Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
460б |
0.Importing Data.webm |
9.01Мб |
0.Welcome.webm |
39.76Мб |
01. Accessing an API with Python.webm |
32.28Мб |
01. An Intelligent Spider.webm |
19.85Мб |
01. Cleaning A Spreadsheet.webm |
35.38Мб |
01. Complex Relationships.webm |
18.73Мб |
01. Controlling Conversion.webm |
19.70Мб |
01. Everyone Loves Charlotte.webm |
27.89Мб |
01. Examples and Features.webm |
12.81Мб |
01. Functions.webm |
30.28Мб |
01. Indexing.webm |
48.99Мб |
01. Installation and Creating Your First Notebook.webm |
17.66Мб |
01. Installing scikit-learn using Anaconda.webm |
18.02Мб |
01. Introducing Tuples.webm |
7.81Мб |
01. Iterate over Dictionaries.webm |
6.28Мб |
01. Iteration.webm |
11.04Мб |
01. Lets Chat About Sequences.webm |
11.60Мб |
01. Making Better Decisions with Data Analysis.webm |
22.24Мб |
01. Moving Forward.webm |
4.88Мб |
01. New Way of Thinking.webm |
55.23Мб |
01. Numeric.webm |
27.06Мб |
01. Our Data Set - Flower Power.webm |
19.09Мб |
01. Packing.webm |
13.49Мб |
01. Problem Discussion.webm |
13.14Мб |
01. Project Breakdown.webm |
17.06Мб |
01. Recap of Functions.webm |
11.44Мб |
01. Sequence Operations.webm |
7.81Мб |
01. Summarizing Data Maximum, Minimum, Range.webm |
17.91Мб |
01. The Application.webm |
18.62Мб |
01. The Project.webm |
17.47Мб |
01. Understanding Metrics.webm |
28.73Мб |
01. Welcome.webm |
46.30Мб |
01. Welcome.webm |
35.87Мб |
01. Welcome.webm |
19.16Мб |
01. Welcome.webm |
16.24Мб |
01. Welcome to Matplotlib.webm |
13.19Мб |
01. What Are Objects And Classes.webm |
29.96Мб |
01. What is a dictionary.webm |
15.55Мб |
01. What is Anaconda and why use it.webm |
21.77Мб |
01. What Is Cleaning Data.webm |
16.69Мб |
01. What is Data Scraping.webm |
31.01Мб |
01. What is Machine Learning.webm |
22.40Мб |
01. What Problems Does Netflix Have.webm |
29.49Мб |
01. Where is it Being Used.webm |
14.11Мб |
02. Add Items.webm |
10.15Мб |
02. Boolean Array Indexing.webm |
45.36Мб |
02. Characteristics of Big Data.webm |
10.04Мб |
02. Cleaning A Spreadsheet Part 2.webm |
21.28Мб |
02. Comparing and Combining Dice.webm |
17.75Мб |
02. Context.webm |
17.35Мб |
02. Creation.webm |
10.18Мб |
02. Data is Everywhere.webm |
25.82Мб |
02. Decision Process.webm |
20.41Мб |
02. Defining a Function.webm |
3.93Мб |
02. Defining Terms.webm |
20.44Мб |
02. Dictionary Syntax and KeyValue Pairs.webm |
12.19Мб |
02. Functions Recap and Cheat Sheet.md |
1.38Кб |
02. Gather Information.webm |
12.63Мб |
02. Gathering Weather Data.webm |
8.34Мб |
02. Getting Setup.webm |
17.49Мб |
02. Getting Started with Charting.webm |
10.19Мб |
02. How Does Netflix Apply Big Data Tools to Solve these Problems.webm |
17.38Мб |
