Кб |
16. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt |
1.24Кб |
16. Video Comparing a Row to Previous Row.html |
21.49Кб |
16. Video Confidence Intervals Hypothesis Tests.html |
7.29Кб |
16. Video Feature Scaling.html |
7.95Кб |
16. Video GROUP BY Part II.html |
9.37Кб |
16. Video How to Interpret the Results.html |
8.39Кб |
16. Video Identifying Recommendations.html |
9.85Кб |
16. Video Performance Tuning 2.html |
6.97Кб |
16. Video Subquery Conclusion.html |
7.44Кб |
17. [Optional] Generator Expressions.html |
6.76Кб |
17. 05 Docstrings V1-_gapemxsRJY.en.vtt |
1.71Кб |
17. 05 Docstrings V1-_gapemxsRJY.mp4 |
1.66Мб |
17. 05 Docstrings V1-_gapemxsRJY.pt-BR.vtt |
1.99Кб |
17. Absolute Error vs Squared Error.html |
11.26Кб |
17. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt |
831б |
17. Absolute Vs Squared Error-csvdjaqt1GM.mp4 |
660.25Кб |
17. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt |
793б |
17. Case Study Create Custom Transformer.html |
7.72Кб |
17. CNNs for Image Classification.html |
10.61Кб |
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt |
11.37Кб |
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 |
18.16Мб |
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt |
12.21Кб |
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt |
9.72Кб |
17. Data Cleaning Conclusion-KkHqnvD9BWY.ar.vtt |
731б |
17. Data Cleaning Conclusion-KkHqnvD9BWY.en.vtt |
497б |
17. Data Cleaning Conclusion-KkHqnvD9BWY.mp4 |
2.11Мб |
17. Data Cleaning Conclusion-KkHqnvD9BWY.pt-BR.vtt |
602б |
17. Data Cleaning Conclusion-KkHqnvD9BWY.zh-CN.vtt |
440б |
17. Demo Inheritance Probability Distributions.html |
8.37Кб |
17. Disease Test 4.html |
10.24Кб |
17. Disease Test 4-UERKMwmkAsM.ar.vtt |
161б |
17. Disease Test 4-UERKMwmkAsM.en.vtt |
120б |
17. Disease Test 4-UERKMwmkAsM.es-ES.vtt |
129б |
17. Disease Test 4-UERKMwmkAsM.ja.vtt |
126б |
17. Disease Test 4-UERKMwmkAsM.mp4 |
753.05Кб |
17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt |
123б |
17. Disease Test 4-UERKMwmkAsM.th.vtt |
205б |
17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt |
116б |
17. Disease Test 4-ztkKTrMZHXg.ar.vtt |
96б |
17. Disease Test 4-ztkKTrMZHXg.en.vtt |
95б |
17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt |
101б |
17. Disease Test 4-ztkKTrMZHXg.ja.vtt |
110б |
17. Disease Test 4-ztkKTrMZHXg.mp4 |
284.83Кб |
17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt |
94б |
17. Disease Test 4-ztkKTrMZHXg.th.vtt |
152б |
17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt |
98б |
17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt |
983б |
17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 |
692.80Кб |
17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt |
956б |
17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt |
1.00Кб |
17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 |
873.14Кб |
17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt |
970б |
17. Docstrings.html |
9.11Кб |
17. Even Roll.html |
8.80Кб |
17. Even Roll-DrnAR4SqlEE.ar.vtt |
1.05Кб |
17. Even Roll-DrnAR4SqlEE.en.vtt |
826б |
17. Even Roll-DrnAR4SqlEE.es-ES.vtt |
850б |
17. Even Roll-DrnAR4SqlEE.hr.vtt |
792б |
17. Even Roll-DrnAR4SqlEE.it.vtt |
866б |
17. Even Roll-DrnAR4SqlEE.ja.vtt |
872б |
17. Even Roll-DrnAR4SqlEE.mp4 |
5.70Мб |
17. Even Roll-DrnAR4SqlEE.pt-BR.vtt |
914б |
17. Even Roll-DrnAR4SqlEE.th.vtt |
1.69Кб |
17. Even Roll-DrnAR4SqlEE.zh-CN.vtt |
676б |
17. Even Roll-M3L0a5V4Nf0.ar.vtt |
684б |
17. Even Roll-M3L0a5V4Nf0.en.vtt |
558б |
17. Even Roll-M3L0a5V4Nf0.es-ES.vtt |
611б |
17. Even Roll-M3L0a5V4Nf0.hr.vtt |
517б |
17. Even Roll-M3L0a5V4Nf0.it.vtt |
571б |
17. Even Roll-M3L0a5V4Nf0.ja.vtt |
596б |
17. Even Roll-M3L0a5V4Nf0.mp4 |
3.94Мб |
17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt |
597б |
17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt |
538б |
17. Exercise Parsing Dates.html |
9.46Кб |
17. Exercise Plotly.html |
8.08Кб |
17. External Validation Indices.html |
7.74Кб |
17. Extra Swarm Plots.html |
8.99Кб |
17. Extra Waffle Plots.html |
16.88Кб |
17. Feature Scaling Example--Axyt0bPCT0.en.vtt |
1.60Кб |
17. Feature Scaling Example--Axyt0bPCT0.mp4 |
1.99Мб |
17. Feature Scaling Example--Axyt0bPCT0.pt-BR.vtt |
1.78Кб |
17. Funk SVD Review-nc3GMIrISHE.en.vtt |
729б |
17. Funk SVD Review-nc3GMIrISHE.mp4 |
1.78Мб |
17. Good Visual.html |
9.60Кб |
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.en.vtt |
1.67Кб |
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.mp4 |
4.21Мб |
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.pt-BR.vtt |
1.90Кб |
17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.zh-CN.vtt |
1.38Кб |
17. How Many Schroeder Predictions.html |
10.23Кб |
17. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt |
747б |
17. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt |
575б |
17. How Many Schroeder Predictions-n7gp8USw0Jw.mp4 |
2.50Мб |
17. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt |
563б |
17. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt |
490б |
17. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt |
319б |
17. How Many Schroeder Predictions-r8stm2et_hI.en.vtt |
277б |
17. How Many Schroeder Predictions-r8stm2et_hI.mp4 |
765.63Кб |
17. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt |
281б |
17. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt |
251б |
17. Hyperparameters.html |
12.60Кб |
17. Iterating Through Dictionaries with For Loops.html |
11.30Кб |
17. Job Satisfaction-OjCNMhWlYh8.en.vtt |
9.77Кб |
17. Job Satisfaction-OjCNMhWlYh8.mp4 |
15.49Мб |
17. Job Satisfaction-OjCNMhWlYh8.pt-BR.vtt |
9.49Кб |
17. Keep learning!.html |
7.30Кб |
17. Magic keywords.html |
10.80Кб |
17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt |
861б |
17. Measures of Center - The Mode-NE81NZgECqg.en.vtt |
653б |
17. Measures of Center - The Mode-NE81NZgECqg.mp4 |
954.56Кб |
17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt |
629б |
17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt |
613б |
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.en.vtt |
6.29Кб |
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.mp4 |
23.18Мб |
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.pt-BR.vtt |
5.84Кб |
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.zh-CN.vtt |
5.35Кб |
17. Multicollinearity VIFs-wbtrXMusDe8.en.vtt |
5.70Кб |
17. Multicollinearity VIFs-wbtrXMusDe8.mp4 |
17.52Мб |
17. Multicollinearity VIFs-wbtrXMusDe8.pt-BR.vtt |
5.38Кб |
17. Multicollinearity VIFs-wbtrXMusDe8.zh-CN.vtt |
4.93Кб |
17. Next Steps.html |
7.48Кб |
17. Notebook Collaborative Filtering.html |
8.98Кб |
17. One-Hot Encoding.html |
7.53Кб |
17. One-Hot Encoding.html |
8.38Кб |
17. One-Hot Encoding-AePvjhyvsBo.en.vtt |
2.23Кб |
17. One-Hot Encoding-AePvjhyvsBo.en.vtt |
2.23Кб |
17. One-Hot Encoding-AePvjhyvsBo.mp4 |
1.65Мб |
17. One-Hot Encoding-AePvjhyvsBo.mp4 |
1.65Мб |
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt |
2.03Кб |
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt |
2.03Кб |
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt |
2.02Кб |
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt |
2.02Кб |
17. Other Activation Functions.html |
7.90Кб |
17. Other Activation Functions-kA-1vUt6cvQ.en.vtt |
2.68Кб |
17. Other Activation Functions-kA-1vUt6cvQ.mp4 |
2.30Мб |
17. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt |
2.55Кб |
17. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt |
2.34Кб |
17. Other Important Information-LF-CWF-1mX4.en.vtt |
1.93Кб |
17. Other Important Information-LF-CWF-1mX4.mp4 |
4.52Мб |
17. Other Important Information-LF-CWF-1mX4.pt-BR.vtt |
2.08Кб |
17. Performance Tuning 3-hIAE8W6x5O8.ar.vtt |
2.15Кб |
17. Performance Tuning 3-hIAE8W6x5O8.en.vtt |
1.52Кб |
17. Performance Tuning 3-hIAE8W6x5O8.mp4 |
1.39Мб |
17. Performance Tuning 3-hIAE8W6x5O8.pt-BR.vtt |
1.50Кб |
17. Performance Tuning 3-hIAE8W6x5O8.zh-CN.vtt |
1.46Кб |
17. Quiz Comparing a Row to Previous Row.html |
9.29Кб |
17. Quiz Difficulties in AB Testing.html |
14.75Кб |
17. Quiz GROUP BY Part II.html |
10.03Кб |
17. Quiz Type and Type Conversion.html |
15.77Кб |
17. Reading and Writing Files.html |
12.83Кб |
17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt |
6.33Кб |
17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt |
4.90Кб |
17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4 |
5.92Мб |
17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt |
5.51Кб |
17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt |
4.55Кб |
17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt |
2.43Кб |
17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt |
1.73Кб |
17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4 |
1.91Мб |
17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt |
2.00Кб |
17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt |
1.60Кб |
17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt |
3.29Кб |
17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt |
2.47Кб |
17. Reading And Writing Files-w-ZG6DMkVi4.mp4 |
10.81Мб |
17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt |
2.81Кб |
17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt |
2.21Кб |
17. Regression Metrics.html |
6.48Кб |
17. Regression-Metrics-906P4BPnl9A.en-US.vtt |
4.23Кб |
17. Regression-Metrics-906P4BPnl9A.mp4 |
3.35Мб |
17. Regression-Metrics-906P4BPnl9A.pt-BR.vtt |
3.93Кб |
17. Regression-Metrics-906P4BPnl9A.zh-CN.vtt |
3.62Кб |
17. Screencast Job Satisfaction.html |
11.44Кб |
17. Screencast Multicollinearity VIFs.html |
8.90Кб |
17. Shape of Distributions-UnN99AAYf8k.ar.vtt |
4.11Кб |
17. Shape of Distributions-UnN99AAYf8k.en.vtt |
2.94Кб |
17. Shape of Distributions-UnN99AAYf8k.mp4 |
3.17Мб |
17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt |
2.94Кб |
17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt |
2.30Кб |
17. Simulating From the Null-sL2yJtHZd8Y.en.vtt |
3.31Кб |
17. Simulating From the Null-sL2yJtHZd8Y.mp4 |
3.75Мб |
17. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt |
3.27Кб |
17. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt |
2.70Кб |
17. Solutions LEFT and RIGHT JOIN .html |
13.48Кб |
17. Solutions LIMIT.html |
10.33Кб |
17. Summary-zKYEvRd2XmI.en.vtt |
1.11Кб |
17. Summary-zKYEvRd2XmI.mp4 |
977.95Кб |
17. Summary-zKYEvRd2XmI.pt-BR.vtt |
1.25Кб |
17. Summary-zKYEvRd2XmI.zh-CN.vtt |
984б |
17. SVMs in sklearn.html |
15.00Кб |
17. Text Processing Summary.html |
7.38Кб |
17. Text Recap + Next Steps.html |
7.76Кб |
17. Text Recap + Next Steps.html |
10.98Кб |
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt |
1.07Кб |
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt |
818б |
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4 |
2.73Мб |
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt |
944б |
17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt |
670б |
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.ar.vtt |
1.52Кб |
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.en.vtt |
1.16Кб |
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.mp4 |
3.40Мб |
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.pt-BR.vtt |
920б |
17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.zh-CN.vtt |
1.05Кб |
17. Video + Text Recap.html |
7.76Кб |
17. Video Does the Line Fit the Data Well.html |
8.35Кб |
17. Video Feature Scaling Example.html |
7.81Кб |
17. Video FunkSVD Review.html |
7.47Кб |
17. Video Measures of Center (Mode).html |
9.19Кб |
17. Video Other Important Information.html |
6.67Кб |
17. Video Performance Tuning 3.html |
6.96Кб |
17. Video Shape.html |
10.38Кб |
17. Video Simulating from the Null.html |
9.93Кб |
17. Video Two Useful Theorems - Central Limit Theorem.html |
9.70Кб |
17. Video When to Use PCA.html |
7.76Кб |
17. When to Use PCA-arSP83-CM6w.en.vtt |
1.23Кб |
17. When to Use PCA-arSP83-CM6w.mp4 |
3.21Мб |
17. When to Use PCA-arSP83-CM6w.pt-BR.vtt |
1.48Кб |
18. 17 PCA Recap V1-Egz3-noHCmg.en.vtt |
1.34Кб |
18. 17 PCA Recap V1-Egz3-noHCmg.mp4 |
3.87Мб |
18. 17 PCA Recap V1-Egz3-noHCmg.pt-BR.vtt |
1.50Кб |
18. Advanced OOP Topics.html |
9.01Кб |
18. Batch vs Stochastic Gradient Descent.html |
7.67Кб |
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt |
4.64Кб |
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 |
3.95Мб |
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt |
4.63Кб |
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt |
4.10Кб |
18. Classifying Chavez Correctly 1.html |
10.23Кб |
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt |
662б |
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt |
536б |
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4 |
1.49Мб |
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt |
533б |
18. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt |
451б |
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt |
726б |
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt |
513б |
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4 |
1.88Мб |
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt |
488б |
18. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt |
467б |
18. CNNs in Keras Practical Example.html |
9.37Кб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt |
5.39Кб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 |
8.71Мб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt |
6.12Кб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt |
4.78Кб |
18. Conclusion.html |
6.67Кб |
18. Conclusion.html |
7.34Кб |
18. Conclusion-qmGjRpMVBz8.en.vtt |
586б |
18. Conclusion-qmGjRpMVBz8.mp4 |
2.14Мб |
18. Conclusion-qmGjRpMVBz8.pt-BR.vtt |
745б |
18. Conclusion-qmGjRpMVBz8.zh-CN.vtt |
504б |
18. Conclusion-QRnLr7pwHyk.ar.vtt |
953б |
18. Conclusion-QRnLr7pwHyk.en.vtt |
763б |
18. Conclusion-QRnLr7pwHyk.mp4 |
4.48Мб |
18. Conclusion-QRnLr7pwHyk.pt-BR.vtt |
746б |
18. Conclusion-QRnLr7pwHyk.zh-CN.vtt |
724б |
18. Converting notebooks.html |
7.93Кб |
18. Data in the Real World-HmipezTjTDY.ar.vtt |
2.08Кб |
18. Data in the Real World-HmipezTjTDY.en.vtt |
1.58Кб |
18. Data in the Real World-HmipezTjTDY.mp4 |
3.77Мб |
18. Data in the Real World-HmipezTjTDY.pt-BR.vtt |
1.71Кб |
18. Data in the Real World-HmipezTjTDY.zh-CN.vtt |
1.39Кб |
18. Decision Trees in sklearn.html |
15.83Кб |
18. Disease Test 5.html |
10.53Кб |
18. Disease Test 5-4qW7a5E74No.ar.vtt |
122б |
18. Disease Test 5-4qW7a5E74No.en.vtt |
110б |
18. Disease Test 5-4qW7a5E74No.es-ES.vtt |
120б |
18. Disease Test 5-4qW7a5E74No.ja.vtt |
123б |
18. Disease Test 5-4qW7a5E74No.mp4 |
390.91Кб |
18. Disease Test 5-4qW7a5E74No.pt-BR.vtt |
122б |
18. Disease Test 5-4qW7a5E74No.th.vtt |
160б |
18. Disease Test 5-4qW7a5E74No.zh-CN.vtt |
111б |
18. Disease Test 5-nUxwwMNKIYo.ar.vtt |
670б |
18. Disease Test 5-nUxwwMNKIYo.en.vtt |
470б |
18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt |
471б |
18. Disease Test 5-nUxwwMNKIYo.ja.vtt |
525б |
18. Disease Test 5-nUxwwMNKIYo.mp4 |
3.59Мб |
18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt |
620б |
18. Disease Test 5-nUxwwMNKIYo.th.vtt |
779б |
18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt |
431б |
18. Doubles.html |
8.70Кб |
18. Doubles-fkUyTJNbdzU.ar.vtt |
1.97Кб |
18. Doubles-fkUyTJNbdzU.en.vtt |
1.42Кб |
18. Doubles-fkUyTJNbdzU.es-ES.vtt |
1.45Кб |
18. Doubles-fkUyTJNbdzU.hr.vtt |
1.36Кб |
18. Doubles-fkUyTJNbdzU.it.vtt |
1.42Кб |
18. Doubles-fkUyTJNbdzU.ja.vtt |
1.39Кб |
18. Doubles-fkUyTJNbdzU.mp4 |
11.26Мб |
18. Doubles-fkUyTJNbdzU.pt-BR.vtt |
1.53Кб |
18. Doubles-fkUyTJNbdzU.th.vtt |
2.56Кб |
18. Doubles-fkUyTJNbdzU.zh-CN.vtt |
1.28Кб |
18. Doubles-On_Guw8wac8.ar.vtt |
765б |
18. Doubles-On_Guw8wac8.en.vtt |
569б |
18. Doubles-On_Guw8wac8.es-ES.vtt |
608б |
18. Doubles-On_Guw8wac8.hr.vtt |
565б |
18. Doubles-On_Guw8wac8.it.vtt |
625б |
18. Doubles-On_Guw8wac8.ja.vtt |
594б |
18. Doubles-On_Guw8wac8.mp4 |
3.65Мб |
18. Doubles-On_Guw8wac8.pt-BR.vtt |
598б |
18. Doubles-On_Guw8wac8.th.vtt |
1.04Кб |
18. Doubles-On_Guw8wac8.zh-CN.vtt |
531б |
18. Extra Rug and Strip Plots.html |
9.78Кб |
18. Feature Extraction.html |
7.83Кб |
18. Feature Extraction-UgENzCmfFWE.en.vtt |
3.82Кб |
18. Feature Extraction-UgENzCmfFWE.mp4 |
3.47Мб |
18. Feature Extraction-UgENzCmfFWE.pt-BR.vtt |
4.24Кб |
18. Feature Extraction-UgENzCmfFWE.zh-CN.vtt |
3.34Кб |
18. It Is Not Always About ML-ECqflypBU7M.en.vtt |
1.71Кб |
18. It Is Not Always About ML-ECqflypBU7M.mp4 |
6.54Мб |
18. It Is Not Always About ML-ECqflypBU7M.pt-BR.vtt |
1.96Кб |
18. Joining Subqueries-rxy-fE5GeLY.ar.vtt |
4.60Кб |
18. Joining Subqueries-rxy-fE5GeLY.en.vtt |
3.25Кб |
18. Joining Subqueries-rxy-fE5GeLY.mp4 |
8.92Мб |
18. Joining Subqueries-rxy-fE5GeLY.pt-BR.vtt |
3.19Кб |
18. Joining Subqueries-rxy-fE5GeLY.zh-CN.vtt |
2.97Кб |
18. JOINs and Filtering-aI1kbDDNs4w.ar.vtt |
5.01Кб |
18. JOINs and Filtering-aI1kbDDNs4w.en.vtt |
3.54Кб |
18. JOINs and Filtering-aI1kbDDNs4w.mp4 |
5.89Мб |
18. JOINs and Filtering-aI1kbDDNs4w.pt-BR.vtt |
3.08Кб |
18. JOINs and Filtering-aI1kbDDNs4w.zh-CN.vtt |
3.21Кб |
18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.mp4 |
3.00Мб |
18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.pt-BR.vtt |