02. Installing Anaconda.webm |
17.66Мб |
02. Installing Scrapy.webm |
11.90Мб |
02. Iterating with Basic For Loops.webm |
8.72Мб |
02. Labels and Classifiers.webm |
10.90Мб |
02. Lets Make a Class!.webm |
7.62Мб |
02. Loading a Dataset.webm |
14.41Мб |
02. Math.webm |
13.95Мб |
02. Mutability.webm |
14.51Мб |
02. Packing, a Practical Example.webm |
5.36Мб |
02. Packing with Dictionaries.webm |
6.16Мб |
02. Recap.webm |
8.99Мб |
02. Returning Values.webm |
24.82Мб |
02. Running Code in Cells.webm |
12.40Мб |
02. Running Scripts.webm |
14.24Мб |
02. Scatter Plot.webm |
17.23Мб |
02. Scraping APIs.webm |
22.92Мб |
02. Slices.webm |
6.99Мб |
02. Strings and Operators.webm |
14.02Мб |
02. Summarizing Data Mean, Median, Mode.webm |
9.26Мб |
02. Super-Duper!.webm |
16.84Мб |
02. Supervised and Unsupervised Learning.webm |
29.39Мб |
02. Types of Data.webm |
22.40Мб |
02. Universal Functions.webm |
42.94Мб |
02. Web Page Anatomy.webm |
18.79Мб |
03. Accessing Keys and Values.webm |
6.29Мб |
03. Addition.webm |
13.26Мб |
03. All About Returns.webm |
8.22Мб |
03. Analyzing Data Spread.webm |
9.54Мб |
03. Analyzing the Data.webm |
14.43Мб |
03. Bad Data Types.webm |
17.52Мб |
03. Beautiful Soup.webm |
27.18Мб |
03. Branch and Loop.webm |
19.29Мб |
03. Calling a Function.webm |
3.11Мб |
03. Calling the API.webm |
25.47Мб |
03. Cleaning A CSV.webm |
22.81Мб |
03. Crawling Spiders.webm |
19.59Мб |
03. Creating a Spreadsheet.webm |
17.91Мб |
03. Display the List.webm |
13.87Мб |
03. Domain Data Storage.webm |
34.58Мб |
03. Emulating Built-ins.webm |
24.24Мб |
03. Expecting Exceptions.webm |
18.57Мб |
03. Giving a Hand.webm |
19.73Мб |
03. Graphs and Charts.webm |
25.31Мб |
03. Histogram.webm |
18.01Мб |
03. Introducing Arrays.webm |
38.46Мб |
03. Iterating with Enumerate.webm |
7.08Мб |
03. Len, Min, and Max.webm |
4.42Мб |
03. Machine Learning Frameworks.webm |
18.93Мб |
03. Making Predictions with a Classifier.webm |
11.34Мб |
03. Methods.webm |
14.04Мб |
03. Multiple Superclasses.webm |
31.27Мб |
03. Problem Summary and Presentation.webm |
8.88Мб |
03. Routines in Action.webm |
38.46Мб |
03. Slicing.webm |
28.20Мб |
03. Split and Join.webm |
13.41Мб |
03. String Methods.webm |
13.39Мб |
03. The Importance of Big Data.webm |
22.77Мб |
03. The Legend of Charting.webm |
10.76Мб |
03. The Python Shell.webm |
20.53Мб |
03. Tuples vs. Lists.md |
2.06Кб |
03. Unpacking.webm |
4.50Мб |
03. Unpacking with Dictionaries.md |
1.16Кб |
03. Using conda to Install Packages.webm |
9.35Мб |
03. Using Scrapers for Site Testing.webm |
22.21Мб |
03. Wrapping Up.webm |
27.63Мб |
04. Arguments and Parameters.webm |
6.65Мб |
04. Booleans.webm |
17.58Мб |
04. Box Plot.webm |
14.64Мб |