1.38Кб |
18. L4 The Back End V2-Esl0NL63S2c.en.vtt |
2.38Кб |
18. L4 The Back End V2-Esl0NL63S2c.mp4 |
5.29Мб |
18. L4 The Back End V2-Esl0NL63S2c.pt-BR.vtt |
2.73Кб |
18. Lesson Summary.html |
6.42Кб |
18. Linear Regression in scikit-learn.html |
17.33Кб |
18. Matching Encodings.html |
9.07Кб |
18. Matching Encodings-398xRMnhjGk.en.vtt |
2.90Кб |
18. Matching Encodings-398xRMnhjGk.mp4 |
7.99Мб |
18. Matching Encodings-398xRMnhjGk.pt-BR.vtt |
3.17Кб |
18. Maximum Likelihood.html |
9.90Кб |
18. Maximum Likelihood.html |
10.76Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt |
1.64Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt |
1.64Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 |
5.75Мб |
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 |
5.75Мб |
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt |
1.61Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt |
1.61Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt |
1.43Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt |
1.43Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt |
4.41Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt |
4.41Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 |
3.85Мб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 |
3.85Мб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt |
4.49Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt |
4.49Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt |
3.67Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt |
3.67Кб |
18. Measures of Center (Mode).html |
15.13Кб |
18. Multicollinearity VIFs-uiF3UcDWwPI.en.vtt |
1.99Кб |
18. Multicollinearity VIFs-uiF3UcDWwPI.mp4 |
11.32Мб |
18. Multicollinearity VIFs-uiF3UcDWwPI.pt-BR.vtt |
2.13Кб |
18. Multicollinearity VIFs-uiF3UcDWwPI.zh-CN.vtt |
1.74Кб |
18. Notebook + Quiz Central Limit Theorem.html |
12.26Кб |
18. Notebook + Quiz How to Interpret the Results.html |
11.27Кб |
18. Notebook + Quiz Simulating from the Null.html |
19.15Кб |
18. Notebook Feature Scaling Example.html |
7.45Кб |
18. Notebook How Are We Doing.html |
8.13Кб |
18. ORDER BY Statement-wqj2As31LqI.ar.vtt |
2.58Кб |
18. ORDER BY Statement-wqj2As31LqI.en.vtt |
1.93Кб |
18. ORDER BY Statement-wqj2As31LqI.mp4 |
2.46Мб |
18. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt |
2.11Кб |
18. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt |
1.79Кб |
18. Project Documentation.html |
8.30Кб |
18. Quiz Adjusted Rand Index.html |
7.90Кб |
18. Quiz Iterating Through Dictionaries.html |
13.91Кб |
18. Quiz Reading and Writing Files.html |
16.72Кб |
18. Recap Additional Resources.html |
10.05Кб |
18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.en.vtt |
4.19Кб |
18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.mp4 |
6.34Мб |
18. Recommendations 1 17a 23313044 V1-pcaaBWbe34Y.mp4 |
7.83Мб |
18. Recommendations 1 17a 4422330 V1-DJfwhP_vvh4.mp4 |
8.36Мб |
18. Recommendations 1 17b 15022032 V1-N9ytffw5AMg.mp4 |
7.95Мб |
18. Recommendations 1 17b 5451216 V1-lf2Q0AE5esk.mp4 |
7.25Мб |
18. Screencast Solution Collaborative Filtering.html |
10.49Кб |
18. Sklearn Practice (Regression).html |
6.89Кб |
18. Solution Create Custom Transformer.html |
9.95Кб |
18. Solutions Comparing a Row to Previous Row.html |
8.40Кб |
18. Solutions GROUP BY Part II.html |
10.65Кб |
18. Solution Type and Type Conversion.html |
9.04Кб |
18. Text Recap.html |
7.78Кб |
18. The Backend.html |
10.21Кб |
18. Video It Is Not Always About ML.html |
12.67Кб |
18. Video JOINing Subqueries.html |
8.71Кб |
18. Video JOINs and Filtering.html |
7.80Кб |
18. Video Multicollinearity VIFs.html |
10.25Кб |
18. Video ORDER BY.html |
10.58Кб |
18. Video Recap.html |
6.80Кб |
18. Video The Shape For Data In The World.html |
9.71Кб |
19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.en.vtt |
1.58Кб |
19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.mp4 |
5.75Мб |
19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.pt-BR.vtt |
2.02Кб |
19. Bag of Words.html |
7.38Кб |
19. Bag Of Words-A7M1z8yLl0w.en.vtt |
4.72Кб |
19. Bag Of Words-A7M1z8yLl0w.mp4 |
4.01Мб |
19. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt |
5.04Кб |
19. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt |
4.13Кб |
19. Classifying Chavez Correctly 2.html |
10.37Кб |
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt |
665б |
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt |
468б |
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt |
482б |
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4 |
1.18Мб |
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt |
482б |
19. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt |
399б |
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt |
471б |
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt |
382б |
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4 |
886.38Кб |
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt |
406б |
19. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt |
352б |
19. Conclusion-_ATzG6khLdk.en.vtt |
927б |
19. Conclusion-_ATzG6khLdk.mp4 |
2.90Мб |
19. Conclusion-_ATzG6khLdk.pt-BR.vtt |
988б |
19. Congratulations!-_FPpbuuW-1o.ar.vtt |
1009б |
19. Congratulations!-_FPpbuuW-1o.en.vtt |
781б |
19. Congratulations!-_FPpbuuW-1o.mp4 |
3.05Мб |
19. Congratulations!-_FPpbuuW-1o.pt-BR.vtt |
620б |
19. Congratulations!-_FPpbuuW-1o.zh-CN.vtt |
741б |
19. Creating a slideshow.html |
8.76Кб |
19. Disease Test 6.html |
10.54Кб |
19. Disease Test 6-cdFrLeXIkZU.ar.vtt |
341б |
19. Disease Test 6-cdFrLeXIkZU.en.vtt |
241б |
19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt |
260б |
19. Disease Test 6-cdFrLeXIkZU.ja.vtt |
241б |
19. Disease Test 6-cdFrLeXIkZU.mp4 |
1.21Мб |
19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt |
269б |
19. Disease Test 6-cdFrLeXIkZU.th.vtt |
441б |
19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt |
214б |
19. Disease Test 6-OdVAt79eQak.ar.vtt |
1.07Кб |
19. Disease Test 6-OdVAt79eQak.en.vtt |
772б |
19. Disease Test 6-OdVAt79eQak.en-GB.vtt |
1.26Кб |
19. Disease Test 6-OdVAt79eQak.es-ES.vtt |
777б |
19. Disease Test 6-OdVAt79eQak.ja.vtt |
813б |
19. Disease Test 6-OdVAt79eQak.mp4 |
7.08Мб |
19. Disease Test 6-OdVAt79eQak.pt-BR.vtt |
937б |
19. Disease Test 6-OdVAt79eQak.zh-CN.vtt |
675б |
19. DISTINCT-YDJEHkgKORY.ar.vtt |
1.76Кб |
19. DISTINCT-YDJEHkgKORY.en.vtt |
1.29Кб |
19. DISTINCT-YDJEHkgKORY.mp4 |
1.09Мб |
19. DISTINCT-YDJEHkgKORY.pt-BR.vtt |
1.28Кб |
19. DISTINCT-YDJEHkgKORY.zh-CN.vtt |
1.14Кб |
19. Documentation.html |
9.45Кб |
19. Exercise Matching Encodings.html |
9.47Кб |
19. Extra Stacked Plots.html |
16.19Кб |
19. Further Learning.html |
6.72Кб |
19. Higher Dimensions.html |
7.55Кб |
19. Higher Dimensions--UvpQV1qmiE.en.vtt |
2.94Кб |
19. Higher Dimensions--UvpQV1qmiE.mp4 |
2.65Мб |
19. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt |
2.78Кб |
19. Internal Validation Indices.html |
7.81Кб |
19. Introduction to Percentiles-t7SX2ZEdxKA.ar.vtt |
1.02Кб |
19. Introduction to Percentiles-t7SX2ZEdxKA.en.vtt |
782б |
19. Introduction to Percentiles-t7SX2ZEdxKA.mp4 |
3.14Мб |
19. Introduction to Percentiles-t7SX2ZEdxKA.pt-BR.vtt |
792б |
19. Introduction to Percentiles-t7SX2ZEdxKA.zh-CN.vtt |
701б |
19. Learning Rate Decay.html |
7.52Кб |
19. Learning Rate-TwJ8aSZoh2U.en.vtt |
1.12Кб |
19. Learning Rate-TwJ8aSZoh2U.mp4 |
927.05Кб |
19. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt |
1.26Кб |
19. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt |
1020б |
19. Maximizing Probabilities.html |
9.37Кб |
19. Maximizing Probabilities.html |
10.23Кб |
19. Mini project CNNs in Keras.html |
8.48Кб |
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.en.vtt |
10.24Кб |
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.mp4 |
40.74Мб |
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.pt-BR.vtt |
9.62Кб |
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.zh-CN.vtt |
9.04Кб |
19. Notebook + Quiz Central Limit Theorem - Part II.html |
12.23Кб |
19. Notebook + Quiz Multicollinearity VIFs.html |
13.71Кб |
19. Notebook + Quiz Regression - Your Turn - Part I.html |
11.15Кб |
19. Notebook Feature Scaling.html |
7.43Кб |
19. Notebook Mini-Project.html |
7.35Кб |
19. Organizing Code Into Modules-AARS10U5bbo.en.vtt |
4.71Кб |
19. Organizing Code Into Modules-AARS10U5bbo.mp4 |
4.49Мб |
19. Organizing Code Into Modules-AARS10U5bbo.pt-BR.vtt |
4.86Кб |
19. Organizing into Modules.html |
9.64Кб |
19. Pipelines and Grid Search.html |
8.44Кб |
19. Probability Conclusion.html |
6.55Кб |
19. Probability Conclusion-dsVKoXymYDU.ar.vtt |
2.00Кб |
19. Probability Conclusion-dsVKoXymYDU.en.vtt |
1.50Кб |
19. Probability Conclusion-dsVKoXymYDU.mp4 |
5.26Мб |
19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt |
1.70Кб |
19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt |
1.27Кб |
19. Quiz - Cross 1--xxrisIvD0E.en.vtt |
918б |
19. Quiz - Cross 1--xxrisIvD0E.en.vtt |
918б |
19. Quiz - Cross 1--xxrisIvD0E.mp4 |
3.02Мб |
19. Quiz - Cross 1--xxrisIvD0E.mp4 |
3.02Мб |
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt |
947б |
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt |
947б |
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt |
813б |
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt |
813б |
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt |
2.30Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt |
2.30Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 |
1.86Мб |
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 |
1.86Мб |
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt |
2.28Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt |
2.28Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt |
2.07Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt |
2.07Кб |
19. Quiz Last Check.html |
12.36Кб |
19. Quiz ORDER BY.html |
11.32Кб |
19. Quiz Shape and Outliers (What's the Impact).html |
12.24Кб |
19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.en.vtt |
5.64Кб |
19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.mp4 |
8.66Мб |
19. Recommendations 1 17b 26423140 V1-uNQHtPrfi4o.mp4 |
5.71Мб |
19. Recommendations 1 17b 31423505 V1-A0uOjClDnW8.mp4 |
6.46Мб |
19. Recommendations 1 17b 36044330 V1-b5gFe8Ij-g0.mp4 |
8.99Мб |
19. Recommendations 2 18 0435 V1-oRhrOShUM6w.en.vtt |
3.74Кб |
19. Recommendations 2 18 0435 V1-oRhrOShUM6w.mp4 |
4.97Мб |
19. Recommendations 2 18 11442204 V1-8kdRNQnqSGA.mp4 |
13.06Мб |
19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.en.vtt |
5.94Кб |
19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.mp4 |
8.46Мб |
19. Screencast How Are We Doing.html |
8.78Кб |
19. Screencast Solutions for Collaborative Filtering.html |
10.10Кб |
19. Solution Iterating Through Dictionaries.html |
9.28Кб |
19. Solution Reading and Writing Files.html |
8.84Кб |
19. String Methods.html |
13.11Кб |
19. String Methods-Bv7CAxVOONs.ar.vtt |
4.57Кб |
19. String Methods-Bv7CAxVOONs.en.vtt |
3.38Кб |
19. String Methods-Bv7CAxVOONs.mp4 |
23.75Мб |
19. String Methods-Bv7CAxVOONs.pt-BR.vtt |
3.62Кб |
19. String Methods-Bv7CAxVOONs.zh-CN.vtt |
3.07Кб |
19. Text Recap.html |
15.31Кб |
19. The Data Science Process Modeling-bzR6HQBn5CA.en.vtt |
1.93Кб |
19. The Data Science Process Modeling-bzR6HQBn5CA.mp4 |
3.76Мб |
19. The Data Science Process Modeling-bzR6HQBn5CA.pt-BR.vtt |
2.12Кб |
19. The Web.html |
7.68Кб |
19. The World Wide Web-Rxn-zCyg_iA.en.vtt |
1.40Кб |
19. The World Wide Web-Rxn-zCyg_iA.mp4 |
2.04Мб |
19. The World Wide Web-Rxn-zCyg_iA.pt-BR.vtt |
1.42Кб |
19. Titanic Survival Model with Decision Trees.html |
7.27Кб |
19. Video Conclusion.html |
6.91Кб |
19. Video DISTINCT.html |
8.98Кб |
19. Video Introduction to Percentiles.html |
7.65Кб |
19. Video SQL Completion Congratulations.html |
6.96Кб |
19. Video The Data Science Process - Modeling.html |
12.08Кб |
19. Video What is Notation.html |
10.42Кб |
19. What is a p-value Anyway.html |
11.14Кб |
19. What Is A P-value Anyway-eU6pUZjqviA.en.vtt |
4.05Кб |
19. What Is A P-value Anyway-eU6pUZjqviA.mp4 |
7.27Мб |
19. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt |
4.18Кб |
19. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt |
3.35Кб |
19. What is Notation-MaHV5cKfcmE.ar.vtt |
2.00Кб |
19. What is Notation-MaHV5cKfcmE.en.vtt |
1.49Кб |
19. What is Notation-MaHV5cKfcmE.mp4 |
4.82Мб |
19. What is Notation-MaHV5cKfcmE.pt-BR.vtt |
1.71Кб |
19. What is Notation-MaHV5cKfcmE.zh-CN.vtt |
1.43Кб |
20. [Solution] Titanic Survival Model.html |
7.25Кб |
20. 02 TF-IDF-LYYWIrWbBq4.en.vtt |
2.80Кб |
20. 02 TF-IDF-LYYWIrWbBq4.mp4 |
2.53Мб |
20. 02 TF-IDF-LYYWIrWbBq4.pt-BR.vtt |
3.07Кб |
20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.en.vtt |
5.28Кб |
20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.mp4 |
7.83Мб |
20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.pt-BR.vtt |
4.94Кб |
20. 22 Screencast Flask V2-i_U3O-7cymk.en.vtt |
6.58Кб |
20. 22 Screencast Flask V2-i_U3O-7cymk.mp4 |
7.11Мб |
20. 22 Screencast Flask V2-i_U3O-7cymk.pt-BR.vtt |
7.09Кб |
20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.en.vtt |
1.90Кб |
20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.mp4 |
3.24Мб |
20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.pt-BR.vtt |
2.19Кб |
20. Bayes Rule Summary.html |
8.69Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt |
3.79Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt |
2.58Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt |
2.68Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt |
2.63Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.mp4 |
16.86Мб |
20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt |
3.17Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt |
4.73Кб |
20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt |
2.25Кб |
20. Calculating the p-value-_W3Jg7jQ8jI.en.vtt |
3.60Кб |
20. Calculating the p-value-_W3Jg7jQ8jI.mp4 |
3.64Мб |
20. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt |
3.59Кб |
20. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt |
2.86Кб |
20. Content Based Recommendations-pnGHpB77Mys.en.vtt |
2.06Кб |
20. Content Based Recommendations-pnGHpB77Mys.mp4 |
4.70Мб |
20. Cross-Entropy 1.html |
7.77Кб |
20. Cross-Entropy 1.html |
8.63Кб |
20. Cross Entropy 1-iREoPUrpXvE.en.vtt |
4.81Кб |
20. Cross Entropy 1-iREoPUrpXvE.en.vtt |
4.81Кб |
20. Cross Entropy 1-iREoPUrpXvE.mp4 |
4.22Мб |
20. Cross Entropy 1-iREoPUrpXvE.mp4 |
4.22Мб |
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt |
5.00Кб |
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt |
5.00Кб |
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt |
4.11Кб |
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt |
4.11Кб |
20. Demo Modularized Code.html |
8.33Кб |
20. Extra Ridgeline Plots.html |
14.61Кб |
20. Flask.html |
13.32Кб |
20. Image Augmentation in Keras.html |
9.42Кб |
20. Image Augmentation in Keras-odStujZq3GY.en.vtt |
8.22Кб |
20. Image Augmentation in Keras-odStujZq3GY.mp4 |
10.26Мб |
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt |
8.49Кб |
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt |
7.02Кб |
20. Importing Files-qjeSn6zZbR0.ar.vtt |
8.71Кб |
20. Importing Files-qjeSn6zZbR0.en.vtt |
6.47Кб |
20. Importing Files-qjeSn6zZbR0.mp4 |
11.41Мб |
20. Importing Files-qjeSn6zZbR0.pt-BR.vtt |
7.35Кб |
20. Importing Files-qjeSn6zZbR0.zh-CN.vtt |
6.19Кб |
20. Importing Local Scripts.html |
11.40Кб |
20. Interactions And Higher Order Terms-AOfXMiJgo48.en.vtt |
1.23Кб |
20. Interactions And Higher Order Terms-AOfXMiJgo48.mp4 |
8.33Мб |
20. Interactions And Higher Order Terms-AOfXMiJgo48.pt-BR.vtt |
1.35Кб |
20. Interactions And Higher Order Terms-AOfXMiJgo48.zh-CN.vtt |
1.01Кб |
20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.en.vtt |
603б |
20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.mp4 |
1.78Мб |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.en.vtt |
867б |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.mp4 |
2.94Мб |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.pt-BR.vtt |
995б |
20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt |
3.04Кб |
20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4 |
10.89Мб |
20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt |
3.43Кб |
20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt |
2.81Кб |
20. Mini-Project Solution.html |
7.35Кб |
20. Missing Data - Overview.html |
10.16Кб |
20. Multiple Linear Regression.html |
13.88Кб |
20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt |
6.20Кб |
20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt |
4.68Кб |
20. Notation for Random Variables-8NxTW1u4s-Y.mp4 |
5.66Мб |
20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt |
5.07Кб |
20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt |
4.18Кб |
20. Notebook + Quiz Your Turn - Part II.html |
12.21Кб |
20. Outliers-HKIsvkZUZfo.ar.vtt |
3.49Кб |
20. Outliers-HKIsvkZUZfo.en.vtt |
2.63Кб |
20. Outliers-HKIsvkZUZfo.mp4 |
5.74Мб |
20. Outliers-HKIsvkZUZfo.pt-BR.vtt |
2.69Кб |
20. Outliers-HKIsvkZUZfo.zh-CN.vtt |
2.29Кб |
20. Outro.html |
6.42Кб |
20. Outro SC V1-YD1grQje9fw.en.vtt |
1.64Кб |
20. Outro SC V1-YD1grQje9fw.mp4 |
1.39Мб |
20. Outro SC V1-YD1grQje9fw.pt-BR.vtt |
1.71Кб |
20. Percentiles-Qro8uvysnys.ar.vtt |
1.46Кб |
20. Percentiles-Qro8uvysnys.en.vtt |
1.18Кб |
20. Percentiles-Qro8uvysnys.mp4 |
1.41Мб |
20. Percentiles-Qro8uvysnys.pt-BR.vtt |
1.15Кб |
20. Percentiles-Qro8uvysnys.zh-CN.vtt |
1.02Кб |
20. Precision and Recall.html |
9.35Кб |
20. Precision and Recall-3vT0kSBCLdU.ar.vtt |
1.37Кб |
20. Precision and Recall-3vT0kSBCLdU.en.vtt |
1.12Кб |
20. Precision and Recall-3vT0kSBCLdU.mp4 |
4.26Мб |
20. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt |
1.13Кб |
20. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt |
996б |
20. Predicting Salary-g1ZAn02ETK4.en.vtt |
1.25Кб |
20. Predicting Salary-g1ZAn02ETK4.mp4 |
2.20Мб |
20. Predicting Salary-g1ZAn02ETK4.pt-BR.vtt |
1.45Кб |
20. Quiz DISTINCT.html |
8.92Кб |
20. Quiz Silhouette Coefficient .html |
7.40Кб |
20. Random Restart.html |
7.52Кб |
20. Random Restart-idyBBCzXiqg.en.vtt |
466б |
20. Random Restart-idyBBCzXiqg.mp4 |
394.99Кб |
20. Random Restart-idyBBCzXiqg.pt-BR.vtt |
478б |
20. Random Restart-idyBBCzXiqg.zh-CN.vtt |
419б |
20. Screencast Solution.html |
9.69Кб |
20. Solutions Last Check.html |
13.25Кб |
20. Solutions ORDER BY.html |
10.61Кб |
20. String Methods.html |
12.66Кб |
20. Summary.html |
6.30Кб |
20. Text Recap + Next Steps.html |
7.92Кб |
20. TF-IDF.html |
7.24Кб |
20. The Cold Start Problem-DNz7aywJVzA.en.vtt |
2.00Кб |
20. The Cold Start Problem-DNz7aywJVzA.mp4 |
5.69Мб |
20. Using Grid Search-iTL43Jk9_bQ.en.vtt |
3.29Кб |
20. Using Grid Search-iTL43Jk9_bQ.mp4 |
3.05Мб |
20. Using Grid Search-iTL43Jk9_bQ.pt-BR.vtt |
3.83Кб |
20. Using Grid Search with Pipelines.html |
10.91Кб |
20. Version Control in Data Science.html |
7.55Кб |
20. Video Calculating the p-value.html |
9.38Кб |
20. Video Higher Order Terms.html |
8.07Кб |
20. Video Percentiles.html |
9.02Кб |
20. Video Predicting Salary.html |
11.38Кб |
20. Video Random Variables.html |
11.11Кб |
20. Video Shape and Outliers.html |
9.62Кб |
20. Video The Cold Start Problem.html |
8.10Кб |
20. Video Ways to Recommend Content Based.html |
9.83Кб |
20. Video When Does the Central Limit Theorem Not Work.html |
9.52Кб |
20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt |
2.20Кб |
20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt |
1.63Кб |
20. When Does the CLT Not Work-uZGTVUEMfrU.mp4 |
4.80Мб |
20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt |
1.77Кб |
20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt |
1.35Кб |
20. While Loops.html |
10.47Кб |
21. 15 Making a Package v2-Hj2OBr1CGZM.en.vtt |
7.52Кб |
21. 15 Making a Package v2-Hj2OBr1CGZM.mp4 |
7.53Мб |
21. 15 Making a Package v2-Hj2OBr1CGZM.pt-BR.vtt |
7.77Кб |
21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.en.vtt |
1.40Кб |
21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.mp4 |
2.08Мб |
21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.pt-BR.vtt |
1.46Кб |
21. Another String Method - Split.html |
10.69Кб |
21. Case Study Grid Search Pipeline.html |
7.71Кб |
21. Closed Form Solution.html |
7.74Кб |
21. Closed Form Solution-G3fRVgLa5gI.en.vtt |
3.54Кб |
21. Closed Form Solution-G3fRVgLa5gI.mp4 |
2.84Мб |
21. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt |
3.39Кб |
21. Cross-Entropy 2.html |
10.11Кб |
21. Cross-Entropy 2.html |
10.97Кб |
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt |
8.03Кб |
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt |
8.03Кб |
21. CrossEntropy V1-1BnhC6e0TFw.mp4 |
6.61Мб |
21. CrossEntropy V1-1BnhC6e0TFw.mp4 |
6.61Мб |
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt |
7.81Кб |
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt |
7.81Кб |
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt |
6.66Кб |
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt |
6.66Кб |
21. Exercise Flask.html |
8.08Кб |
21. Formula For Cross 1-qvr_ego_d6w.en.vtt |
607б |
21. Formula For Cross 1-qvr_ego_d6w.en.vtt |
607б |
21. Formula For Cross 1-qvr_ego_d6w.mp4 |
2.08Мб |
21. Formula For Cross 1-qvr_ego_d6w.mp4 |
2.08Мб |
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt |
719б |
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt |
719б |
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt |
545б |
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt |
545б |
21. GMM Cluster Validation Lab.html |
7.65Кб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.en.vtt |
3.69Кб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.mp4 |
3.93Мб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.pt-BR.vtt |
4.30Кб |
21. Making a Package.html |
10.53Кб |
21. Mini project Image Augmentation in Keras.html |
8.57Кб |
21. Missing Data - Delete.html |
9.13Кб |
21. Momentum.html |
7.47Кб |
21. Momentum-r-rYz_PEWC8.en.vtt |
2.50Кб |
21. Momentum-r-rYz_PEWC8.mp4 |
2.14Мб |
21. Momentum-r-rYz_PEWC8.pt-BR.vtt |
2.70Кб |
21. Momentum-r-rYz_PEWC8.zh-CN.vtt |
2.21Кб |
21. Notebook + Quiz Central Limit Theorem - Part III.html |
12.65Кб |
21. Notebook Bag of Words and TF-IDF.html |
7.86Кб |
21. Notebook Content Based.html |
8.96Кб |
21. Notebook The Cold Start Problem.html |
8.14Кб |
21. Order By Part II-XQCjREdOqwE.ar.vtt |
2.76Кб |
21. Order By Part II-XQCjREdOqwE.en.vtt |
2.08Кб |
21. Order By Part II-XQCjREdOqwE.mp4 |
3.18Мб |
21. Order By Part II-XQCjREdOqwE.pt-BR.vtt |
2.50Кб |
21. Order By Part II-XQCjREdOqwE.zh-CN.vtt |
1.83Кб |
21. Outro.html |
6.73Кб |
21. Outro-AeDSl4KSVIE.en.vtt |
417б |
21. Outro-AeDSl4KSVIE.mp4 |
1.41Мб |
21. Outro-AeDSl4KSVIE.pt-BR.vtt |
445б |
21. Outro-CuIqzL8HjI8.en.vtt |
817б |
21. Outro-CuIqzL8HjI8.mp4 |
2.54Мб |
21. Outro-CuIqzL8HjI8.pt-BR.vtt |
925б |
21. Powell Precision and Recall.html |
11.00Кб |
21. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt |
916б |
21. Powell Precision and Recall-q_zfkCwRg1w.en.vtt |
736б |
21. Powell Precision and Recall-q_zfkCwRg1w.mp4 |
2.79Мб |
21. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt |
747б |
21. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt |
698б |
21. Powell Precision and Recall-QWWq77k-K_0.ar.vtt |
422б |
21. Powell Precision and Recall-QWWq77k-K_0.en.vtt |
346б |
21. Powell Precision and Recall-QWWq77k-K_0.mp4 |
1.30Мб |
21. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt |
376б |
21. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt |
333б |
21. Practice While Loops.html |
11.18Кб |
21. Predicting Salary-HTp4LA1MJh8.en.vtt |
15.14Кб |
21. Predicting Salary-HTp4LA1MJh8.mp4 |
17.35Мб |
21. Predicting Salary-HTp4LA1MJh8.pt-BR.vtt |
14.99Кб |
21. Quiz Percentiles.html |
9.88Кб |
21. Quiz Variable Types.html |
10.35Кб |
21. Quiz What is a p-value Anyway.html |
14.14Кб |
21. Recap-DzMi27LI5l4.en.vtt |
959б |
21. Recap-DzMi27LI5l4.mp4 |
3.21Мб |
21. Recap-DzMi27LI5l4.pt-BR.vtt |
1.09Кб |
21. Recap-DzMi27LI5l4.zh-CN.vtt |
750б |
21. Robot Sensing 1-_DjfTytro6I.ar.vtt |
2.01Кб |
21. Robot Sensing 1-_DjfTytro6I.en.vtt |
1.43Кб |
21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt |
1.53Кб |
21. Robot Sensing 1-_DjfTytro6I.ja.vtt |
1.38Кб |
21. Robot Sensing 1-_DjfTytro6I.mp4 |
11.42Мб |
21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt |
1.76Кб |
21. Robot Sensing 1-_DjfTytro6I.th.vtt |
2.91Кб |
21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt |
1.31Кб |
21. Robot Sensing 1.html |
14.25Кб |
21. Robot Sensing 1--TBAfU1cjRU.ar.vtt |
844б |
21. Robot Sensing 1--TBAfU1cjRU.en.vtt |
537б |
21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt |
560б |
21. Robot Sensing 1--TBAfU1cjRU.ja.vtt |
557б |
21. Robot Sensing 1--TBAfU1cjRU.mp4 |
5.17Мб |
21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt |
735б |
21. Robot Sensing 1--TBAfU1cjRU.th.vtt |
910б |
21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt |
521б |
21. Scenario #1.html |
11.42Кб |
21. Screencast Predicting Salary.html |
10.49Кб |
21. Solutions DISTINCT.html |
9.83Кб |
21. Text Higher Order Terms.html |
10.85Кб |
21. Text Recap Looking Ahead.html |
9.57Кб |
21. The Standard Library.html |
8.30Кб |
21. The Standard Library-Fw3vf0tDrJM.ar.vtt |
4.50Кб |
21. The Standard Library-Fw3vf0tDrJM.en.vtt |
3.08Кб |
21. The Standard Library-Fw3vf0tDrJM.mp4 |
10.55Мб |
21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt |
3.39Кб |
21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt |
2.73Кб |
21. Video ORDER BY Part II.html |
10.13Кб |
21. Video Outro.html |
6.76Кб |
21. Video Outro.html |
6.83Кб |
21. Video Recap.html |
7.32Кб |
21. Video Working With Outliers.html |
9.73Кб |
21. Working with Outliers-4RnQjtJB8t8.ar.vtt |
2.89Кб |
21. Working with Outliers-4RnQjtJB8t8.en.vtt |
2.14Кб |
21. Working with Outliers-4RnQjtJB8t8.mp4 |
4.89Мб |
21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt |
2.46Кб |
21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt |
1.90Кб |
22. (Optional) Closed form Solution Math.html |
14.96Кб |
22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.en.vtt |
2.30Кб |
22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.mp4 |
5.00Мб |
22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.pt-BR.vtt |
2.74Кб |
22. Bootstrapping-42j3YclcZ4Q.ar.vtt |
2.60Кб |
22. Bootstrapping-42j3YclcZ4Q.en.vtt |
1.89Кб |
22. Bootstrapping-42j3YclcZ4Q.mp4 |
4.23Мб |
22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt |
2.01Кб |
22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt |
1.66Кб |
22. Bush Precision and Recall.html |
10.71Кб |
22. Bush Precision and Recall-8fM13xqU2a8.ar.vtt |
265б |
22. Bush Precision and Recall-8fM13xqU2a8.en.vtt |
213б |
22. Bush Precision and Recall-8fM13xqU2a8.mp4 |
774.95Кб |
22. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt |
203б |
22. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt |
204б |
22. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt |
1.55Кб |
22. Bush Precision and Recall-FLpXmoHp7eE.en.vtt |
1.18Кб |
22. Bush Precision and Recall-FLpXmoHp7eE.mp4 |
4.36Мб |
22. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt |
1.15Кб |
22. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt |
1.24Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt |
4.72Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt |
4.72Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 |
4.14Мб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 |
4.14Мб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt |
4.54Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt |
4.54Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt |
4.01Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt |
4.01Кб |
22. Flask + Pandas.html |
9.79Кб |
22. Flask and Pandas-L_M_8UVY42k.en.vtt |
4.38Кб |
22. Flask and Pandas-L_M_8UVY42k.mp4 |
6.20Мб |
22. Flask and Pandas-L_M_8UVY42k.pt-BR.vtt |
4.81Кб |
22. GMM Cluster Validation Lab Solution.html |
7.67Кб |
22. Groundbreaking CNN Architectures.html |
8.83Кб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt |
3.94Кб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 |
8.09Мб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt |
4.26Кб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt |
3.52Кб |
22. Having-D4gmN0vnk58.ar.vtt |
2.41Кб |
22. Having-D4gmN0vnk58.en.vtt |
1.72Кб |
22. Having-D4gmN0vnk58.mp4 |
2.16Мб |
22. Having-D4gmN0vnk58.pt-BR.vtt |
1.78Кб |
22. Interactions Higher Order Terms-gMHwogzqPOk.en.vtt |
4.47Кб |
22. Interactions Higher Order Terms-gMHwogzqPOk.mp4 |
17.27Мб |
22. Interactions Higher Order Terms-gMHwogzqPOk.pt-BR.vtt |
4.52Кб |
22. Interactions Higher Order Terms-gMHwogzqPOk.zh-CN.vtt |
3.76Кб |
22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4 |
4.83Мб |
22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt |
2.33Кб |
22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4 |
6.06Мб |
22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt |
2.95Кб |
22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4 |
5.67Мб |
22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt |
4.34Кб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.en.vtt |
1.71Кб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.mp4 |
1.90Мб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.pt-BR.vtt |
1.99Кб |
22. Lists and Membership Operators.html |
15.50Кб |
22. Missing Data - Impute.html |
9.13Кб |
22. Multi-Class Cross Entropy.html |
8.73Кб |
22. Multi-Class Cross Entropy.html |
9.59Кб |
22. Notebook + Quiz What Happened.html |
11.02Кб |
22. One-Hot Encoding.html |
7.41Кб |
22. One-Hot Encoding-a0j1CDXFYZI.en.vtt |
1.40Кб |
22. One-Hot Encoding-a0j1CDXFYZI.mp4 |
1.08Мб |
22. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt |
1.59Кб |
22. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt |
1.21Кб |
22. Optimizers in Keras.html |
8.31Кб |
22. Outliers Advice-BhhDoTgYQmI.ar.vtt |
1.91Кб |
22. Outliers Advice-BhhDoTgYQmI.en.vtt |
1.48Кб |
22. Outliers Advice-BhhDoTgYQmI.mp4 |
3.85Мб |
22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt |
1.64Кб |
22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt |
1.29Кб |
22. Quiz Calculating a p-value.html |
11.78Кб |
22. Quiz ORDER BY Part II.html |
11.53Кб |
22. Quiz The Standard Library.html |
16.59Кб |
22. Random Observed Values-KFIt2OC3wCI.ar.vtt |
3.51Кб |
22. Random Observed Values-KFIt2OC3wCI.en.vtt |
2.74Кб |
22. Random Observed Values-KFIt2OC3wCI.mp4 |
4.47Мб |
22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt |
2.93Кб |
22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt |
2.37Кб |
22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.en.vtt |
3.78Кб |
22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.mp4 |
5.50Мб |
22. Recommendations 1 20 10491855 V1-BafXxtTuZgQ.mp4 |
8.13Мб |
22. Recommendations 1 20 10491855 V2-pjoxB00grHw.en.vtt |
4.96Кб |
22. Recommendations 1 20 10491855 V2-pjoxB00grHw.mp4 |
8.60Мб |
22. Recommendations 1 20 4271048 V1-2On65U7Panw.en.vtt |
4.12Кб |
22. Recommendations 1 20 4271048 V1-2On65U7Panw.mp4 |
7.02Мб |
22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.en.vtt |
12.17Кб |
22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.mp4 |
17.02Мб |
22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.en.vtt |
9.91Кб |
22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.mp4 |
12.80Мб |
22. Robot Sensing 2.html |
10.34Кб |
22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt |
1.10Кб |
22. Robot Sensing 2-aBBmlnd7okQ.en.vtt |
952б |
22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt |
975б |
22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt |
846б |
22. Robot Sensing 2-aBBmlnd7okQ.mp4 |
2.03Мб |
22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt |
944б |
22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt |
896б |
22. Robot Sensing 2-t22oDruXhuo.ar.vtt |
584б |
22. Robot Sensing 2-t22oDruXhuo.en.vtt |
428б |
22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt |
478б |
22. Robot Sensing 2-t22oDruXhuo.ja.vtt |
428б |
22. Robot Sensing 2-t22oDruXhuo.mp4 |
2.36Мб |
22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt |
473б |
22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt |
369б |
22. Scenario #2.html |
8.93Кб |
22. Screencast How to Add Higher Order Terms.html |
8.10Кб |
22. Screencast Solution Content Based.html |
10.11Кб |
22. Screencast The Cold Start Problem.html |
8.28Кб |
22. Solution Grid Search Pipeline.html |
10.78Кб |
22. Solutions Percentiles.html |
8.73Кб |
22. Solution While Loops Practice.html |
9.12Кб |
22. Text Recap.html |
8.36Кб |
22. Text Recap.html |
8.71Кб |
22. Text Recap + Next Steps.html |
7.92Кб |
22. Video Bootstrapping.html |
9.09Кб |
22. Video Capital vs. Lower.html |
11.37Кб |
22. Video HAVING.html |
8.40Кб |
22. Video Working With Outliers My Advice.html |
10.28Кб |
22. Virtual Environments.html |
13.87Кб |
22. Virtual Environments-f7rzxUiHOJ0.en.vtt |
3.25Кб |
22. Virtual Environments-f7rzxUiHOJ0.mp4 |
2.99Мб |
22. Virtual Environments-f7rzxUiHOJ0.pt-BR.vtt |
3.33Кб |
23. 24 Conclusion V1 V2-Jq6pj_uKDmY.en.vtt |
905б |
23. 24 Conclusion V1 V2-Jq6pj_uKDmY.mp4 |
3.20Мб |
23. 24 Conclusion V1 V2-Jq6pj_uKDmY.pt-BR.vtt |
1.04Кб |
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt |
2.96Кб |
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt |
2.30Кб |
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4 |
4.06Мб |
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt |
2.40Кб |
23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt |
1.98Кб |
23. Conclusion.html |
7.27Кб |
23. Connecting Errors and P-Values.html |
9.83Кб |
23. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt |
2.20Кб |
23. Connecting Errors and P-Values-hFNjd5l9CLs.mp4 |
8.58Мб |
23. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt |
1.97Кб |
23. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt |
1.81Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt |
1.62Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt |
1.62Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 |
1.49Мб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 |
1.49Мб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt |
1.42Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt |
1.42Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt |
1.46Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt |
1.46Кб |
23. Error Functions Around the World.html |
7.64Кб |
23. Error Functions Around the World-34AAcTECu2A.en.vtt |
1.17Кб |
23. Error Functions Around the World-34AAcTECu2A.mp4 |
1.73Мб |
23. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt |
1.08Кб |
23. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt |
1.06Кб |
23. Error Function-V5kkHldUlVU.en.vtt |
4.87Кб |
23. Error Function-V5kkHldUlVU.en.vtt |
4.87Кб |
23. Error Function-V5kkHldUlVU.mp4 |
4.84Мб |
23. Error Function-V5kkHldUlVU.mp4 |
4.84Мб |
23. Error Function-V5kkHldUlVU.pt-BR.vtt |
5.19Кб |
23. Error Function-V5kkHldUlVU.pt-BR.vtt |
5.19Кб |
23. Error Function-V5kkHldUlVU.zh-CN.vtt |
4.15Кб |
23. Error Function-V5kkHldUlVU.zh-CN.vtt |
4.15Кб |
23. Example Flask + Pandas.html |
8.10Кб |
23. Exercise Imputation.html |
9.46Кб |
23. Exercise Making a Package and Pip Installing.html |
8.37Кб |
23. HAVING.html |
11.53Кб |
23. Interpreting Interactions-XV6S2srsdxw.en.vtt |
3.14Кб |
23. Interpreting Interactions-XV6S2srsdxw.mp4 |
10.37Мб |
23. Interpreting Interactions-XV6S2srsdxw.pt-BR.vtt |
3.17Кб |
23. Interpreting Interactions-XV6S2srsdxw.zh-CN.vtt |
2.54Кб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.en.vtt |
1.57Кб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.mp4 |
3.04Мб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.pt-BR.vtt |
1.87Кб |
23. Linear Regression Warnings.html |
9.45Кб |
23. Logistic Regression.html |
9.21Кб |
23. Logistic Regression.html |
10.07Кб |
23. Putting It All Together-r5jfD2uKnbQ.en.vtt |
1.82Кб |
23. Putting It All Together-r5jfD2uKnbQ.mp4 |
5.37Мб |
23. Quiz Introduction to Notation.html |
11.69Кб |
23. Quiz Lists and Membership Operators.html |
14.38Кб |
23. Quiz Shape and Outliers (Comparing Distributions).html |
15.61Кб |
23. Quiz While Loops.html |
12.93Кб |
23. Robot Sensing 3.html |
10.44Кб |
23. Robot Sensing 3--6l4_oprDOk.ar.vtt |
395б |
23. Robot Sensing 3--6l4_oprDOk.en.vtt |
322б |
23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt |
329б |
23. Robot Sensing 3--6l4_oprDOk.ja.vtt |
327б |
23. Robot Sensing 3--6l4_oprDOk.mp4 |
1.48Мб |
23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt |
317б |
23. Robot Sensing 3--6l4_oprDOk.th.vtt |
480б |
23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt |
282б |
23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt |
783б |
23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt |
663б |
23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt |
679б |
23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt |
657б |
23. Robot Sensing 3-m1LSU9SPZ2k.mp4 |
5.55Мб |
23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt |
687б |
23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt |
622б |
23. Scenario #3.html |
11.10Кб |
23. Screencast What Happened Solution.html |
11.44Кб |
23. Solutions ORDER BY Part II.html |
10.71Кб |
23. Solution The Standard Library.html |
8.06Кб |
23. True Positives in Eigenfaces.html |
10.21Кб |
23. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt |
1.13Кб |
23. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt |
900б |
23. True Positives in Eigenfaces-bgT8sWuV2lc.mp4 |
3.06Мб |
23. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt |
867б |
23. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt |
812б |
23. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt |
326б |
23. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt |
252б |
23. True Positives in Eigenfaces-TWGqylKdGWs.mp4 |
918.37Кб |
23. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt |
264б |
23. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt |
241б |
23. Types Of Recommendations-uoXF81AO21E.en.vtt |
2.50Кб |
23. Types Of Recommendations-uoXF81AO21E.mp4 |
4.78Мб |
23. Video Bootstrapping The Central Limit Theorem.html |
10.10Кб |
23. Video Interpreting Interactions.html |
8.03Кб |
23. Video Putting It All Together.html |
7.51Кб |
23. Video Recap.html |
7.61Кб |
23. Video Three Types of Recommendation Systems.html |
8.37Кб |
23. Visualizing CNNs (Part 1).html |
9.81Кб |
23. Visualizing CNNs-mnqS_EhEZVg.en.vtt |
3.87Кб |
23. Visualizing CNNs-mnqS_EhEZVg.mp4 |
9.20Мб |
23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt |
3.83Кб |
23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt |
3.33Кб |
23. What Happened-gLn6_Z3nwcc.en.vtt |
8.60Кб |
23. What Happened-gLn6_Z3nwcc.mp4 |
12.15Мб |
23. What Happened-gLn6_Z3nwcc.pt-BR.vtt |
8.61Кб |
23. Window Functions Conclusion-2ZdocDMw7D8.ar.vtt |
807б |
23. Window Functions Conclusion-2ZdocDMw7D8.en.vtt |
555б |
23. Window Functions Conclusion-2ZdocDMw7D8.mp4 |
2.23Мб |
23. Window Functions Conclusion-2ZdocDMw7D8.pt-BR.vtt |
522б |
23. Window Functions Conclusion-2ZdocDMw7D8.zh-CN.vtt |
549б |
23. Word Embeddings.html |
7.63Кб |
23. Word Embeddings-4mM_S9L2_JQ.en.vtt |
1.55Кб |
23. Word Embeddings-4mM_S9L2_JQ.mp4 |
1.22Мб |
23. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt |
1.71Кб |
23. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt |
1.26Кб |
24. Binomial Class.html |
8.55Кб |
24. Binomial Class-O-4qRh74rkI.en.vtt |
1.27Кб |
24. Binomial Class-O-4qRh74rkI.mp4 |
3.44Мб |
24. Binomial Class-O-4qRh74rkI.pt-BR.vtt |
1.38Кб |
24. Binomial Class-xTamXY6Z9Kg.en.vtt |
3.35Кб |
24. Binomial Class-xTamXY6Z9Kg.mp4 |
4.33Мб |
24. Binomial Class-xTamXY6Z9Kg.pt-BR.vtt |
3.30Кб |
24. Conclusions in Hypothesis Testing.html |
9.70Кб |
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt |
1.97Кб |
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4 |
7.48Мб |
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt |
1.99Кб |
24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt |
1.75Кб |
24. Data Engineering-z6r2e_V0Td0.en.vtt |
6.05Кб |
24. Data Engineering-z6r2e_V0Td0.mp4 |
35.29Мб |
24. Data Engineering-z6r2e_V0Td0.pt-BR.vtt |
6.35Кб |
24. False Positives in Eigenfaces.html |
10.22Кб |
24. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt |
218б |
24. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt |
161б |
24. False Positives in Eigenfaces-0bEbJ33dUis.mp4 |
502.09Кб |
24. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt |
173б |
24. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt |
187б |
24. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt |
455б |
24. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt |
350б |
24. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4 |
1.04Мб |
24. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt |
354б |
24. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt |
294б |
24. Flask+Plotly+Pandas Part 1.html |
10.87Кб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.en.vtt |
4.66Кб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.mp4 |
6.68Мб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.pt-BR.vtt |
5.01Кб |
24. Gradient Descent.html |
15.51Кб |
24. Gradient Descent.html |
16.37Кб |
24. Gradient Descent-rhVIF-nigrY.en.vtt |
3.85Кб |
24. Gradient Descent-rhVIF-nigrY.en.vtt |
3.85Кб |
24. Gradient Descent-rhVIF-nigrY.mp4 |
3.76Мб |
24. Gradient Descent-rhVIF-nigrY.mp4 |
3.76Мб |
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt |
3.98Кб |
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt |
3.98Кб |
24. Modeling.html |
8.19Кб |
24. Modeling-P4w_2rkxBvE.en.vtt |
1.29Кб |
24. Modeling-P4w_2rkxBvE.mp4 |
1.19Мб |
24. Modeling-P4w_2rkxBvE.pt-BR.vtt |
1.44Кб |
24. Modeling-P4w_2rkxBvE.zh-CN.vtt |
1.09Кб |
24. Model Versioning.html |
7.80Кб |
24. Neural Network Regression.html |
7.34Кб |
24. Neural Network Regression-aUJCBqBfEnI.mp4 |
3.46Мб |
24. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt |
3.74Кб |
24. Notebook + Quiz Bootstrapping.html |
12.13Кб |
24. Polynomial Regression.html |
7.58Кб |
24. Polynomial Regression-DBhWG-PagEQ.en.vtt |
1.29Кб |
24. Polynomial Regression-DBhWG-PagEQ.mp4 |
982.28Кб |
24. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt |
1.18Кб |
24. Quiz Shape and Outliers (Visuals).html |
14.60Кб |
24. Recommendations 2 25 V1-zgz5WYlI5fE.en.vtt |
8.70Кб |
24. Recommendations 2 25 V1-zgz5WYlI5fE.mp4 |
10.50Мб |
24. Robot Sensing 4.html |
10.15Кб |
24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt |
252б |
24. Robot Sensing 4-d_fbDqAGVdE.en.vtt |
214б |
24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt |
221б |
24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt |
198б |
24. Robot Sensing 4-d_fbDqAGVdE.mp4 |
1.06Мб |
24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt |
202б |
24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt |
207б |
24. Robot Sensing 4-vasdN2Gol0M.ar.vtt |
2.21Кб |
24. Robot Sensing 4-vasdN2Gol0M.en.vtt |
1.67Кб |
24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt |
1.69Кб |
24. Robot Sensing 4-vasdN2Gol0M.ja.vtt |
1.52Кб |
24. Robot Sensing 4-vasdN2Gol0M.mp4 |
9.87Мб |
24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt |
1.58Кб |
24. Robot Sensing 4-vasdN2Gol0M.th.vtt |
2.98Кб |
24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt |
1.56Кб |
24. Screencast Code Walkthrough.html |
7.50Кб |
24. Solution List and Membership Operators.html |
10.42Кб |
24. Solutions HAVING.html |
11.90Кб |
24. Solution While Loops Quiz.html |
9.95Кб |
24. SQL, optimization, and ETL - Robert Chang Airbnb.html |
9.40Кб |
24. Techniques for Importing Modules.html |
10.97Кб |
24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt |
6.13Кб |
24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt |
4.34Кб |
24. Techniques For Importing Modules-jPGyFgcIvsM.mp4 |
5.33Мб |
24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt |
4.84Кб |
24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt |
3.93Кб |
24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt |
2.86Кб |
24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt |
2.03Кб |
24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4 |
5.00Мб |
24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt |
2.14Кб |
24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt |
1.74Кб |
24. Text Interpreting Interactions.html |
11.56Кб |
24. Text More Recommendation Technniques.html |
12.30Кб |
24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt |
2.26Кб |
24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt |
1.68Кб |
24. There Must Be A Better Way-oBp8YX2AgJw.mp4 |
3.23Мб |
24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt |
1.61Кб |
24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt |
1.45Кб |
24. Video Better Way.html |
9.14Кб |
24. Video WHERE.html |
10.50Кб |
24. Video Working With Missing Values.html |
11.47Кб |
24. Visualizing CNNs (Part 2).html |
14.40Кб |
24. WHERE Statements -mN0uTnlXaxg.ar.vtt |
3.00Кб |
24. WHERE Statements -mN0uTnlXaxg.en.vtt |
2.25Кб |
24. WHERE Statements -mN0uTnlXaxg.mp4 |
4.50Мб |
24. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt |
2.70Кб |
24. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt |
2.05Кб |
24. Working With Missing Values-mbAgYicmzqE.en.vtt |
1.11Кб |
24. Working With Missing Values-mbAgYicmzqE.mp4 |
4.01Мб |
24. Working With Missing Values-mbAgYicmzqE.pt-BR.vtt |
1.22Кб |
25. [OPTIONAL] Word2Vec.html |
7.38Кб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.en.vtt |
6.91Кб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.mp4 |
7.90Мб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.pt-BR.vtt |
7.07Кб |
25. Aggregations-ADx1x2ljFB4.ar.vtt |
3.51Кб |
25. Aggregations-ADx1x2ljFB4.en.vtt |
2.90Кб |
25. Aggregations-ADx1x2ljFB4.mp4 |
5.11Мб |
25. Aggregations-ADx1x2ljFB4.pt-BR.vtt |
2.80Кб |
25. Aggregations-ADx1x2ljFB4.zh-CN.vtt |
2.51Кб |
25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt |
1.87Кб |
25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt |
1.43Кб |
25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4 |
5.39Мб |
25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt |
1.40Кб |
25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt |
1.23Кб |
25. Break, Continue.html |
11.83Кб |
25. Break and Continue-F6qJAv9ts9Y.ar.vtt |
5.88Кб |
25. Break and Continue-F6qJAv9ts9Y.en.vtt |
3.95Кб |
25. Break and Continue-F6qJAv9ts9Y.mp4 |
13.22Мб |
25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt |
4.43Кб |
25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt |
3.64Кб |
25. Conclusion.html |
7.20Кб |
25. DATE Functions I-E7Z6GMFVmIY.ar.vtt |
4.98Кб |
25. DATE Functions I-E7Z6GMFVmIY.en.vtt |
3.49Кб |
25. DATE Functions I-E7Z6GMFVmIY.mp4 |
3.86Мб |
25. DATE Functions I-E7Z6GMFVmIY.pt-BR.vtt |
3.66Кб |
25. DATE Functions I-E7Z6GMFVmIY.zh-CN.vtt |
3.05Кб |
25. Duplicate Data.html |
9.04Кб |
25. Duplicate Data-49ZwWRviAFg.en.vtt |
2.46Кб |
25. Duplicate Data-49ZwWRviAFg.mp4 |
5.15Мб |
25. Duplicate Data-49ZwWRviAFg.pt-BR.vtt |
2.64Кб |
25. Exercise Binomial Class.html |
8.33Кб |
25. False Negatives in Eigenfaces.html |
10.10Кб |
25. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt |
662б |
25. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt |
469б |
25. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt |
472б |
25. False Negatives in Eigenfaces-bxDutNyYKjE.mp4 |
1.33Мб |
25. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt |
526б |
25. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt |
426б |
25. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt |
137б |
25. False Negatives in Eigenfaces-dyShKWpTo-c.mp4 |
418.97Кб |
25. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt |
133б |
25. Flask+Plotly+Pandas Part 2.html |
9.55Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt |
2.55Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt |
2.55Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 |
1.98Мб |
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 |
1.98Мб |
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt |
2.64Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt |
2.64Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt |
2.21Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt |
2.21Кб |
25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt |
2.16Кб |
25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4 |
5.28Мб |
25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt |
2.28Кб |
25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt |
1.90Кб |
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt |
4.63Кб |
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4 |
13.33Мб |
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt |
4.45Кб |
25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt |
3.84Кб |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.en.vtt |
816б |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.mp4 |
2.84Мб |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.pt-BR.vtt |
984б |
25. List Methods.html |
12.97Кб |
25. Logistic Regression Algorithm.html |
7.60Кб |
25. Logistic Regression Algorithm.html |
8.46Кб |
25. Neural Networks Playground.html |
8.03Кб |
25. Notebook + Quiz Interpreting Model Coefficients.html |
17.49Кб |
25. Quiz Connecting Errors and P-Values.html |
15.23Кб |
25. Quiz Polynomial Regression.html |
13.20Кб |
25. Quiz Recommendation Methods.html |
12.08Кб |
25. Quiz Shape and Outliers (Final Quiz).html |
15.50Кб |
25. Quiz Techniques for Importing Modules.html |
10.60Кб |
25. Quiz WHERE.html |
10.53Кб |
25. Removing Data - Why Not-w3-5Z5mEzTM.en.vtt |
2.15Кб |
25. Removing Data - Why Not-w3-5Z5mEzTM.mp4 |
5.08Мб |
25. Removing Data - Why Not-w3-5Z5mEzTM.pt-BR.vtt |
2.59Кб |
25. Robot Sensing 5.html |
10.27Кб |
25. Robot Sensing 5-PGG9agooCvw.ar.vtt |
544б |
25. Robot Sensing 5-PGG9agooCvw.en.vtt |
414б |
25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt |
451б |
25. Robot Sensing 5-PGG9agooCvw.ja.vtt |
395б |
25. Robot Sensing 5-PGG9agooCvw.mp4 |
1.74Мб |
25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt |
410б |
25. Robot Sensing 5-PGG9agooCvw.th.vtt |
667б |
25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt |
420б |
25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt |
118б |
25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt |
97б |
25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt |
108б |
25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt |
123б |
25. Robot Sensing 5-tIrqdYTT_9Q.mp4 |
506.06Кб |
25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt |
106б |
25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt |
137б |
25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt |
110б |
25. Transfer Learning.html |
18.80Кб |
25. Transfer Learning-LHG5FltaR6I.en.vtt |
6.00Кб |
25. Transfer Learning-LHG5FltaR6I.mp4 |
13.32Мб |
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt |
6.51Кб |
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt |
5.39Кб |
25. Video DATE Functions.html |
9.05Кб |
25. Video Removing Data - Why Not.html |
11.50Кб |
25. Video Summation.html |
11.51Кб |
25. Video The Background of Bootstrapping.html |
9.21Кб |
25. Word2Vec-7jjappzGRe0.en.vtt |
3.42Кб |
25. Word2Vec-7jjappzGRe0.mp4 |
2.98Мб |
25. Word2Vec-7jjappzGRe0.pt-BR.vtt |
3.81Кб |
25. Word2Vec-7jjappzGRe0.zh-CN.vtt |
2.85Кб |
25. Workspace Recommender Module.html |
8.14Кб |
26. [OPTIONAL] GloVe.html |
7.36Кб |