04. Chart Types & Reasons to Use.webm |
18.92Мб |
04. Cleaning A CSV Part 2.webm |
24.40Мб |
04. Common Issues with Data Scraping.md |
1.67Кб |
04. Creating the Study Log.webm |
29.11Мб |
04. Domain Computations.webm |
29.31Мб |
04. Exploring Our New Problems.webm |
41.33Мб |
04. Family Tree.webm |
20.08Мб |
04. Getting Good Data is Hard.webm |
37.57Мб |
04. Handle Exceptions.webm |
19.96Мб |
04. Indexing.webm |
31.57Мб |
04. Is Our Data Normal.webm |
10.71Мб |
04. Iterating with Ranges.webm |
6.38Мб |
04. Lets Talk About Scope.webm |
10.96Мб |
04. Machine Learning Review.webm |
7.79Мб |
04. Manipulation.webm |
43.46Мб |
04. Membership Testing.webm |
4.12Мб |
04. Method Arguments.webm |
13.49Мб |
04. miniconda.webm |
20.41Мб |
04. More Soup in the Tureen.webm |
23.56Мб |
04. Multidimensional Lists.webm |
14.17Мб |
04. Other Languages.webm |
20.20Мб |
04. Plotting.webm |
38.74Мб |
04. Presenting Your Findings.webm |
30.37Мб |
04. Raising Exceptions.webm |
15.95Мб |
04. Saving the Data.webm |
22.30Мб |
04. Subclassing Built-ins.webm |
28.47Мб |
04. Syntax and Errors.webm |
23.06Мб |
04. The Endless Web.webm |
38.37Мб |
04. Tuple Syntax.md |
2.58Кб |
04. Unpacking, a Practical Example.webm |
5.00Мб |
04. Update and Mutate Dictionaries.webm |
6.29Мб |
04. Wrap Up.webm |
6.09Мб |
04. Yatzy Scoring.webm |
14.14Мб |
05. Being a Good Citizen.webm |
31.17Мб |
05. Cleaner Code Through Refactoring.webm |
21.10Мб |
05. Cleaning A CSV Part 3.webm |
23.96Мб |
05. Constructicons.webm |
19.30Мб |
05. Count and Index.webm |
6.86Мб |
05. Deletion.webm |
14.60Мб |
05. Design.webm |
31.53Мб |
05. Domain Infrastructure.webm |
17.49Мб |
05. Function Gotchas.md |
1.56Кб |
05. If, Else and Elif.webm |
22.88Мб |
05. Multidimensional Arrays.webm |
35.33Мб |
05. No Problem.webm |
17.91Мб |
05. Saving Your Work.webm |
12.02Мб |
05. Variables.webm |
20.28Мб |
05. Visualizing Data.webm |
15.99Мб |
05. Where to Now.webm |
15.72Мб |
05. While Loops.webm |
24.61Мб |
05. Wrapping Up.webm |
7.32Мб |
06. Charting Our Data Part 1.webm |
9.12Мб |
06. Cleaning A CSV Part 4.webm |
23.67Мб |
06. Code Challenges.md |
908б |
06. Code Samples Membership Testing, Count, and Index.md |
1.19Кб |
06. Comparisons.webm |
25.42Мб |
06. For Loops.webm |
11.23Мб |
06. Multiple Arguments and Parameters.webm |
5.99Мб |
06. Special Methods.webm |
19.91Мб |
06. Wrapping Up.webm |
18.82Мб |
07. Charting Our Data Part 2.webm |
12.63Мб |
07. Concatenation and Multiplication.webm |
4.42Мб |
07. Input and Coding Style.webm |
25.83Мб |
08. Sequence Operations Cheat Sheet.md |
2.70Кб |
1 |
18б |
1.Manipulation.webm |
5.47Мб |
1.Meet Series.webm |
11.99Мб |
10 |
27.09Кб |
100 |
668.93Кб |
101 |
792.05Кб |
102 |
962.99Кб |
103 |
160.64Кб |