26. Conclusion-R5-OYqKk9Ys.en.vtt |
1.92Кб |
26. Conclusion-R5-OYqKk9Ys.mp4 |
4.57Мб |
26. DATE Functions Part II-UPWkDhW4cLI.ar.vtt |
5.98Кб |
26. DATE Functions Part II-UPWkDhW4cLI.en.vtt |
4.19Кб |
26. DATE Functions Part II-UPWkDhW4cLI.mp4 |
4.56Мб |
26. DATE Functions Part II-UPWkDhW4cLI.pt-BR.vtt |
4.22Кб |
26. DATE Functions Part II-UPWkDhW4cLI.zh-CN.vtt |
3.83Кб |
26. Exercise Duplicate Data.html |
9.46Кб |
26. Flask+Plotly+Pandas Part 3.html |
9.05Кб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.en.vtt |
1.83Кб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.mp4 |
2.95Мб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.pt-BR.vtt |
1.93Кб |
26. GloVe-KK3PMIiIn8o.en.vtt |
4.21Кб |
26. GloVe-KK3PMIiIn8o.mp4 |
3.81Мб |
26. GloVe-KK3PMIiIn8o.pt-BR.vtt |
4.55Кб |
26. GloVe-KK3PMIiIn8o.zh-CN.vtt |
3.61Кб |
26. Keras Lab-a50un22BsLI.en.vtt |
586б |
26. Keras Lab-a50un22BsLI.mp4 |
2.19Мб |
26. Keras Lab-a50un22BsLI.pt-BR.vtt |
574б |
26. Keras Lab-a50un22BsLI.zh-CN.vtt |
540б |
26. Mini Project Intro.html |
7.50Кб |
26. Notation for the Mean-3EF15AoRxyM.ar.vtt |
2.81Кб |
26. Notation for the Mean-3EF15AoRxyM.en.vtt |
2.05Кб |
26. Notation for the Mean-3EF15AoRxyM.mp4 |
3.03Мб |
26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt |
2.26Кб |
26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt |
1.82Кб |
26. Notebook + Quiz Drawing Conclusions.html |
14.60Кб |
26. Practicing TP, FP, FN with Rumsfeld.html |
10.85Кб |
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt |
462б |
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt |
337б |
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4 |
1.80Мб |
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt |
337б |
26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt |
291б |
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt |
234б |
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt |
186б |
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4 |
792.74Кб |
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt |
188б |
26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt |
180б |
26. Pre-Lab Gradient Descent.html |
9.28Кб |
26. Pre-Lab Gradient Descent.html |
10.14Кб |
26. Quiz Break, Continue.html |
9.80Кб |
26. Quiz List Methods.html |
14.18Кб |
26. Recap-VM6GGNC2q8I.en.vtt |
884б |
26. Recap-VM6GGNC2q8I.mp4 |
4.59Мб |
26. Recap-VM6GGNC2q8I.pt-BR.vtt |
983б |
26. Recap-VM6GGNC2q8I.zh-CN.vtt |
736б |
26. Regularization.html |
7.53Кб |
26. Regularization-PyFNIcsNma0.en.vtt |
10.87Кб |
26. Regularization-PyFNIcsNma0.mp4 |
8.76Мб |
26. Regularization-PyFNIcsNma0.pt-BR.vtt |
10.38Кб |
26. Removing Data - When Is It OK-oQhIPq5AccU.en.vtt |
1.62Кб |
26. Removing Data - When Is It OK-oQhIPq5AccU.mp4 |
6.04Мб |
26. Removing Data - When Is It OK-oQhIPq5AccU.pt-BR.vtt |
1.77Кб |
26. Robot Sensing 6.html |
10.27Кб |
26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt |
456б |
26. Robot Sensing 6-hXyXlk0gYzk.en.vtt |
343б |
26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt |
348б |
26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt |
326б |
26. Robot Sensing 6-hXyXlk0gYzk.mp4 |
1.58Мб |
26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt |
329б |
26. Robot Sensing 6-hXyXlk0gYzk.th.vtt |
554б |
26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt |
331б |
26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt |
175б |
26. Robot Sensing 6-Se-ddM2Wdac.en.vtt |
147б |
26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt |
157б |
26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt |
176б |
26. Robot Sensing 6-Se-ddM2Wdac.mp4 |
484.71Кб |
26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt |
157б |
26. Robot Sensing 6-Se-ddM2Wdac.th.vtt |
240б |
26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt |
149б |
26. Scikit-learn Source Code.html |
9.00Кб |
26. Scikitlearn Source Code-4_qkqMsbthg.en.vtt |
5.56Кб |
26. Scikitlearn Source Code-4_qkqMsbthg.mp4 |
9.62Мб |
26. Scikitlearn Source Code-4_qkqMsbthg.pt-BR.vtt |
5.66Кб |
26. Solutions WHERE.html |
10.66Кб |
26. Text Descriptive Statistics Summary .html |
12.54Кб |
26. Third-Party Libraries.html |
12.91Кб |
26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt |
4.42Кб |
26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt |
3.49Кб |
26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4 |
7.36Мб |
26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt |
3.73Кб |
26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt |
3.10Кб |
26. Transfer Learning in Keras.html |
9.09Кб |
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt |
6.11Кб |
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 |
12.92Мб |
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt |
6.77Кб |
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt |
5.69Кб |
26. Types Of Ratings-fMjqe4sxBlQ.en.vtt |
2.24Кб |
26. Types Of Ratings-fMjqe4sxBlQ.mp4 |
5.76Мб |
26. Video Conclusion.html |
7.44Кб |
26. Video DATE Functions II.html |
9.75Кб |
26. Video Notation for the Mean.html |
9.68Кб |
26. Video Recap.html |
7.90Кб |
26. Video Removing Data - When Is It OK.html |
11.53Кб |
26. Video Types of Ratings.html |
9.77Кб |
26. Video Why are Sampling Distributions Important.html |
8.81Кб |
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt |
1.39Кб |
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt |
1.09Кб |
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4 |
4.09Мб |
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt |
1.10Кб |
26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt |
927б |
27. [OPTIONAL] Embeddings for Deep Learning.html |
7.51Кб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.en.vtt |
9.61Кб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.mp4 |
16.29Мб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.pt-BR.vtt |
9.98Кб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.en.vtt |
10.08Кб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.mp4 |
17.06Мб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.pt-BR.vtt |
10.17Кб |
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt |
4.74Кб |
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt |
3.22Кб |
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 |
6.17Мб |
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt |
3.51Кб |
27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt |
2.74Кб |
27. Dummy Variables.html |
9.80Кб |
27. Dummy Variables-bgxBUvPpKQQ.en.vtt |
2.07Кб |
27. Dummy Variables-bgxBUvPpKQQ.mp4 |
3.51Мб |
27. Dummy Variables-bgxBUvPpKQQ.pt-BR.vtt |
2.36Кб |
27. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt |
5.11Кб |
27. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 |
4.70Мб |
27. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt |
5.60Кб |
27. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt |
4.70Кб |
27. Equation for Precision.html |
10.82Кб |
27. Equation for Precision-8QEAYYIyopY.ar.vtt |
1.25Кб |
27. Equation for Precision-8QEAYYIyopY.en.vtt |
1008б |
27. Equation for Precision-8QEAYYIyopY.mp4 |
4.19Мб |
27. Equation for Precision-8QEAYYIyopY.pt-BR.vtt |
930б |
27. Equation for Precision-8QEAYYIyopY.zh-CN.vtt |
888б |
27. Equation for Precision-CStZqZRe6Mk.ar.vtt |
816б |
27. Equation for Precision-CStZqZRe6Mk.en.vtt |
610б |
27. Equation for Precision-CStZqZRe6Mk.en-US.vtt |
617б |
27. Equation for Precision-CStZqZRe6Mk.mp4 |
2.29Мб |
27. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt |
618б |
27. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt |
503б |
27. Experimenting with an Interpreter.html |
10.64Кб |
27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt |
5.13Кб |
27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt |
3.80Кб |
27. Experimenting With An Interpreter-hspPtnQwMPg.mp4 |
5.58Мб |
27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt |
4.15Кб |
27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt |
3.29Кб |
27. Flask+Plotly+Pandas Part 4.html |
10.24Кб |
27. Goals Of Recommendation Systems-WzelOlFeDmU.en.vtt |
2.44Кб |
27. Goals Of Recommendation Systems-WzelOlFeDmU.mp4 |
2.99Мб |
27. L2 04 Tuples V3-33xN-AbTMoc.mp4 |
3.96Мб |
27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt |
2.74Кб |
27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt |
2.10Кб |
27. Notebook Gradient Descent.html |
7.96Кб |
27. Notebook Gradient Descent.html |
8.82Кб |
27. Other Things to Consider - What if Our Sample is Large.html |
10.97Кб |
27. Pre-Lab IMDB Data in Keras.html |
11.72Кб |
27. Putting Code on PyPi.html |
11.13Кб |
27. Quiz + Text Recap Next Steps.html |
15.08Кб |
27. Quiz DATE Functions.html |
9.62Кб |
27. Quiz Regularization.html |
18.92Кб |
27. Quiz Summation.html |
11.46Кб |
27. Removing Data - Other Considerations-xrXk_Tvi0oQ.en.vtt |
1.77Кб |
27. Removing Data - Other Considerations-xrXk_Tvi0oQ.mp4 |
4.64Мб |
27. Removing Data - Other Considerations-xrXk_Tvi0oQ.pt-BR.vtt |
1.86Кб |
27. Robot Sensing 7.html |
10.27Кб |
27. Robot Sensing 7-clFL503NPyY.ar.vtt |
126б |
27. Robot Sensing 7-clFL503NPyY.en.vtt |
109б |
27. Robot Sensing 7-clFL503NPyY.es-ES.vtt |
118б |
27. Robot Sensing 7-clFL503NPyY.ja.vtt |
113б |
27. Robot Sensing 7-clFL503NPyY.mp4 |
218.29Кб |
27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt |
108б |
27. Robot Sensing 7-clFL503NPyY.th.vtt |
177б |
27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt |
108б |
27. Robot Sensing 7-goEMc0w58xM.ar.vtt |
211б |
27. Robot Sensing 7-goEMc0w58xM.en.vtt |
155б |
27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt |
174б |
27. Robot Sensing 7-goEMc0w58xM.ja.vtt |
175б |
27. Robot Sensing 7-goEMc0w58xM.mp4 |
473.30Кб |
27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt |
169б |
27. Robot Sensing 7-goEMc0w58xM.th.vtt |
244б |
27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt |
158б |
27. Solution Break, Continue.html |
8.82Кб |
27. Text Recap.html |
8.55Кб |
27. Text Review.html |
10.39Кб |
27. Tuples.html |
10.66Кб |
27. Video Descriptive vs. Inferential Statistics.html |
10.09Кб |
27. Video Goals of Recommendation Systems.html |
9.53Кб |
27. Video Removing Data - Other Considerations.html |
11.13Кб |
27. Video WHERE with Non-Numeric Data.html |
10.44Кб |
27. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt |
3.16Кб |
27. What If Our Sample Is Large-WoTCeSTL1eM.mp4 |
11.95Мб |
27. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt |
3.02Кб |
27. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt |
2.76Кб |
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt |
1.42Кб |
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt |
1.11Кб |
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4 |
2.12Мб |
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt |
1.27Кб |
27. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt |
1004б |
28. [OPTIONAL] t-SNE.html |
7.36Кб |
28. Equation for Recall.html |
10.66Кб |
28. Equation for Recall-2cUiqlbt-hc.ar.vtt |
408б |
28. Equation for Recall-2cUiqlbt-hc.en.vtt |
306б |
28. Equation for Recall-2cUiqlbt-hc.mp4 |
720.53Кб |
28. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt |
305б |
28. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt |
288б |
28. Equation for Recall-j2SP83afRS0.ar.vtt |
850б |
28. Equation for Recall-j2SP83afRS0.en.vtt |
658б |
28. Equation for Recall-j2SP83afRS0.mp4 |
2.17Мб |
28. Equation for Recall-j2SP83afRS0.pt-BR.vtt |
696б |
28. Equation for Recall-j2SP83afRS0.zh-CN.vtt |
552б |
28. Example Flask + Plotly + Pandas.html |
8.11Кб |
28. Exercise Dummy Variables.html |
9.47Кб |
28. Exercise Upload to PyPi.html |
8.33Кб |
28. Feature Scaling.html |
24.52Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt |
4.27Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt |
4.27Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 |
3.20Мб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 |
3.20Мб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt |
4.24Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt |
4.24Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt |
3.60Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt |
3.60Кб |
28. Lab IMDB Data in Keras.html |
7.96Кб |
28. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt |
2.21Кб |
28. Multiple Testing Corrections-DuMgeHrkIF0.mp4 |
7.33Мб |
28. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt |
2.21Кб |
28. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt |
1.90Кб |
28. Online Resources.html |
13.94Кб |
28. Other Things to Consider - What if Test More Than Once.html |
10.07Кб |
28. Perceptron vs Gradient Descent.html |
7.91Кб |
28. Perceptron vs Gradient Descent.html |
8.77Кб |
28. Quiz Descriptive vs. Inferential (Udacity Students).html |
11.30Кб |
28. Quiz Notation for the Mean.html |
13.97Кб |
28. Quiz Removing Data.html |
16.31Кб |
28. Quiz Tuples.html |
13.69Кб |
28. Quiz Types of Ratings Goals of Recommendation Systems.html |
11.08Кб |
28. Quiz WHERE with Non-Numeric.html |
10.53Кб |
28. Robot Sensing 8.html |
10.85Кб |
28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt |
315б |
28. Robot Sensing 8-hyAQ28MYmc4.en.vtt |
248б |
28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt |
243б |
28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt |
200б |
28. Robot Sensing 8-hyAQ28MYmc4.mp4 |
978.72Кб |
28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt |
249б |
28. Robot Sensing 8-hyAQ28MYmc4.th.vtt |
393б |
28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt |
226б |
28. Robot Sensing 8-lmuonrQp_lM.ar.vtt |
626б |
28. Robot Sensing 8-lmuonrQp_lM.en.vtt |
524б |
28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt |
804б |
28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt |
531б |
28. Robot Sensing 8-lmuonrQp_lM.ja.vtt |
541б |
28. Robot Sensing 8-lmuonrQp_lM.mp4 |
3.35Мб |
28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt |
497б |
28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt |
492б |
28. Solutions DATE Functions.html |
11.45Кб |
28. T-SNE-xxcK8oZ6_WE.en.vtt |
2.17Кб |
28. T-SNE-xxcK8oZ6_WE.mp4 |
5.56Мб |
28. T-SNE-xxcK8oZ6_WE.pt-BR.vtt |
2.47Кб |
28. T-SNE-xxcK8oZ6_WE.zh-CN.vtt |
1.84Кб |
28. Zip and Enumerate.html |
10.67Кб |
28. Zip and Enumerate-bSJPzVArE7M.ar.vtt |
3.58Кб |
28. Zip and Enumerate-bSJPzVArE7M.en.vtt |
2.54Кб |
28. Zip and Enumerate-bSJPzVArE7M.mp4 |
15.71Мб |
28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt |
2.63Кб |
28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt |
2.35Кб |
29. 11 CASE V2-BInXuTY_FzE.ar.vtt |
6.29Кб |
29. 11 CASE V2-BInXuTY_FzE.en.vtt |
5.15Кб |
29. 11 CASE V2-BInXuTY_FzE.mp4 |
7.52Мб |
29. 11 CASE V2-BInXuTY_FzE.pt-BR.vtt |
5.48Кб |
29. 11 CASE V2-BInXuTY_FzE.zh-CN.vtt |
4.37Кб |
29. Conclusion.html |
7.96Кб |
29. Conclusion-rEMrswkLvh8.ar.vtt |
652б |
29. Conclusion-rEMrswkLvh8.en.vtt |
473б |
29. Conclusion-rEMrswkLvh8.mp4 |
2.84Мб |
29. Conclusion-rEMrswkLvh8.pt-BR.vtt |
508б |
29. Conclusion-rEMrswkLvh8.zh-CN.vtt |
456б |
29. Conclusion-wOiUQDgGD9E.en.vtt |
725б |
29. Conclusion-wOiUQDgGD9E.mp4 |
2.58Мб |
29. Conclusion-wOiUQDgGD9E.pt-BR.vtt |
1.02Кб |
29. Conclusion-wOiUQDgGD9E.zh-CN.vtt |
655б |
29. Conclusion-zX5jZH2y8d8.en.vtt |
1.09Кб |
29. Conclusion-zX5jZH2y8d8.mp4 |
3.49Мб |
29. Continuous Perceptrons.html |
8.43Кб |
29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt |
1.33Кб |
29. Continuous Perceptrons-07-JJ-aGEfM.mp4 |
1.13Мб |
29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt |
1.31Кб |
29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt |
1.15Кб |
29. Exercise Flask + Plotly + Pandas.html |
8.12Кб |
29. Generalizing.html |
8.52Кб |
29. Generalizing-SdMk3aROgSc.ar.vtt |
1.73Кб |
29. Generalizing-SdMk3aROgSc.en.vtt |
1.24Кб |
29. Generalizing-SdMk3aROgSc.es-ES.vtt |
1.32Кб |
29. Generalizing-SdMk3aROgSc.ja.vtt |
1.22Кб |
29. Generalizing-SdMk3aROgSc.mp4 |
6.27Мб |
29. Generalizing-SdMk3aROgSc.pt-BR.vtt |
1.33Кб |
29. Generalizing-SdMk3aROgSc.zh-CN.vtt |
1.17Кб |
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt |
1.70Кб |
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4 |
6.98Мб |
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt |
1.87Кб |
29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt |
1.44Кб |
29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt |
2.25Кб |
29. L2 03 Sets V2-eIHNFgTFfnA.mp4 |
5.92Мб |
29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt |
2.60Кб |
29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt |
2.14Кб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.en.vtt |
2.13Кб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.mp4 |
6.15Мб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.pt-BR.vtt |
2.32Кб |
29. Lesson Summary.html |
8.49Кб |
29. Model Diagnostics In Python-1Z4eorbfOOc.en.vtt |
6.75Кб |
29. Model Diagnostics In Python-1Z4eorbfOOc.mp4 |
22.79Мб |
29. Model Diagnostics In Python-1Z4eorbfOOc.pt-BR.vtt |
6.22Кб |
29. Model Diagnostics In Python-1Z4eorbfOOc.zh-CN.vtt |
5.76Кб |
29. Neural Networks Outro V2-pwA5shUkRVc.mp4 |
3.30Мб |
29. Notebook + Quiz Removing Values.html |
11.02Кб |
29. Other Things to Consider - How Do CIs and HTs Compare.html |
9.82Кб |
29. Outliers - How to Find Them.html |
9.85Кб |