104 |
313.50Кб |
105 |
782.21Кб |
106 |
11.69Кб |
107 |
50.48Кб |
108 |
282.29Кб |
109 |
459.41Кб |
11 |
178.97Кб |
110 |
369.48Кб |
111 |
407.34Кб |
112 |
500.90Кб |
113 |
583.45Кб |
114 |
599.29Кб |
115 |
779.86Кб |
116 |
848.53Кб |
117 |
883.57Кб |
118 |
913.26Кб |
119 |
984.44Кб |
12 |
142.57Кб |
120 |
1008.15Кб |
121 |
56.20Кб |
122 |
137.87Кб |
123 |
294.89Кб |
124 |
322.00Кб |
125 |
521.76Кб |
126 |
526.46Кб |
127 |
608.60Кб |
128 |
627.79Кб |
129 |
760.48Кб |
13 |
131.03Кб |
130 |
827.43Кб |
131 |
876.32Кб |
132 |
199.63Кб |
133 |
378.44Кб |
134 |
380.59Кб |
135 |
611.91Кб |
136 |
833.25Кб |
137 |
1005.76Кб |
138 |
11.19Кб |
139 |
97.99Кб |
14 |
100.00Кб |
140 |
410.93Кб |
141 |
413.63Кб |
142 |
575.69Кб |
143 |
680.04Кб |
144 |
790.62Кб |
145 |
978.30Кб |
146 |
39.29Кб |
147 |
100.69Кб |
148 |
245.99Кб |
149 |
292.25Кб |
15 |
691.00Кб |
150 |
830.84Кб |
151 |
841.17Кб |
152 |
872.00Кб |
153 |
978.18Кб |
154 |
468.83Кб |
155 |
661.55Кб |
156 |
759.41Кб |
157 |
901.70Кб |
158 |
1010.96Кб |
159 |
13.85Кб |
16 |
430.66Кб |
160 |
54.32Кб |
161 |
126.58Кб |
162 |
290.39Кб |
163 |
680.91Кб |
164 |
797.92Кб |
165 |
191.76Кб |
166 |
198.24Кб |
167 |
217.53Кб |
168 |
390.13Кб |
169 |
695.27Кб |
17 |
9.65Кб |
170 |
943.54Кб |
171 |
10.51Кб |
172 |
141.91Кб |
173 |
356.87Кб |
174 |
638.46Кб |
175 |
723.65Кб |
176 |
725.83Кб |
177 |
737.19Кб |
178 |
861.25Кб |
179 |
934.37Кб |
18 |
439.49Кб |
180 |
5.28Кб |
181 |
540.16Кб |
182 |
654.10Кб |
183 |
1022.22Кб |
184 |
126.71Кб |
185 |
231.42Кб |
186 |
512.76Кб |
187 |
593.20Кб |
188 |
597.71Кб |
189 |
903.19Кб |
19 |
483.69Кб |
190 |
1022.10Кб |
191 |
71.54Кб |
192 |
909.23Кб |
193 |
776.87Кб |
194 |
798.56Кб |
2 |
1.09Кб |
2.Combining DataFrames.webm |
8.95Мб |
2.Vectorization and Broadcasting Review.webm |
13.69Мб |
20 |
33.01Кб |
21 |
853.43Кб |
22 |
70.04Кб |
23 |
645.43Кб |
24 |
732.80Кб |
25 |
37.71Кб |
26 |
524.99Кб |
27 |
623.31Кб |
28 |
708.01Кб |
29 |
46.56Кб |
3 |
9.59Кб |
3.Meet DataFrames.webm |
11.60Мб |
3.Until Next Time.webm |
13.71Мб |
30 |
279.46Кб |
31 |
547.17Кб |
32 |
819.34Кб |
33 |
107.85Кб |
34 |
373.94Кб |
35 |
843.50Кб |
36 |
966.53Кб |
37 |
170.81Кб |
38 |
181.91Кб |
39 |
542.52Кб |
4 |
1.54Кб |
4.Onwards.webm |
4.77Мб |
40 |
597.42Кб |
41 |
707.29Кб |
42 |
189.06Кб |
43 |
401.23Кб |
44 |
617.91Кб |
45 |
782.92Кб |
46 |
36.26Кб |
47 |
342.20Кб |
48 |
449.01Кб |
49 |
963.93Кб |
5 |
7.70Кб |
50 |
82.93Кб |
51 |
119.89Кб |
52 |
198.07Кб |
53 |
232.08Кб |
54 |
610.04Кб |
55 |
619.19Кб |
56 |
718.02Кб |
57 |
783.27Кб |
58 |
809.43Кб |
59 |
232.99Кб |
6 |
37.18Кб |
60 |
738.35Кб |
61 |
926.24Кб |
62 |
480.99Кб |
63 |
570.97Кб |
64 |
600.08Кб |
65 |
606.82Кб |
66 |
737.48Кб |
67 |
824.04Кб |
68 |
942.46Кб |
69 |
35.92Кб |
7 |
23.08Кб |
70 |
94.06Кб |
71 |
150.15Кб |
72 |
277.28Кб |
73 |
304.35Кб |
74 |
415.72Кб |
75 |
717.50Кб |
76 |
725.56Кб |
77 |
857.89Кб |
78 |
934.23Кб |
79 |
76.64Кб |
8 |
4.28Кб |
80 |
84.76Кб |
81 |
180.01Кб |
82 |
218.34Кб |
83 |
271.99Кб |
84 |
386.48Кб |
85 |
442.19Кб |
86 |
1007.75Кб |
87 |
1018.63Кб |
88 |
88.30Кб |
89 |
90.04Кб |
9 |
2.66Кб |
90 |
90.60Кб |
91 |
256.22Кб |
92 |
345.02Кб |
93 |
351.44Кб |
94 |
434.99Кб |
95 |
495.82Кб |
96 |
522.19Кб |
97 |
525.19Кб |
98 |
538.50Кб |
99 |
630.18Кб |
About This Course.png |
300.66Кб |
Accessing a DataFrame.png |
718.01Кб |
Accessing a Series.png |
680.00Кб |
Beginning Data Science.md |
6.65Кб |
Combining DataFrames.png |
1.21Мб |
Common Issues with Data Scraping.md |
1.67Кб |
Creating a DataFrame.png |
465.05Кб |
Creating a Series.png |
511.47Кб |
Data Analysis Basics.md |
3.91Кб |
Data from APIs.md |
1.02Кб |
Exploration Methods.png |
1.22Мб |
Functions, Packing, and Unpacking.md |
4.17Кб |
Grouping.png |
945.93Кб |
Handling Duplicated and Missing Data.png |
862.95Кб |
intro_matplotlib.zip |
265.59Кб |
intro_matplotlib.zip |
265.59Кб |
intro_matplotlib.zip |
265.59Кб |
Introducing Dictionaries.md |
2.89Кб |
Introducing Lists.md |
3.54Кб |
Introducing Tuples.md |
1.83Кб |
Introduction to Anaconda.md |
1.13Кб |
Introduction to Big Data.md |
4.20Кб |
Introduction to Data Visualization with Matplotlib.md |
4.51Кб |
Introduction to NumPy.md |
4.41Кб |
Jupyter Notebooks.md |
1.24Кб |
Learning SQL.md |
495б |
Machine Learning Basics.md |
3.36Кб |
Manipulating Text.png |
725.39Кб |
Manipulation Techniques.png |
1.24Мб |
marathon_results_2017.csv |
4.00Мб |
ML-machine-learning-basics.zip |
614б |
More Visualization.md |
1.01Кб |
Object-Oriented+Python+2.zip |
130.13Кб |
Object-Oriented+Python+2.zip |
130.13Кб |
Object-Oriented+Python+2.zip |
130.13Кб |
Object-Oriented+Python+2.zip |
130.13Кб |
Object-Oriented Python.md |
7.13Кб |
Optional Challenge #1 - Top Referrers.png |
393.99Кб |
Optional Challenge #2 - Update Users.png |
399.39Кб |
Optional Challenge #3 - Verified Email List.png |
419.33Кб |
Preparing Data for Analysis.md |
2.31Кб |
preparing-data-for-analysis-student.zip |
38.00Кб |
Python Basics.md |
5.63Кб |
python-introducing-pandas-1.2.0.zip |
88.32Кб |
python-intro-to-numpy.zip |
57.71Кб |
python-intro-to-numpy.zip |
57.71Кб |
python-intro-to-numpy.zip |
57.71Кб |
Python Sequences.md |
3.48Кб |
scraping_data_from_the_web.zip |
37.26Кб |
scraping_data_from_the_web.zip |
37.26Кб |
scraping_data_from_the_web.zip |
37.26Кб |
Scraping Data From the Web.md |
4.08Кб |
Selecting Data.png |
751.58Кб |
Series Vectorization and Broadcasting.png |
553.42Кб |
TutsNode.com.txt |
63б |