29. Outliers How To Find Them-ksqzOCSAp5U.en.vtt |
3.15Кб |
29. Outliers How To Find Them-ksqzOCSAp5U.mp4 |
8.10Мб |
29. Outliers How To Find Them-ksqzOCSAp5U.pt-BR.vtt |
3.82Кб |
29. Outro.html |
7.17Кб |
29. Outro.html |
7.48Кб |
29. Outro.html |
8.07Кб |
29. Quiz Descriptive vs. Inferential (Bagels).html |
17.39Кб |
29. Quiz Zip and Enumerate.html |
14.26Кб |
29. Screencast Model Diagnostics in Python - Part I.html |
10.90Кб |
29. Sets.html |
10.56Кб |
29. Solutions WHERE with Non-Numeric.html |
10.40Кб |
29. Text Summary on Notation.html |
10.65Кб |
29. Video CASE Statements.html |
11.50Кб |
29. Video Outro.html |
8.27Кб |
30. Arithmetic Operators-fgcJdiNECxI.ar.vtt |
2.50Кб |
30. Arithmetic Operators-fgcJdiNECxI.en.vtt |
1.89Кб |
30. Arithmetic Operators-fgcJdiNECxI.mp4 |
1.65Мб |
30. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt |
2.09Кб |
30. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt |
1.79Кб |
30. CASE Statements and Aggregations-asSXB6iD3z4.ar.vtt |
2.21Кб |
30. CASE Statements and Aggregations-asSXB6iD3z4.en.vtt |
1.78Кб |
30. CASE Statements and Aggregations-asSXB6iD3z4.mp4 |
1.55Мб |
30. CASE Statements and Aggregations-asSXB6iD3z4.pt-BR.vtt |
1.90Кб |
30. CASE Statements and Aggregations-asSXB6iD3z4.zh-CN.vtt |
1.59Кб |
30. Deployment.html |
17.01Кб |
30. Deployment-YPfNzpnm_Rk.en.vtt |
13.81Кб |
30. Deployment-YPfNzpnm_Rk.mp4 |
19.37Мб |
30. Deployment-YPfNzpnm_Rk.pt-BR.vtt |
13.64Кб |
30. Exercise Outliers Part 1.html |
9.47Кб |
30. Non-linear Data.html |
8.38Кб |
30. Non-Linear Data-F7ZiE8PQiSc.en.vtt |
633б |
30. Non-Linear Data-F7ZiE8PQiSc.mp4 |
2.14Мб |
30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt |
600б |
30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt |
624б |
30. Notebook + Quiz Model Diagnostics.html |
14.06Кб |
30. Notebook + Quiz Other Things to Consider.html |
20.95Кб |
30. Quiz Sets.html |
11.97Кб |
30. Removing Data-97UTBiybYTs.en.vtt |
6.06Кб |
30. Removing Data-97UTBiybYTs.mp4 |
7.33Мб |
30. Removing Data-97UTBiybYTs.pt-BR.vtt |
5.89Кб |
30. ScreenCast Removing Data Solution.html |
11.44Кб |
30. Sebastian At Home.html |
10.08Кб |
30. Sebastian At Home-R4zq6mPPMxs.ar.vtt |
1.89Кб |
30. Sebastian At Home-R4zq6mPPMxs.en.vtt |
1.44Кб |
30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt |
1.44Кб |
30. Sebastian At Home-R4zq6mPPMxs.ja.vtt |
1.46Кб |
30. Sebastian At Home-R4zq6mPPMxs.mp4 |
11.04Мб |
30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt |
1.73Кб |
30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt |
1.22Кб |
30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt |
1.51Кб |
30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt |
1.04Кб |
30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt |
1.14Кб |
30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt |
1.13Кб |
30. Sebastian At Home-TtmQ7YCw_1Y.mp4 |
7.74Мб |
30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt |
1.30Кб |
30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt |
930б |
30. Solution Zip and Enumerate.html |
10.97Кб |
30. Text Descriptive vs. Inferential Summary.html |
10.69Кб |
30. Text Recap.html |
10.70Кб |
30. Video Arithmetic Operators.html |
10.91Кб |
30. Video CASE Aggregations.html |
8.85Кб |
3004608562.gif |
301.85Кб |
3006898966.gif |
365.93Кб |
3007188710.gif |
262.28Кб |
3007308918.gif |
307.77Кб |
3009678880.gif |
248.38Кб |
3016088789.gif |
257.62Кб |
3016528680.gif |
355.33Кб |
3017398561.gif |
306.84Кб |
3021738574.gif |
374.98Кб |
3022138739.gif |
334.43Кб |
3022688695.gif |
351.11Кб |
3023678781.gif |
258.28Кб |
3030118734.gif |
460.01Кб |
3031238602.gif |
327.07Кб |
3039578581.gif |
416.59Кб |
3041298589.gif |
335.25Кб |
3043028606.gif |
408.16Кб |
3050008540.gif |
240.03Кб |
31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.en.vtt |
2.16Кб |
31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.mp4 |
5.43Мб |
31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.pt-BR.vtt |
2.49Кб |
31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt |
679б |
31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt |
523б |
31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4 |
1.88Мб |
31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt |
503б |
31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt |
442б |
31. Dictionaries and Identity Operators.html |
11.71Кб |
31. Exercise Deployment.html |
8.09Кб |
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.en.vtt |
1.34Кб |
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.mp4 |
7.54Мб |
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.pt-BR.vtt |
1.50Кб |
31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.zh-CN.vtt |
1.12Кб |
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt |
3.39Кб |
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4 |
10.70Мб |
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt |
3.76Кб |
31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt |
2.76Кб |
31. Learning Objectives - Conditional Probability.html |
17.90Кб |
31. List Comprehensions.html |
10.54Кб |
31. List Comprehensions-6qxo-NV9v_s.ar.vtt |
4.13Кб |
31. List Comprehensions-6qxo-NV9v_s.en.vtt |
2.93Кб |
31. List Comprehensions-6qxo-NV9v_s.mp4 |
17.37Мб |
31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt |
3.53Кб |
31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt |
2.88Кб |
31. Non-Linear Models.html |
8.39Кб |
31. Non-Linear Models-HWuBKCZsCo8.en.vtt |
1.30Кб |
31. Non-Linear Models-HWuBKCZsCo8.mp4 |
1.13Мб |
31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt |
1.39Кб |
31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt |
1.12Кб |
31. Notebook + Quiz Other Things to Consider.html |
17.86Кб |
31. Notebook + Quiz Removing Data Part II.html |
11.03Кб |
31. Outliers - What to do .html |
9.16Кб |
31. Quiz Arithmetic Operators.html |
11.49Кб |
31. Quiz CASE.html |
11.36Кб |
31. Video Final Thoughts On Shifting to Machine Learning.html |
8.90Кб |
31. Video Summary.html |
9.04Кб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt |
3.02Кб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 |
2.83Мб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt |
3.34Кб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt |
2.76Кб |
32. Combinando modelos-Boy3zHVrWB4.en.vtt |
5.29Кб |
32. Combinando modelos-Boy3zHVrWB4.mp4 |
4.73Мб |
32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt |
5.29Кб |
32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt |
4.61Кб |
32. Exercise Outliers - Part 2.html |
9.47Кб |
32. Hypothesis Testing Conclusion.html |
8.88Кб |
32. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt |
1.06Кб |
32. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4 |
4.36Мб |
32. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt |
1.11Кб |
32. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt |
890б |
32. L4 Outro V2-8MyuJx5yu38.en.vtt |
1.36Кб |
32. L4 Outro V2-8MyuJx5yu38.mp4 |
3.09Мб |
32. L4 Outro V2-8MyuJx5yu38.pt-BR.vtt |
1.41Кб |
32. Layers-pg99FkXYK0M.en.vtt |
3.40Кб |
32. Layers-pg99FkXYK0M.mp4 |
3.11Мб |
32. Layers-pg99FkXYK0M.pt-BR.vtt |
3.29Кб |
32. Layers-pg99FkXYK0M.zh-CN.vtt |
3.04Кб |
32. Lesson Summary.html |
7.96Кб |
32. Multiclass Classification-uNTtvxwfox0.en.vtt |
2.08Кб |
32. Multiclass Classification-uNTtvxwfox0.mp4 |
1.88Мб |
32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt |
2.12Кб |
32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt |
1.82Кб |
32. Neural Network Architecture.html |
13.05Кб |
32. Quiz Dictionaries and Identity Operators.html |
15.99Кб |
32. Quiz List Comprehensions.html |
11.43Кб |
32. Reducing Uncertainty.html |
8.36Кб |
32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt |
1.88Кб |
32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt |
1.48Кб |
32. Reducing Uncertainty-zuFMhmKQ--o.mp4 |
4.40Мб |
32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt |
1.50Кб |
32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt |
1.23Кб |
32. Removing Data Part II-lPl6-Z098Rs.en.vtt |
11.30Кб |
32. Removing Data Part II-lPl6-Z098Rs.mp4 |
17.63Мб |
32. Removing Data Part II-lPl6-Z098Rs.pt-BR.vtt |
10.48Кб |
32. Screencast Removing Data Part II Solution.html |
11.48Кб |
32. Solutions Arithmetic Operators.html |
10.90Кб |
32. Solutions CASE.html |
13.08Кб |
32. Text Recap.html |
9.97Кб |
33. AI and Data Engineering - Robert Chang Airbnb.html |
9.38Кб |
33. Bayes' Rule and Robotics.html |
8.42Кб |
33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt |
1.27Кб |
33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt |
979б |
33. Bayes' Rule and Robotics-meNSO42JF6I.mp4 |
2.91Мб |
33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt |
1.14Кб |
33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt |
892б |
33. Congrats-Qy8VYdqoxGA.en.vtt |
564б |
33. Congrats-Qy8VYdqoxGA.mp4 |
3.48Мб |
33. Congrats-Qy8VYdqoxGA.pt-BR.vtt |
576б |
33. Congrats-Qy8VYdqoxGA.zh-CN.vtt |
473б |
33. Data Engineering Importance-VO-OrJ0JqxM.en.vtt |
3.03Кб |
33. Data Engineering Importance-VO-OrJ0JqxM.mp4 |
20.61Мб |
33. Data Engineering Importance-VO-OrJ0JqxM.pt-BR.vtt |
3.29Кб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt |
6.17Кб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 |
5.33Мб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt |
6.76Кб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt |
5.33Кб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt |
1.97Кб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 |
1.72Мб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt |
2.12Кб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt |
1.69Кб |
33. Feedforward.html |
9.67Кб |
33. Imputing Missing Values-CEWIPjz_gCE.en.vtt |
3.15Кб |
33. Imputing Missing Values-CEWIPjz_gCE.mp4 |
8.42Мб |
33. Quiz + Text Recap.html |
16.44Кб |
33. Solution Dictionaries and Identity Operators.html |
9.32Кб |
33. Solution List Comprehensions.html |
9.53Кб |
33. Text Introduction to Logical Operators.html |
10.46Кб |
33. Text Recap.html |
8.25Кб |
33. Video Congratulations.html |
8.65Кб |
33. Video Imputing Missing Values.html |
11.87Кб |
34. Backpropagation.html |
12.49Кб |
34. Backpropagation V2-1SmY3TZTyUk.en.vtt |
7.21Кб |
34. Backpropagation V2-1SmY3TZTyUk.mp4 |
6.52Мб |
34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt |
7.17Кб |
34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt |
6.39Кб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt |
3.41Кб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 |
3.31Мб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt |
3.44Кб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt |
2.88Кб |
34. Chain Rule-YAhIBOnbt54.en.vtt |
1.65Кб |
34. Chain Rule-YAhIBOnbt54.mp4 |
1.46Мб |
34. Chain Rule-YAhIBOnbt54.pt-BR.vtt |
1.73Кб |
34. Chain Rule-YAhIBOnbt54.zh-CN.vtt |
1.42Кб |
34. Conclusion.html |
8.46Кб |
34. Congrats!-vDoqpwCHxs4.ar.vtt |
673б |
34. Congrats!-vDoqpwCHxs4.en.vtt |
467б |
34. Congrats!-vDoqpwCHxs4.mp4 |
3.11Мб |
34. Congrats!-vDoqpwCHxs4.pt-BR.vtt |
583б |
34. Congrats!-vDoqpwCHxs4.zh-CN.vtt |
410б |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt |
6.16Кб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 |
5.69Мб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt |
6.50Кб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt |
5.05Кб |
34. Learning from Sensor Data.html |
11.65Кб |
34. LIKE Operator-O5z6eWkNip4.ar.vtt |
2.66Кб |
34. LIKE Operator-O5z6eWkNip4.en.vtt |
1.95Кб |
34. LIKE Operator-O5z6eWkNip4.mp4 |
2.17Мб |
34. LIKE Operator-O5z6eWkNip4.pt-BR.vtt |
2.42Кб |
34. LIKE Operator-O5z6eWkNip4.zh-CN.vtt |
1.76Кб |
34. Notebook + Quiz Imputation Methods Resources.html |
11.06Кб |
34. Quiz More With Dictionaries.html |
13.72Кб |
34. Scaling Data.html |
9.02Кб |
34. Scaling Data-OgjTk3XCUUE.en.vtt |
1.68Кб |
34. Scaling Data-OgjTk3XCUUE.mp4 |
3.84Мб |
34. Scaling Data-OgjTk3XCUUE.pt-BR.vtt |
1.96Кб |
34. Video LIKE.html |
11.01Кб |
35. Compound Data Structures.html |
10.70Кб |
35. Exercise Scaling Data.html |
9.46Кб |
35. Imputation Methods-OwEWSBitF-Q.en.vtt |
11.89Кб |
35. Imputation Methods-OwEWSBitF-Q.mp4 |
18.42Мб |
35. Imputation Methods-OwEWSBitF-Q.pt-BR.vtt |
10.52Кб |
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt |
1.24Кб |
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4 |
4.21Мб |
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt |
1.58Кб |
35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt |
1.08Кб |
35. Pre-Lab Analyzing Student Data.html |
9.29Кб |
35. Quiz LIKE.html |
10.49Кб |
35. Screencast Imputation Methods Resources Solution.html |
11.49Кб |
35. Using Sensor Data.html |
8.34Кб |
35. Using Sensor Data-vhl-SADfti8.ar.vtt |
2.19Кб |
35. Using Sensor Data-vhl-SADfti8.en.vtt |
1.59Кб |
35. Using Sensor Data-vhl-SADfti8.mp4 |
5.21Мб |
35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt |
1.86Кб |
35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt |
1.38Кб |
36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.en.vtt |
2.30Кб |
36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.mp4 |
5.15Мб |
36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.pt-BR.vtt |
2.59Кб |
36. Feature Engineering.html |
9.11Кб |
36. Learning Objectives - Bayes' Rule.html |
16.50Кб |
36. Notebook + Quiz Imputing Values.html |
11.02Кб |
36. Notebook Analyzing Student Data.html |
8.83Кб |
36. Quiz Compound Data Structures.html |
15.14Кб |
36. Solutions LIKE.html |
10.49Кб |
37. Bayes Rule Conclusion.html |
8.37Кб |
37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt |
731б |
37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt |
530б |
37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4 |
1.61Мб |
37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt |
579б |
37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt |
458б |
37. Exercise Feature Engineering.html |
9.47Кб |
37. Imputing Values-nTM4HiDneeE.en.vtt |
6.69Кб |
37. Imputing Values-nTM4HiDneeE.mp4 |
13.17Мб |
37. Imputing Values-nTM4HiDneeE.pt-BR.vtt |
6.11Кб |
37. IN Operator-_JPO7wwX3uA.ar.vtt |
1.92Кб |
37. IN Operator-_JPO7wwX3uA.en.vtt |
1.47Кб |
37. IN Operator-_JPO7wwX3uA.mp4 |
1.76Мб |
37. IN Operator-_JPO7wwX3uA.pt-BR.vtt |
1.57Кб |
37. IN Operator-_JPO7wwX3uA.zh-CN.vtt |
1.29Кб |
37. Outro.html |
8.37Кб |
37. Screencast Imputing Values Solution.html |
11.45Кб |
37. Solution Compound Data Structions.html |
9.25Кб |
37. Video IN.html |
10.70Кб |
38. Bloopers.html |
9.16Кб |
38. Bloopers Intro 1 V1-Y1weHponR2Q.en.vtt |
1.79Кб |
38. Bloopers Intro 1 V1-Y1weHponR2Q.mp4 |
8.02Мб |
38. Bloopers Intro 1 V1-Y1weHponR2Q.pt-BR.vtt |
2.11Кб |
38. Conclusion.html |
9.12Кб |
38. Conclusion-LLEZadlXM8A.ar.vtt |
534б |
38. Conclusion-LLEZadlXM8A.en.vtt |
423б |
38. Conclusion-LLEZadlXM8A.mp4 |
2.54Мб |
38. Conclusion-LLEZadlXM8A.pt-BR.vtt |
411б |
38. Conclusion-LLEZadlXM8A.zh-CN.vtt |
389б |
38. Quiz IN.html |
10.61Кб |
38. Video Working With Categorical Variables Refresher.html |
11.12Кб |
38. Working With Categorical Variables-IoQOiuxsIZg.en.vtt |
1.32Кб |
38. Working With Categorical Variables-IoQOiuxsIZg.mp4 |
2.65Мб |
38. Working With Categorical Variables-IoQOiuxsIZg.pt-BR.vtt |
1.47Кб |
39. 47 Load V1 V1-Us1hWDaabxo.en.vtt |
1.22Кб |
39. 47 Load V1 V1-Us1hWDaabxo.mp4 |
3.06Мб |
39. 47 Load V1 V1-Us1hWDaabxo.pt-BR.vtt |
1.51Кб |
39. Load.html |
10.17Кб |
39. Load Walk Through-AZvC7kYp_74.en.vtt |
1.84Кб |
39. Load Walk Through-AZvC7kYp_74.mp4 |
4.08Мб |
39. Load Walk Through-AZvC7kYp_74.pt-BR.vtt |
1.87Кб |
39. Notebook + Quiz Categorical Variables.html |
11.03Кб |
39. Solutions IN.html |
10.45Кб |
39. Summary.html |
14.66Кб |
40. Categorical Variables-p3gDUkBD9uM.en.vtt |
15.29Кб |
40. Categorical Variables-p3gDUkBD9uM.mp4 |
21.83Мб |
40. Categorical Variables-p3gDUkBD9uM.pt-BR.vtt |
14.60Кб |
40. Exercise Load.html |
9.45Кб |
40. NOT Operator-dSQF87oW8a0.ar.vtt |
3.10Кб |
40. NOT Operator-dSQF87oW8a0.en.vtt |
2.22Кб |
40. NOT Operator-dSQF87oW8a0.mp4 |
1.90Мб |
40. NOT Operator-dSQF87oW8a0.pt-BR.vtt |
2.44Кб |
40. NOT Operator-dSQF87oW8a0.zh-CN.vtt |
2.01Кб |
40. Screencast Categorical Variables Solution.html |
11.48Кб |
40. Video NOT.html |
10.12Кб |
41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.en.vtt |
434б |
41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.mp4 |
1.33Мб |
41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.pt-BR.vtt |
514б |
41. How To Fix This-IPQZ4pfRMRA.en.vtt |
2.90Кб |
41. How To Fix This-IPQZ4pfRMRA.mp4 |
4.13Мб |
41. How To Fix This-IPQZ4pfRMRA.pt-BR.vtt |
2.96Кб |
41. Putting It All Together.html |
9.76Кб |
41. Putting It All Together-PHaSifd-Mas.en.vtt |
4.35Кб |
41. Putting It All Together-PHaSifd-Mas.mp4 |
5.94Мб |
41. Putting It All Together-PHaSifd-Mas.pt-BR.vtt |
4.82Кб |
41. Quiz NOT.html |
10.99Кб |
41. Video How to Fix This.html |
10.93Кб |
42. Exercise Putting It All Together.html |
9.48Кб |
42. Notebook + Quiz Putting It All Together .html |
11.04Кб |
42. Solutions NOT.html |
10.82Кб |
43. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt |
3.17Кб |
43. AND BETWEEN Operators-nBuDPneWcKY.en.vtt |
2.28Кб |
43. AND BETWEEN Operators-nBuDPneWcKY.mp4 |
2.37Мб |
43. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt |
2.50Кб |
43. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt |
2.04Кб |
43. Lesson Summary.html |
9.03Кб |
43. Outro V1 V4-XE3aoYOXeBw.en.vtt |
1.25Кб |
43. Outro V1 V4-XE3aoYOXeBw.mp4 |
4.09Мб |
43. Outro V1 V4-XE3aoYOXeBw.pt-BR.vtt |
1.59Кб |
43. Putting It All Together-3SX4dMZPNEI.en.vtt |
10.14Кб |
43. Putting It All Together-3SX4dMZPNEI.mp4 |
16.04Мб |
43. Putting It All Together-3SX4dMZPNEI.pt-BR.vtt |
9.73Кб |
43. Screencast + Notebook Putting It All Together Solution.html |
11.52Кб |
43. Video AND and BETWEEN.html |
11.09Кб |
44. Quiz AND and BETWEEN.html |
10.84Кб |
44. Text + Quiz Results.html |
19.84Кб |
45. Solutions AND and BETWEEN.html |
10.97Кб |
45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.en.vtt |
1.42Кб |
45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.mp4 |
5.05Мб |
45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.pt-BR.vtt |
1.58Кб |
45. Video The Data Science Process - Evaluate Deploy.html |
11.36Кб |
46. OR Operator-3vLGEuXAAvA.ar.vtt |
2.82Кб |
46. OR Operator-3vLGEuXAAvA.en.vtt |
2.14Кб |
46. OR Operator-3vLGEuXAAvA.mp4 |
1.94Мб |
46. OR Operator-3vLGEuXAAvA.pt-BR.vtt |
2.41Кб |
46. OR Operator-3vLGEuXAAvA.zh-CN.vtt |
1.87Кб |
46. OR Statement-DRmkKVhe6-s.ar.vtt |
2.48Кб |
46. OR Statement-DRmkKVhe6-s.en.vtt |
1.79Кб |
46. OR Statement-DRmkKVhe6-s.mp4 |
1.70Мб |
46. OR Statement-DRmkKVhe6-s.pt-BR.vtt |
1.84Кб |
46. OR Statement-DRmkKVhe6-s.zh-CN.vtt |
1.51Кб |
46. Text Recap.html |
12.66Кб |
46. Video OR.html |
11.33Кб |
47. Quiz OR.html |
10.81Кб |
48. Solutions OR.html |
10.69Кб |
48011955.gif |
81.89Кб |
48198838.gif |
82.00Кб |
48198839.gif |
82.81Кб |
48204962.gif |
58.29Кб |
48230509.gif |
60.32Кб |
48230510.gif |
79.18Кб |
48240997.gif |
88.58Кб |
48240998.gif |
80.60Кб |
48241000.gif |
74.71Кб |
48271966.gif |
86.74Кб |
48271967.gif |
96.13Кб |
48292975.gif |
58.78Кб |
48296523.gif |
71.75Кб |
48310768.gif |
87.65Кб |
48311831.gif |
80.33Кб |
48311832.gif |
82.90Кб |
48445276.gif |
83.24Кб |
48480558.gif |
69.36Кб |
48480561.gif |
85.92Кб |
48609553.gif |
70.70Кб |
48629196.gif |
70.92Кб |
48632799.gif |
71.37Кб |
48632800.gif |
47.62Кб |
48632846.gif |
60.60Кб |
48632848.gif |
79.80Кб |
48635652.gif |
58.13Кб |
48641639.gif |
83.13Кб |
48646780.gif |
83.92Кб |
48652467.gif |
72.79Кб |
48658976.gif |
80.19Кб |
48665990.gif |
309.25Кб |
48667978.gif |
84.52Кб |
48667979.gif |
70.38Кб |
48667981.gif |
52.53Кб |
48678737.gif |
77.74Кб |
48678758.gif |
73.58Кб |
48680638.gif |
68.34Кб |
48683704.gif |
70.66Кб |
48684686.gif |
91.62Кб |
48684742.gif |
57.16Кб |
48686674.gif |
75.75Кб |
48687733.gif |
71.92Кб |
48687795.gif |
57.33Кб |
48688787.gif |
82.40Кб |
48688828.gif |
57.96Кб |
48692636.gif |
74.24Кб |
48692663.gif |
70.63Кб |
48692666.gif |
59.53Кб |
48693692.gif |
58.52Кб |
48695597.gif |
63.29Кб |
48697566.gif |
71.26Кб |
48698525.gif |
89.16Кб |
48698526.gif |
90.98Кб |
48698583.gif |
61.09Кб |
48698595.gif |
53.00Кб |
48699581.gif |
55.22Кб |
48704300.gif |
80.67Кб |
48709280.gif |
73.94Кб |
48713571.gif |
1011.65Кб |
48716247.gif |
62.80Кб |
48716288.gif |
59.35Кб |
48716290.gif |
84.79Кб |
48720246.gif |
55.25Кб |
48721292.gif |
90.54Кб |
48721315.gif |
73.74Кб |
48725208.gif |
68.86Кб |
48726280.gif |
84.66Кб |
48728202.gif |
92.14Кб |
48729170.gif |
54.43Кб |
48734186.gif |
68.36Кб |
48734324.gif |
90.86Кб |
48736116.gif |
267.40Кб |
48737119.gif |
77.14Кб |
48738100.gif |
61.08Кб |
48738115.gif |
47.54Кб |
48739104.gif |
63.85Кб |
48739228.gif |
83.99Кб |
48741058.gif |
56.01Кб |
48741083.gif |
82.16Кб |
48741099.gif |
52.38Кб |
48742066.gif |
56.40Кб |
48743074.gif |
87.07Кб |
48745039.gif |
291.24Кб |
48746014.gif |
72.67Кб |
48746015.gif |
57.96Кб |
48750006.gif |
58.62Кб |
48750011.gif |
82.00Кб |
48750031.gif |
78.60Кб |
48752009.gif |
82.38Кб |
49. Text Recap Looking Ahead.html |
12.46Кб |
6485174133.gif |
458.07Кб |
6499079068.gif |
445.94Кб |
6509638772.gif |
711.08Кб |
6551597473.gif |
444.36Кб |
6-point-likert-scale-even-survey.png |
7.47Кб |
accuracy-quiz.png |
105.85Кб |
admissions-data.png |
118.38Кб |
all-ranks.png |
308.47Кб |
all-ranks.png |
308.47Кб |
and-quiz.png |
265.78Кб |
and-quiz.png |
265.78Кб |
and-quiz.png |
265.78Кб |
and-to-or.png |
606.14Кб |
and-to-or.png |
606.14Кб |
and-to-or.png |
606.14Кб |
anscombes-quartet-3.svg |
59.16Кб |
anscombe-table.png |
38.45Кб |
apple.jpg |
105.41Кб |
backprop-error.gif |
2.93Кб |
backprop-general.gif |
2.20Кб |
backprop-network.png |
13.07Кб |
backprop-weight-update.gif |
1.68Кб |
bad-viz-2.png |
356.49Кб |
batch-stochastic.png |
196.92Кб |
bootstrap.min.css |
137.64Кб |
bootstrap.min.js |
49.85Кб |
business-money-pink-coins.jpg |
4.47Мб |
c03-practicalsignificance-01.png |
1.75Кб |
c03-practicalsignificance-02.png |
2.03Кб |
c03-practicalsignificance-03.png |
2.29Кб |
c08-multimetrics-01.png |
16.97Кб |
c08-multimetrics-02.png |
13.71Кб |
challenger2.gif |
154.59Кб |
challenger-good.png |
21.31Кб |
circle-data.png |
49.91Кб |
codecogseqn-2.png |
2.26Кб |
codecogseqn-43.gif |
7.96Кб |
codecogseqn-43.gif |
7.96Кб |
codecogseqn-49.gif |
2.09Кб |
codecogseqn-49.gif |
2.09Кб |
codecogseqn-58.gif |
919б |
codecogseqn-58.gif |
919б |
codecogseqn-60-2.png |
8.94Кб |
codecogseqn-60-2.png |
8.94Кб |
codecogseqn-61.gif |
2.07Кб |
codecogseqn-62.gif |
1.31Кб |
collage2.png |
936.77Кб |
command+palette.mp4 |
169.16Кб |
complexity.png |
95.64Кб |
conda_default_install.mp4 |
595.30Кб |
conda_install.mp4 |
201.72Кб |
conda-create-env.png |
70.79Кб |
conda-environments.png |
40.09Кб |
conda-install.png |
81.15Кб |
conda-search.png |
430.84Кб |
conda-tab.png |
109.92Кб |
confusion.png |
188.85Кб |
conv-dims.png |
28.55Кб |
convolution-schematic.gif |
63.63Кб |
cp1a9390.jpg |
63.65Кб |
data.png |
49.54Кб |
data.png |
49.54Кб |
decision-tree-sketch.png |
744.81Кб |
derivative-example.png |
55.08Кб |
diagonal-line-1.png |
5.76Кб |
diagonal-line-2.png |
6.62Кб |
disaster-response-project1.png |
74.74Кб |
disaster-response-project2.png |
86.95Кб |
e.gif |
1.18Кб |
eeg-ica.png |
170.89Кб |
email.png |
148.53Кб |
erd.png |
80.34Кб |
example-data.png |
92.11Кб |
external-indices-quiz.png |
96.46Кб |
f1.gif |
2.01Кб |
f2.gif |
1.88Кб |
f4.gif |
1.13Кб |
f6.gif |
1.60Кб |
fbeta.png |
337.08Кб |
full-outer-join.png |
61.14Кб |
full-outer-join-if-null.png |
62.02Кб |
full-padding-no-strides-transposed.gif |
221.74Кб |
generate-messages-output.png |
310.53Кб |
get-hired-with-the-udacity-career-portal.gif |
756.73Кб |
get-hired-with-the-udacity-career-portal.gif |
756.73Кб |
gif-1.gif |
1.03Кб |
gmm-1d-quiz.png |
26.76Кб |
gmm-2d-quiz.png |
78.44Кб |
gmm-quiz.png |
80.65Кб |
gradient-descent.png |
71.96Кб |
grant.png |
569.90Кб |
grid-layer-1.png |
35.30Кб |
hidden-errors.gif |
2.80Кб |
hidden-layer-weights.gif |
1.75Кб |
histogram-nonnormal.png |
35.31Кб |
house.png |
491.52Кб |
image4.png |
436.47Кб |
image4.png |
436.47Кб |
image8.png |
228.06Кб |
image8.png |
228.06Кб |
img-4646.jpg |
27.12Кб |
index.html |
3.47Кб |
index.html |
3.52Кб |
index.html |
3.52Кб |
index.html |
3.60Кб |
index.html |
3.67Кб |
index.html |
3.67Кб |
index.html |
3.68Кб |
index.html |
3.68Кб |
index.html |
3.68Кб |
index.html |
3.71Кб |
index.html |
3.76Кб |
index.html |
3.77Кб |
index.html |
3.78Кб |
index.html |
3.80Кб |
index.html |
3.81Кб |
index.html |
3.83Кб |
index.html |
3.85Кб |
index.html |
3.87Кб |
index.html |
3.87Кб |
index.html |
3.89Кб |
index.html |
3.89Кб |
index.html |
3.94Кб |
index.html |
3.94Кб |
index.html |
3.94Кб |
index.html |
3.94Кб |
index.html |
3.97Кб |
index.html |
4.01Кб |
index.html |
4.02Кб |
index.html |
4.08Кб |
index.html |
4.11Кб |
index.html |
4.14Кб |
index.html |
4.15Кб |
index.html |
4.16Кб |
index.html |
4.17Кб |
index.html |
4.18Кб |
index.html |
4.20Кб |
index.html |
4.23Кб |
index.html |
4.26Кб |
index.html |
4.27Кб |
index.html |
4.29Кб |
index.html |
4.32Кб |
index.html |
4.35Кб |
index.html |
4.37Кб |
index.html |
4.37Кб |
index.html |
4.38Кб |
index.html |
4.38Кб |
index.html |
4.41Кб |
index.html |
4.42Кб |
index.html |
4.48Кб |
index.html |
4.50Кб |
index.html |
4.51Кб |
index.html |
4.51Кб |
index.html |
4.51Кб |
index.html |
4.56Кб |
index.html |
4.61Кб |
index.html |
4.61Кб |
index.html |
4.63Кб |
index.html |
4.66Кб |
index.html |
4.66Кб |
index.html |
4.70Кб |
index.html |
4.73Кб |
index.html |
4.77Кб |
index.html |
4.79Кб |
index.html |
4.80Кб |
index.html |
4.81Кб |
index.html |
4.81Кб |
index.html |
4.82Кб |
index.html |
4.84Кб |
index.html |
4.84Кб |
index.html |
4.85Кб |
index.html |
4.91Кб |
index.html |
4.93Кб |
index.html |
4.98Кб |
index.html |
5.00Кб |
index.html |
5.01Кб |
index.html |
5.02Кб |
index.html |
5.10Кб |
index.html |
5.13Кб |
index.html |
5.21Кб |
index.html |
5.21Кб |
index.html |
5.24Кб |
index.html |
5.29Кб |
index.html |
5.32Кб |
index.html |
5.43Кб |
index.html |
5.53Кб |
index.html |
5.53Кб |
index.html |
5.54Кб |
index.html |
5.56Кб |
index.html |
5.65Кб |
index.html |
5.66Кб |
index.html |
5.67Кб |
index.html |
5.72Кб |
index.html |
5.73Кб |
index.html |
5.79Кб |
index.html |
5.79Кб |
index.html |
5.90Кб |
index.html |
5.94Кб |
index.html |
6.01Кб |
index.html |
6.05Кб |
index.html |
6.15Кб |
index.html |
6.15Кб |
index.html |
6.23Кб |
index.html |
6.33Кб |
index.html |
6.41Кб |
index.html |
6.66Кб |
index.html |
6.71Кб |
index.html |
6.71Кб |
index.html |
6.82Кб |
index.html |
6.83Кб |
index.html |
6.95Кб |
index.html |
6.95Кб |
index.html |
7.28Кб |
index.html |
8.30Кб |
index.html |
422.33Кб |
inner-join.png |
84.77Кб |
inputs-matrix.png |
5.61Кб |
input-times-weights.png |
51.82Кб |
iris-box-plot.png |
15.80Кб |
jquery.mCustomScrollbar.concat.min.js |
44.41Кб |
jquery.mCustomScrollbar.min.css |
41.83Кб |
jquery-3.3.1.min.js |
84.89Кб |
jupyter-logo.png |
5.78Кб |
just-a-2d-reg.png |
68.49Кб |
just-a-simple-lin-reg.png |
25.95Кб |
KaTeX_AMS-Regular.ttf |
69.75Кб |
KaTeX_AMS-Regular.woff |
39.26Кб |
KaTeX_AMS-Regular.woff2 |
32.43Кб |
KaTeX_Caligraphic-Bold.ttf |
19.13Кб |
KaTeX_Caligraphic-Bold.woff |
11.85Кб |
KaTeX_Caligraphic-Bold.woff2 |
10.35Кб |
KaTeX_Caligraphic-Regular.ttf |
18.52Кб |
KaTeX_Caligraphic-Regular.woff |
11.59Кб |
KaTeX_Caligraphic-Regular.woff2 |
10.17Кб |
KaTeX_Fraktur-Bold.ttf |
35.13Кб |
KaTeX_Fraktur-Bold.woff |
22.84Кб |
KaTeX_Fraktur-Bold.woff2 |
20.01Кб |
KaTeX_Fraktur-Regular.ttf |
33.84Кб |
KaTeX_Fraktur-Regular.woff |
22.31Кб |
KaTeX_Fraktur-Regular.woff2 |
19.39Кб |
KaTeX_Main-Bold.ttf |
60.27Кб |
KaTeX_Main-Bold.woff |
35.89Кб |
KaTeX_Main-Bold.woff2 |
29.90Кб |
KaTeX_Main-BoldItalic.ttf |
43.77Кб |
KaTeX_Main-BoldItalic.woff |
25.61Кб |
KaTeX_Main-BoldItalic.woff2 |
21.67Кб |
KaTeX_Main-Italic.ttf |
46.83Кб |
KaTeX_Main-Italic.woff |
26.56Кб |
KaTeX_Main-Italic.woff2 |
22.52Кб |
KaTeX_Main-Regular.ttf |
68.43Кб |
KaTeX_Main-Regular.woff |
38.52Кб |
KaTeX_Main-Regular.woff2 |
32.09Кб |
KaTeX_Math-BoldItalic.ttf |
38.81Кб |
KaTeX_Math-BoldItalic.woff |
22.65Кб |
KaTeX_Math-BoldItalic.woff2 |
19.57Кб |
KaTeX_Math-Italic.ttf |
40.48Кб |
KaTeX_Math-Italic.woff |
23.26Кб |
KaTeX_Math-Italic.woff2 |
19.95Кб |
KaTeX_SansSerif-Bold.ttf |
33.23Кб |
KaTeX_SansSerif-Bold.woff |
18.72Кб |
KaTeX_SansSerif-Bold.woff2 |
15.62Кб |
KaTeX_SansSerif-Italic.ttf |
30.57Кб |
KaTeX_SansSerif-Italic.woff |
17.70Кб |
KaTeX_SansSerif-Italic.woff2 |
14.86Кб |
KaTeX_SansSerif-Regular.ttf |
29.45Кб |
KaTeX_SansSerif-Regular.woff |
16.39Кб |
KaTeX_SansSerif-Regular.woff2 |
13.70Кб |
KaTeX_Script-Regular.ttf |
24.28Кб |
KaTeX_Script-Regular.woff |
13.53Кб |
KaTeX_Script-Regular.woff2 |
11.99Кб |
KaTeX_Size1-Regular.ttf |
12.86Кб |
KaTeX_Size1-Regular.woff |
6.82Кб |
KaTeX_Size1-Regular.woff2 |
5.69Кб |
KaTeX_Size2-Regular.ttf |
12.12Кб |
KaTeX_Size2-Regular.woff |
6.53Кб |
KaTeX_Size2-Regular.woff2 |
5.43Кб |
KaTeX_Size3-Regular.ttf |
8.16Кб |
KaTeX_Size3-Regular.woff |
4.66Кб |
KaTeX_Size3-Regular.woff2 |
3.77Кб |
KaTeX_Size4-Regular.ttf |
11.02Кб |
KaTeX_Size4-Regular.woff |
6.30Кб |
KaTeX_Size4-Regular.woff2 |
5.06Кб |
KaTeX_Typewriter-Regular.ttf |
35.46Кб |
KaTeX_Typewriter-Regular.woff |
20.43Кб |
KaTeX_Typewriter-Regular.woff2 |
17.13Кб |
katex.min.css |
21.56Кб |
katex.min.js |
231.26Кб |
l2-gradient-descent-data.png |
8.64Кб |
l3-c03-barchart1.png |
6.74Кб |
l3-c03-barchart2.png |
6.73Кб |
l3-c03-barchart3.png |
6.72Кб |
l3-c03-barchart4.png |
6.73Кб |
l3-c03-barchart5.png |
13.47Кб |
l3-c03-barchart6.png |
14.27Кб |
l3-c04-relfreqchart1.png |
8.49Кб |
l3-c04-relfreqchart2.png |
9.38Кб |
l3-c05-missingdata1.png |
9.99Кб |
l3-c05-missingdata2.png |
4.69Кб |
l3-c07-piecharts2.png |
19.00Кб |
l3-c07-piecharts3.png |
11.30Кб |
l3-c08-histograms1.png |
4.14Кб |
l3-c08-histograms2.png |
4.65Кб |
l3-c08-histograms3.png |
6.67Кб |
l3-c08-histograms4.png |
14.17Кб |
l3-c09b-subplots4.png |
9.31Кб |
l3-c09b-subplotsa.png |
14.97Кб |
l3-c10-dierolls1.png |
7.59Кб |
l3-c10-dierolls2.png |
6.37Кб |
l3-c11-outliers1.png |
7.32Кб |
l3-c12-transforms1.png |
10.58Кб |
l3-c12-transforms2.png |
4.23Кб |
l3-c12-transforms3.png |
5.53Кб |
l3-c12-transforms4.png |
5.45Кб |
l3-c15-kde1.png |
35.93Кб |
l3-c16-waffleplots1.png |
3.97Кб |
l3-c16-waffleplots2.png |
4.00Кб |
l3-c16-waffleplots3.png |
15.84Кб |
l3-c16-waffleplots4.png |
4.94Кб |
l3-c16-waffleplotsa.png |
27.04Кб |
l4-c02-scatterplot1.png |
8.02Кб |
l4-c02-scatterplot2.png |
16.93Кб |
l4-c02-scatterplot3.png |
18.23Кб |
l4-c03-overplotting1.png |
7.40Кб |
l4-c03-overplotting2.png |
9.99Кб |
l4-c03-overplotting3.png |
19.28Кб |
l4-c04-heatmap1.png |
26.91Кб |
l4-c04-heatmap2.png |
6.72Кб |
l4-c04-heatmap3.png |
11.12Кб |
l4-c06-violinplot1.png |
18.65Кб |
l4-c06-violinplot2.png |
18.40Кб |
l4-c06-violinplot3.png |
24.06Кб |
l4-c07-boxplot1.png |
22.53Кб |
l4-c07-boxplot2.png |
11.14Кб |
l4-c07-boxplot3.png |
18.81Кб |
l4-c09-clusteredbar1.png |
10.11Кб |
l4-c09-clusteredbar2.png |
9.96Кб |
l4-c09-clusteredbar3.png |
11.66Кб |
l4-c09-clusteredbar4.png |
9.38Кб |
l4-c09-clusteredbar5.png |
11.83Кб |
l4-c11-faceting1.png |
7.50Кб |
l4-c11-faceting2.png |
7.06Кб |
l4-c11-faceting3.png |
12.22Кб |
l4-c12-adaptations1.png |
8.20Кб |
l4-c12-adaptations2.png |
10.22Кб |
l4-c12-adaptations3.png |
32.36Кб |
l4-c12-adaptations4.png |
6.82Кб |
l4-c13-lineplot1.png |
40.49Кб |
l4-c13-lineplot2.png |
14.48Кб |
l4-c13-lineplot3.png |
18.48Кб |
l4-c13-lineplot4.png |
9.57Кб |
l4-c13-lineplot5.png |
32.17Кб |
l4-c16-qqplot1.png |
10.12Кб |
l4-c16-qqplot2.png |
11.71Кб |
l4-c16-qqplot3.png |
12.44Кб |
l4-c16-qqplot4.png |
22.86Кб |
l4-c17-rugplot1.png |
11.04Кб |
l4-c17-rugplot2.png |
27.97Кб |
l4-c18-swarmplot1.png |
45.18Кб |
l4-c19-stackedbars1.png |
21.53Кб |
l4-c19-stackedbars2.png |
14.23Кб |
l4-c19-stackedbars3.png |
7.25Кб |
l4-c20-ridgeline1.png |
46.85Кб |
l4-c20-ridgeline2.png |
27.48Кб |
l4-c20-ridgeline3.png |
38.82Кб |
l5-c02-encodings1.png |
8.75Кб |
l5-c02-encodings2.png |
28.14Кб |
l5-c02-encodings3.png |
4.16Кб |
l5-c03-color1.png |
13.24Кб |
l5-c03-color2.png |
28.52Кб |
l5-c03-color3.png |
839б |
l5-c03-color4.png |
844б |
l5-c03-color5.png |
826б |
l5-c03-color6.png |
13.40Кб |
l5-c03-color7.png |
28.84Кб |
l5-c03-color8.png |
12.25Кб |
l5-c05-faceting1.png |
8.14Кб |
l5-c05-faceting2.png |
17.30Кб |
l5-c06-adaptations1.png |
10.15Кб |
l5-c06-adaptations2.png |
12.51Кб |
l5-c06-adaptations3.png |
7.26Кб |
l5-c06-adaptations4.png |
9.43Кб |
l5-c06-adaptations5.png |
25.32Кб |
l5-c08-plotmatrices1.png |
36.24Кб |
l5-c08-plotmatrices2.png |
47.46Кб |
l5-c08-plotmatrices3.png |
11.47Кб |
l6-c06-polishing1.png |
28.20Кб |
l6-c08-slidedeck1.png |
60.90Кб |
lag.png |
14.80Кб |
lag-1-innerquery.png |
5.04Кб |
lag-diff.png |
16.97Кб |
layer-1-grid.png |
45.73Кб |
lead-3.png |
15.29Кб |
lead-diff.png |
22.17Кб |
learning-curves.png |
109.03Кб |
left-join.png |
66.28Кб |
likertscale.png |
79.48Кб |
lin-reg-no-outliers.png |
28.61Кб |
lin-reg-w-outliers.png |
27.55Кб |
local-minima.png |
38.08Кб |
m.gif |
3.82Кб |
magic-matplotlib.png |
90.72Кб |
magic-pdb.png |
68.61Кб |
magic-timeit.png |
157.29Кб |
magic-timeit2.png |
56.11Кб |
margin-geometry-images.001.jpeg |
225.57Кб |
margin-geometry-images.002.jpeg |
215.44Кб |
margin-geometry-images.003.jpeg |
253.58Кб |
margin-geometry-images.004.jpeg |
272.85Кб |
margin-geometry-images.005.jpeg |
281.30Кб |
margin-geometry-images.008.jpeg |
369.43Кб |
Markdown+cells.mp4 |
330.36Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-leonard-circle.png |
384.91Кб |
matrix-mult-3.png |
78.97Кб |
maxpool.jpeg |
37.07Кб |
medical.png |
186.53Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
mike-josh-bios-portraits.png |
208.29Кб |
minibatch.png |
136.77Кб |
models.png |
627.96Кб |
mse.png |
3.21Кб |
multilayer-diagram-weights.png |
48.57Кб |
natgeo-scatter.jpg |
123.75Кб |
nbconvert-example.png |
73.30Кб |
network-with-labeled-nodes.png |
52.00Кб |
network-with-labeled-weights.png |
59.44Кб |
new-notebook.png |
101.77Кб |
new-pymk-925x1024.png |
955.56Кб |
New-Starbucks-Logo-1200x969.jpg |
89.05Кб |
nn.png |
105.99Кб |
notebook+interface.mp4 |
215.47Кб |
notebook-components.png |
30.25Кб |
notebook-download.png |
79.54Кб |
notebook-json.png |
95.29Кб |
notebook-server.png |
103.33Кб |
notebook-shutdown.png |
62.35Кб |
or-quiz.png |
393.62Кб |
or-quiz.png |
393.62Кб |
or-quiz.png |
393.62Кб |
pasted-image-0.png |
191.78Кб |
perceptronquiz.png |
93.69Кб |
perceptronquiz.png |
93.69Кб |
perceptronquiz.png |
93.69Кб |
plyr.css |
23.62Кб |
plyr.polyfilled.min.js |
126.16Кб |
points.png |
63.17Кб |
points.png |
63.17Кб |
points.png |
63.17Кб |
polynomial-kernel-2-quiz.png |
79.56Кб |
pooling-dims.png |
29.17Кб |
precision-quiz.png |
250.81Кб |
profile-pics.jpg |
595.62Кб |
Project Description - Capstone Project.html |
6.82Кб |
Project Description - Create Your Own Image Classifier.html |
5.83Кб |
Project Description - Disaster Response Pipelines.html |
6.05Кб |
Project Description - Finding Donors for CharityML.html |
7.60Кб |
Project Description - Identify Customer Segments with Arvato.html |
7.35Кб |
Project Description - Improve Your LinkedIn Profile.html |
7.44Кб |
Project Description - Optimize Your GitHub Profile.html |
9.51Кб |
Project Description - Recommendations with IBM.html |
7.06Кб |
Project Description - Write A Data Science Blog Post.html |
5.64Кб |
Project Rubric - Capstone Project.html |
13.73Кб |
Project Rubric - Create Your Own Image Classifier.html |
12.32Кб |
Project Rubric - Disaster Response Pipelines.html |
11.29Кб |
Project Rubric - Finding Donors for CharityML.html |
11.29Кб |
Project Rubric - Identify Customer Segments with Arvato.html |
10.82Кб |
Project Rubric - Improve Your LinkedIn Profile.html |
15.74Кб |
Project Rubric - Optimize Your GitHub Profile.html |
8.97Кб |
Project Rubric - Recommendations with IBM.html |
10.92Кб |
Project Rubric - Write A Data Science Blog Post.html |
10.96Кб |
quadraticlinearregression.png |
23.56Кб |
quadraticlinearregression.png |
23.56Кб |
quiz.jpg |
174.18Кб |
README.txt |
454б |
recall-quiz.png |
228.26Кб |
recommending-apps.png |
140.56Кб |
redacted-linkedinresults.png |
230.77Кб |
regularization-quiz.png |
87.90Кб |
regularization-quiz.png |
87.90Кб |
resid2.jpg |
87.09Кб |
resid-plots.gif |
7.11Кб |
right-join.png |
66.42Кб |
screen-shot-2016-11-24-at-12.08.11-pm.png |
2.90Мб |
screen-shot-2016-11-24-at-12.09.02-pm.png |
3.09Мб |
screen-shot-2016-11-24-at-12.09.24-pm.png |
3.49Мб |
screen-shot-2017-06-26-at-2.11.18-pm.png |
70.26Кб |
screen-shot-2017-06-26-at-3.47.37-pm.png |
77.21Кб |
screen-shot-2017-08-02-at-10.48.24-pm.png |
80.67Кб |
screen-shot-2017-08-02-at-11.14.25-am.png |
79.36Кб |
screen-shot-2017-08-02-at-11.40.37-am.png |
108.23Кб |
screen-shot-2017-08-02-at-11.49.10-am.png |
120.26Кб |
screen-shot-2017-08-02-at-4.57.01-pm.png |
84.00Кб |
screen-shot-2017-08-04-at-6.41.07-pm.png |
52.61Кб |
screen-shot-2017-08-10-at-8.10.13-pm.png |
68.17Кб |
screen-shot-2017-08-10-at-8.23.48-pm.png |
115.10Кб |
screen-shot-2017-08-11-at-11.54.30-am.png |
46.71Кб |
screen-shot-2017-08-11-at-3.21.34-pm.png |
58.51Кб |
screen-shot-2017-08-14-at-1.12.55-pm.png |
81.01Кб |
screen-shot-2017-08-14-at-3.41.58-pm.png |
88.68Кб |
screen-shot-2017-08-14-at-4.04.44-pm.png |
103.54Кб |
screen-shot-2017-08-14-at-4.10.54-pm.png |
105.31Кб |
screen-shot-2017-08-28-at-1.04.03-pm.png |
18.16Кб |
screen-shot-2017-08-28-at-1.47.06-pm.png |
21.14Кб |
screen-shot-2017-08-28-at-2.22.27-pm.png |
28.08Кб |
screen-shot-2017-09-03-at-2.28.22-pm.png |
47.67Кб |
screen-shot-2017-09-03-at-3.13.54-pm.png |
60.44Кб |
screen-shot-2017-09-03-at-6.12.14-pm.png |
30.64Кб |
screen-shot-2017-09-03-at-6.34.02-pm.png |
31.86Кб |
screen-shot-2017-10-19-at-5.33.45-pm.png |
80.34Кб |
screen-shot-2017-10-27-at-1.49.58-pm.png |
11.37Кб |
screen-shot-2017-10-27-at-1.49.58-pm.png |
11.37Кб |
screen-shot-2017-11-06-at-1.14.05-pm.png |
15.64Кб |
screen-shot-2017-11-07-at-2.16.14-pm.png |
78.33Кб |
screen-shot-2017-11-07-at-2.17.08-pm.png |
882.60Кб |
screen-shot-2017-11-07-at-2.18.27-pm.png |
832.02Кб |
screen-shot-2017-11-10-at-2.43.00-pm.png |
11.90Кб |
screen-shot-2017-11-16-at-3.54.06-pm.png |
229.78Кб |
screen-shot-2017-11-16-at-3.54.06-pm.png |
229.78Кб |
screen-shot-2017-12-07-at-1.33.46-pm.png |
617.99Кб |
screen-shot-2017-12-07-at-3.45.19-pm.png |
227.17Кб |
screen-shot-2017-12-07-at-3.48.20-pm.png |
925.38Кб |
screen-shot-2017-12-07-at-3.56.39-pm.png |
610.41Кб |
screen-shot-2017-12-07-at-9.43.05-am.png |
618.06Кб |
screen-shot-2018-01-03-at-2.20.30-pm.png |
647.38Кб |
screen-shot-2018-01-03-at-2.23.38-pm.png |
187.90Кб |
screen-shot-2018-01-06-at-10.44.48-pm.png |
285.48Кб |
screen-shot-2018-01-06-at-8.13.20-pm.png |
50.77Кб |
screen-shot-2018-01-06-at-8.13.20-pm.png |
50.77Кб |
screen-shot-2018-01-06-at-9.30.27-pm.png |
66.38Кб |
screen-shot-2018-01-06-at-9.41.01-pm.png |
110.70Кб |
screen-shot-2018-01-19-at-1.05.48-pm.png |
279.73Кб |
screen-shot-2018-01-19-at-1.14.23-pm.png |
358.59Кб |
screen-shot-2018-01-19-at-1.57.42-pm.png |
114.23Кб |
screen-shot-2018-01-19-at-1.58.00-pm.png |
126.03Кб |
screen-shot-2018-01-19-at-2.24.21-pm.png |
218.72Кб |
screen-shot-2018-01-19-at-2.28.03-pm.png |
90.71Кб |
screen-shot-2018-01-23-at-10.49.16-am.png |
42.36Кб |
screen-shot-2018-01-23-at-11.30.13-am.png |
92.79Кб |
screen-shot-2018-01-24-at-12.03.45-am.png |
170.85Кб |
screen-shot-2018-01-24-at-2.27.07-pm.png |
113.18Кб |
screen-shot-2018-01-24-at-3.13.49-pm.png |
204.57Кб |
screen-shot-2018-01-26-at-10.16.48-pm.png |
44.48Кб |
screen-shot-2018-01-26-at-11.05.49-pm.png |
323.90Кб |
screen-shot-2018-01-26-at-11.16.45-pm.png |
44.43Кб |
screen-shot-2018-01-26-at-11.21.42-pm.png |
44.22Кб |
screen-shot-2018-01-26-at-11.48.02-pm.png |
43.35Кб |
screen-shot-2018-01-29-at-11.49.47-am.png |
65.43Кб |
screen-shot-2018-01-29-at-11.51.35-am.png |
84.25Кб |
screen-shot-2018-01-30-at-4.39.42-pm.png |
95.46Кб |
screen-shot-2018-01-30-at-5.14.39-pm.png |
220.32Кб |
screen-shot-2018-02-01-at-12.10.40-am.png |
47.51Кб |
screen-shot-2018-02-10-at-8.59.39-pm.png |
314.45Кб |
screen-shot-2018-02-10-at-9.00.30-pm.png |
295.89Кб |
screen-shot-2018-02-14-at-10.03.16-am.png |
14.10Кб |
screen-shot-2018-02-14-at-10.05.37-am.png |
34.13Кб |
screen-shot-2018-02-14-at-10.08.56-am.png |
45.13Кб |
screen-shot-2018-02-14-at-10.47.52-am.png |
51.49Кб |
screen-shot-2018-02-14-at-3.59.39-pm.png |
102.91Кб |
screen-shot-2018-02-14-at-6.07.26-pm.png |
117.44Кб |
screen-shot-2018-02-21-at-6.41.35-pm.png |
18.77Кб |
screen-shot-2018-02-21-at-8.05.18-pm.png |
141.41Кб |
screen-shot-2018-02-23-at-5.00.25-pm.png |
754.27Кб |
screen-shot-2018-02-23-at-5.11.40-pm.png |
200.67Кб |
screen-shot-2018-02-24-at-2.13.15-pm.png |
280.87Кб |
screen-shot-2018-02-24-at-2.16.00-pm.png |
944.73Кб |
screen-shot-2018-02-24-at-2.17.54-pm.png |
52.92Кб |
screen-shot-2018-02-24-at-2.18.30-pm.png |
211.30Кб |
screen-shot-2018-03-09-at-4.07.07-pm.png |
72.08Кб |
screen-shot-2018-03-10-at-12.47.35-am.png |
53.25Кб |
screen-shot-2018-03-10-at-3.31.18-pm.png |
8.32Кб |
screen-shot-2018-03-19-at-2.30.59-pm.png |
507.42Кб |
screen-shot-2018-03-19-at-2.30.59-pm.png |
507.42Кб |
screen-shot-2018-03-19-at-2.30.59-pm.png |
507.42Кб |
screen-shot-2018-03-19-at-2.49.57-pm.png |
442.46Кб |
screen-shot-2018-03-19-at-3.21.24-pm.png |
339.90Кб |
screen-shot-2018-03-19-at-3.21.24-pm.png |
339.90Кб |
screen-shot-2018-03-19-at-3.49.28-pm.png |
471.61Кб |
screen-shot-2018-03-19-at-3.49.28-pm.png |
471.61Кб |
screen-shot-2018-03-21-at-2.40.42-pm.png |
48.54Кб |
screen-shot-2018-03-28-at-4.44.34-pm.png |
30.76Кб |
screen-shot-2018-03-28-at-4.52.09-pm.png |
9.29Кб |
screen-shot-2018-03-28-at-5.11.09-pm.png |
32.06Кб |
screen-shot-2018-03-28-at-5.15.59-pm.png |
32.15Кб |
screen-shot-2018-04-02-at-4.25.41-pm.png |
97.56Кб |
screen-shot-2018-04-29-at-10.10.52-am.png |
486.98Кб |
screen-shot-2018-05-11-at-11.03.34-am.png |
150.98Кб |
screen-shot-2018-05-22-at-12.25.34-pm.png |
6.09Кб |
screen-shot-2018-05-22-at-12.27.22-pm.png |
4.20Кб |
screen-shot-2018-05-22-at-12.27.55-pm.png |
4.28Кб |
screen-shot-2018-05-25-at-11.22.02-am.png |
15.55Кб |
screen-shot-2018-05-25-at-11.27.26-am.png |
57.46Кб |
screen-shot-2018-05-25-at-11.27.36-am.png |
156.64Кб |
screen-shot-2018-05-26-at-4.40.07-pm.png |
42.00Кб |
screen-shot-2018-05-26-at-4.45.34-pm.png |
35.58Кб |
screen-shot-2018-05-26-at-4.59.04-pm.png |
36.10Кб |
screen-shot-2018-05-26-at-7.04.15-pm.png |
54.88Кб |
screen-shot-2018-05-26-at-7.24.13-pm.png |
238.25Кб |
screen-shot-2018-05-26-at-7.53.22-pm.png |
322.07Кб |
screen-shot-2018-05-26-at-7.55.02-pm.png |
328.64Кб |
screen-shot-2018-05-26-at-7.55.22-pm.png |
326.29Кб |
screen-shot-2018-05-29-at-4.06.53-pm.png |
1.74Мб |
screen-shot-2018-05-29-at-4.19.03-pm.png |
1.29Мб |
screen-shot-2018-06-02-at-5.34.36-pm.png |
394.59Кб |
screen-shot-2018-06-02-at-5.52.44-pm.png |
785.71Кб |
screen-shot-2018-06-02-at-6.07.54-pm.png |
465.72Кб |
screen-shot-2018-06-07-at-12.02.10-pm.png |
35.69Кб |
screen-shot-2018-06-13-at-6.32.38-pm.png |
48.53Кб |
screen-shot-2018-07-05-at-7.30.12-pm.png |
13.95Кб |
screen-shot-2018-07-19-at-4.05.25-pm.png |
201.30Кб |
screen-shot-2018-07-19-at-4.06.55-pm.png |
130.00Кб |
screen-shot-2018-07-27-at-1.24.38-pm.png |
30.85Кб |
screen-shot-2018-07-27-at-1.24.38-pm.png |
30.85Кб |
screen-shot-2018-08-07-at-4.35.30-pm.png |
220.32Кб |
screen-shot-2018-08-07-at-6.02.41-pm.png |
173.12Кб |
screen-shot-2018-08-11-at-12.52.03-pm.png |
152.62Кб |
screen-shot-2018-08-11-at-12.52.21-pm.png |
217.24Кб |
screen-shot-2018-08-11-at-12.54.48-pm.png |
98.63Кб |
screen-shot-2018-08-13-at-6.26.18-pm.png |
169.28Кб |
screen-shot-2018-08-13-at-6.39.12-pm.png |
222.89Кб |
screen-shot-2018-08-27-at-3.50.29-pm.png |
44.81Кб |
screen-shot-2018-08-27-at-3.51.23-pm.png |
96.04Кб |
screen-shot-2018-09-13-at-6.32.03-pm.png |
240.26Кб |
screen-shot-2018-09-14-at-10.11.13-am.png |
236.96Кб |
screen-shot-2018-09-14-at-10.16.10-am.png |
247.65Кб |
screen-shot-2018-09-14-at-2.25.01-pm.png |
79.25Кб |
screen-shot-2018-09-17-at-3.40.30-pm.png |
141.60Кб |
screen-shot-2018-09-21-at-11.36.43-am.png |
1.67Мб |
screen-shot-2018-09-21-at-12.02.03-pm.png |
56.19Кб |
screen-shot-2018-11-07-at-10.23.07-pm.png |
366.06Кб |
screen-shot-2018-11-07-at-10.23.07-pm.png |
366.06Кб |
screen-shot-2018-11-07-at-9.55.40-pm.png |
222.17Кб |
screen-shot-2018-11-07-at-9.55.40-pm.png |
222.17Кб |
screen-shot-2018-11-07-at-9.59.16-pm.png |
529.19Кб |
screen-shot-2018-11-07-at-9.59.16-pm.png |
529.19Кб |
screen-shot-2018-11-09-at-6.28.07-pm.png |
299.96Кб |
screen-shot-2018-11-09-at-6.28.07-pm.png |
299.96Кб |
screen-shot-2018-11-09-at-7.38.47-pm.png |
110.58Кб |
screen-shot-2018-11-09-at-7.38.47-pm.png |
110.58Кб |
screen-shot-2018-11-09-at-7.48.22-pm.png |
1.57Мб |
screen-shot-2018-11-09-at-7.48.22-pm.png |
1.57Мб |
screen-shot-2018-11-09-at-7.49.34-pm.png |
238.98Кб |
screen-shot-2018-11-09-at-7.49.34-pm.png |
238.98Кб |
screen-shot-2018-11-09-at-7.49.50-pm.png |
375.54Кб |
screen-shot-2018-11-09-at-7.49.50-pm.png |
375.54Кб |
screen-shot-2018-11-19-at-11.32.05-am.png |
521.11Кб |
server-shutdown.png |
155.42Кб |
sigmoid-derivative.gif |
2.09Кб |
sigmoid-derivative.gif |
2.09Кб |
slides-cell-toolbar-menu.png |
61.36Кб |
slides-choose-slide-type.png |
53.31Кб |
spam.png |
67.76Кб |
spamham.png |
135.09Кб |
speaking.png |
17.08Кб |
step1-cd.png |
14.68Кб |
step1-cd.png |
14.68Кб |
step2-pwd.png |
16.39Кб |
step2-pwd.png |
16.39Кб |
step3-path.png |
20.76Кб |
step3-path.png |
20.76Кб |
step4-alias.png |
17.86Кб |
step4-alias.png |
17.86Кб |
step5-source.png |
15.24Кб |
step5-source.png |
15.24Кб |
step6-testrun.png |
43.44Кб |
step6-testrun.png |
43.44Кб |
student-acceptance.png |
20.47Кб |
student-acceptance.png |
20.47Кб |
student-data.png |
91.85Кб |
student-quiz.png |
748.98Кб |
student-quiz.png |
748.98Кб |
student-quiz.png |
748.98Кб |
styles.css |
3.76Кб |
summary.png |
93.72Кб |
summary.png |
93.72Кб |
table.png |
192.08Кб |
tidy-data-four.png |
397.87Кб |
tidy-data-one.png |
390.38Кб |
tidy-data-three.png |
437.59Кб |
tidy-data-two.png |
371.78Кб |
trees.png |
300.00Кб |
ud123-l1-git-course-outline.png |
378.38Кб |
ud123-l1-google-docs-saving-progress.gif |
390.05Кб |
ud123-l1-terminal-config-mac.png |
41.49Кб |
ud123-l1-terminal-config-windows.png |
93.23Кб |
ud123-l2-.git-directory.png |
205.76Кб |
ud123-l2-base-directory.png |
82.60Кб |
ud123-l2-base-directory-git-repo.png |
113.61Кб |
ud123-l2-course-git-blog-project-in-browser.png |
968.54Кб |
ud123-l2-git-clone.gif |
147.36Кб |
ud123-l2-git-init.gif |
75.86Кб |
ud123-l2-git-status-blog-project.gif |
70.78Кб |
ud123-l2-git-status-new-project.gif |
65.36Кб |
ud123-l2-new-git-project.png |
106.52Кб |
ud123-l3-git-log-output.png |
286.38Кб |
ud123-l3-git-log-p.png |
110.08Кб |
ud123-l3-git-log-p-lines-removed-annotated.png |
265.93Кб |
ud123-l3-git-log-stat.gif |
206.74Кб |
ud123-l3-git-log-vs-git-log-oneline.png |
504.63Кб |
ud123-l3-git-log-vs-git-log-stat.png |
404.31Кб |
ud123-l3-git-status-output.png |
174.21Кб |
ud123-l3-project-in-editor.png |
490.08Кб |
ud123-l4-git-add.gif |
352.75Кб |
ud123-l4-git-add-to-staging-recap.gif |
2.00Мб |
ud123-l4-git-commit-details-section.png |
364.44Кб |
ud123-l4-git-commit-editor.png |
313.05Кб |
ud123-l4-git-commit-finished.png |
184.69Кб |
ud123-l4-git-commit-initial-commit.png |
318.65Кб |
ud123-l4-git-commit-terminal-hangs.png |
111.00Кб |
ud123-l4-git-diff.png |
179.50Кб |
ud123-l4-git-gitignore.png |
191.41Кб |
ud123-l4-git-ignore-word-doc.png |
192.80Кб |
ud123-l4-git-status.png |
167.54Кб |
ud123-l4-git-status-after-git-add.png |
222.26Кб |
ud123-l4-git-status-all-files.png |
191.94Кб |
ud123-l4-git-status-modified-files.png |
208.52Кб |
ud123-l4-git-status-with-untracked.png |
222.97Кб |
ud123-l4-new-git-project.png |
110.42Кб |
ud123-l5-branch-current.png |
54.47Кб |
ud123-l5-changes-add-color.png |
164.17Кб |
ud123-l5-editor-with-tag-message.png |
280.85Кб |
ud123-l5-git-branch.png |
144.17Кб |
ud123-l5-git-branch-asterisk.png |
134.91Кб |
ud123-l5-git-branch-sidebar.png |
149.38Кб |
ud123-l5-git-checkout-b-footer-master.png |
183.94Кб |
ud123-l5-git-checkout-sidebar.png |
154.24Кб |
ud123-l5-git-log-branches.png |
143.82Кб |
ud123-l5-git-log-decorate.png |
265.33Кб |
ud123-l5-git-log-graph-all.png |
248.44Кб |
ud123-l5-git-log-pre-tag.png |
124.69Кб |
ud123-l5-git-merge-conflict.png |
193.74Кб |
ud123-l5-git-merge-conflict-indicators.png |
335.98Кб |
ud123-l5-git-merge-conflict-prep.png |
303.72Кб |
ud123-l5-git-merge-conflict-prep2.png |
321.08Кб |
ud123-l5-git-merge-sidebar.png |
177.00Кб |
ud123-l5-git-tag.png |
139.67Кб |
ud123-l5-git-tag-delete.png |
180.40Кб |
ud123-l5-merge-fast-forward.gif |
595.42Кб |
ud123-l5-resolve-merge-conflict.gif |
7.73Мб |
ud123-l6-git-revert-hard.png |
95.16Кб |
ud123-l6-git-revert-mixed.png |
125.86Кб |
ud123-l6-git-revert-post.png |
74.17Кб |
ud123-l6-git-revert-prep.png |
155.04Кб |
ud123-l6-git-revert-soft.png |
95.84Кб |
ud456-l1-02-local-and-remote-repos.png |
38.93Кб |
ud456-l1-02-multiple-remote-repos.png |
42.76Кб |
ud456-l1-04-commit-count-local.png |
147.52Кб |
ud456-l1-04-commit-count-remote.png |
408.66Кб |
ud456-l1-04-git-pull.png |
325.51Кб |
ud456-l1-github-create-repo-page.png |
331.69Кб |
ud456-l1-github-homepage.png |
596.72Кб |
ud456-l1-github-homepage-new-repo-button.png |
632.57Кб |
ud456-l1-git-remote-add-terminal.png |
249.26Кб |
ud456-l1-git-remote-from-clone.png |
186.20Кб |
ud456-l1-git-remote-no-remote.png |
140.37Кб |
ud456-l1-git-remote-shortname.png |
147.11Кб |
ud456-l1-my-travel-plans-project.png |
145.33Кб |
ud456-l1-nav-bar-new-repo-link.png |
68.16Кб |
ud456-l1-project-commits.png |
131.85Кб |
ud456-l1-project-github-no-commits.png |
413.25Кб |
ud456-l1-project-on-github.png |
185.50Кб |
ud456-l1-project-on-github-focus.png |
183.83Кб |
ud456-l1-project-push-commits.png |
328.26Кб |
ud456-l2-02-clone-linked-to-fork.png |
65.36Кб |
ud456-l2-02-git-fork-error.png |
155.01Кб |
ud456-l2-03-clone-lighthouse-project.png |
299.95Кб |
ud456-l2-03-commit-with-description.png |
296.12Кб |
ud456-l2-03-git-log-author.png |
255.39Кб |
ud456-l2-03-git-shortlog.png |
318.29Кб |
ud456-l2-03-git-shortlog-flags.png |
248.43Кб |
ud456-l2-04-issue-comments.png |
581.48Кб |
ud456-l2-04-lighthouse-contributing-file.png |
340.47Кб |
ud456-l2-04-lighthouse-issues.png |
505.67Кб |
ud456-l2-04-new-issue-button.png |
456.24Кб |
ud456-l2-04-sign-contributor-license.png |
284.72Кб |
ud456-l2-04-submit-new-issue.png |
327.19Кб |
ud456-l3-03-add-upstream-remote.png |
137.90Кб |
ud456-l3-03-fetch-upstream-changes.png |
88.07Кб |
ud456-l3-03-git-log-of-upstream-changes.png |
143.76Кб |
ud456-l3-03-git-remotes-origin.png |
89.27Кб |
ud456-l3-03-rename-repos.png |
153.18Кб |
ud456-l3-03-starred-repos.png |
433.92Кб |
ud456-l3-03-watched-repos.png |
450.83Кб |
ud456-l3-04-pull-request-comment.png |
519.66Кб |
udacimak.png |
461.07Кб |
udacitylogo-copy.png |
37.69Кб |
udacitylogo-copy.png |
37.69Кб |
unnamed-project-desc-0.gif |
94.58Кб |
unnamed-project-desc-1.gif |
19.15Кб |
weight-label-reference.gif |
2.83Кб |
workspaces-gpu.png |
145.50Кб |
workspaces-jupyter.png |
83.54Кб |
workspaces-menu.png |
93.96Кб |
workspaces-new.png |
85.21Кб |
workspaces-notebook.png |
142.90Кб |
workspaces-submit.png |
146.20Кб |
workspaces-terminal.png |
46.91Кб |
xor.png |
214.95Кб |
xor.png |
214.95Кб |
xor.png |
214.95Кб |
xor-quiz.png |
94.14Кб |
xor-quiz.png |
94.14Кб |
xor-quiz.png |
94.14Кб |
y.gif |
1.41Кб |