Общая информация
Название [FreeCourseSite com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science ([FreeCourseSite.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science)
Тип Книги
Размер 6.72Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[FreeCourseSite.com].txt 1.07Кб
[FreeCourseSite.com].url 127б
[HaxTech.me].txt 1.05Кб
[HaxTech.me].url 123б
001 Applications of Machine Learning.mp4 9.81Мб
001 Data Preprocessing.html 4.62Кб
002 Simple Linear Regression.html 4.47Кб
002 Why Machine Learning is the Future.mp4 14.48Мб
003 Installing R and R Studio MAC Windows.mp4 23.21Мб
003 Multiple Linear Regression.html 4.68Кб
004 Installing Python and Anaconda MAC Windows.mp4 23.96Мб
004 Logistic Regression.html 4.13Кб
005 BONUS Meet your instructors.html 1.33Кб
005 K-Nearest Neighbor.html 4.07Кб
006 K-Means Clustering.html 4.12Кб
006 Welcome to Part 1 - Data Preprocessing.mp4 3.52Мб
007 Get the dataset.mp4 21.15Мб
007 Hierarchical Clustering.html 4.38Кб
008 Importing the Libraries.mp4 13.56Мб
009 Importing the Dataset.mp4 28.64Мб
011 Missing Data.mp4 39.32Мб
012 Categorical Data.mp4 52.88Мб
013 Splitting the Dataset into the Training set and Test set.mp4 50.91Мб
014 Feature Scaling.mp4 44.59Мб
015 And here is our Data Preprocessing Template.mp4 25.86Мб
016 Welcome to Part 2 - Regression.html 1.12Кб
017 How to get the dataset.mp4 11.71Мб
018 Dataset Business Problem Description.mp4 7.77Мб
019 Simple Linear Regression Intuition - Step 1.mp4 10.52Мб
020 Simple Linear Regression Intuition - Step 2.mp4 5.99Мб
021 Simple Linear Regression in Python - Step 1.mp4 27.92Мб
022 Simple Linear Regression in Python - Step 2.mp4 24.62Мб
023 Simple Linear Regression in Python - Step 3.mp4 20.55Мб
024 Simple Linear Regression in Python - Step 4.mp4 39.37Мб
025 Simple Linear Regression in R - Step 1.mp4 11.52Мб
026 Simple Linear Regression in R - Step 2.mp4 24.87Мб
027 Simple Linear Regression in R - Step 3.mp4 11.42Мб
028 Simple Linear Regression in R - Step 4.mp4 49.16Мб
029 How to get the dataset.mp4 11.71Мб
030 Dataset Business Problem Description.mp4 12.56Мб
031 Multiple Linear Regression Intuition - Step 1.mp4 2.00Мб
032 Multiple Linear Regression Intuition - Step 2.mp4 2.03Мб
033 Multiple Linear Regression Intuition - Step 3.mp4 16.59Мб
034 Multiple Linear Regression Intuition - Step 4.mp4 5.34Мб
035 Multiple Linear Regression Intuition - Step 5.mp4 32.80Мб
036 Multiple Linear Regression in Python - Step 1.mp4 52.18Мб
037 Multiple Linear Regression in Python - Step 2.mp4 9.84Мб
038 Multiple Linear Regression in Python - Step 3.mp4 25.48Мб
039 Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 54.54Мб
040 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK.mp4 59.14Мб
041 Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 54.26Мб
042 Multiple Linear Regression in R - Step 1.mp4 23.44Мб
043 Multiple Linear Regression in R - Step 2.mp4 45.22Мб
044 Multiple Linear Regression in R - Step 3.mp4 13.85Мб
045 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp4 50.78Мб
046 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 21.95Мб
047 Polynomial Regression Intuition.mp4 9.44Мб
048 How to get the dataset.mp4 11.71Мб
049 Polynomial Regression in Python - Step 1.mp4 31.64Мб
050 Polynomial Regression in Python - Step 2.mp4 35.11Мб
051 Polynomial Regression in Python - Step 3.mp4 54.50Мб
052 Polynomial Regression in Python - Step 4.mp4 17.65Мб
053 Python Regression Template.mp4 36.78Мб
054 Polynomial Regression in R - Step 1.mp4 21.21Мб
055 Polynomial Regression in R - Step 2.mp4 32.28Мб
056 Polynomial Regression in R - Step 3.mp4 54.80Мб
057 Polynomial Regression in R - Step 4.mp4 28.52Мб
058 R Regression Template.mp4 31.33Мб
059 How to get the dataset.mp4 11.71Мб
060 SVR in Python.mp4 60.22Мб
061 SVR in R.mp4 33.73Мб
062 Decision Tree Regression Intuition.mp4 25.33Мб
063 How to get the dataset.mp4 11.71Мб
064 Decision Tree Regression in Python.mp4 43.44Мб
065 Decision Tree Regression in R.mp4 56.23Мб
066 Random Forest Regression Intuition.mp4 15.65Мб
067 How to get the dataset.mp4 11.71Мб
068 Random Forest Regression in Python.mp4 52.69Мб
069 Random Forest Regression in R.mp4 51.86Мб
070 R-Squared Intuition.mp4 9.80Мб
071 Adjusted R-Squared Intuition.mp4 21.41Мб
072 Evaluating Regression Models Performance - Homeworks Final Part.mp4 28.35Мб
073 Interpreting Linear Regression Coefficients.mp4 27.38Мб
074 Conclusion of Part 2 - Regression.html 3.34Кб
075 Welcome to Part 3 - Classification.html 1.08Кб
076 Logistic Regression Intuition.mp4 29.17Мб
077 How to get the dataset.mp4 11.71Мб
078 Logistic Regression in Python - Step 1.mp4 16.84Мб
079 Logistic Regression in Python - Step 2.mp4 11.10Мб
080 Logistic Regression in Python - Step 3.mp4 7.98Мб
081 Logistic Regression in Python - Step 4.mp4 13.87Мб
082 Logistic Regression in Python - Step 5.mp4 53.15Мб
083 Python Classification Template.mp4 17.58Мб
084 Logistic Regression in R - Step 1.mp4 15.72Мб
085 Logistic Regression in R - Step 2.mp4 14.85Мб
086 Logistic Regression in R - Step 3.mp4 27.44Мб
087 Logistic Regression in R - Step 4.mp4 11.73Мб
088 Logistic Regression in R - Step 5.mp4 93.76Мб
089 R Classification Template.mp4 17.50Мб
090 K-Nearest Neighbor Intuition.mp4 10.48Мб
091 How to get the dataset.mp4 11.71Мб
092 K-NN in Python.mp4 46.98Мб
093 K-NN in R.mp4 55.77Мб
094 SVM Intuition.mp4 19.92Мб
095 How to get the dataset.mp4 11.71Мб
096 SVM in Python.mp4 41.71Мб
097 SVM in R.mp4 65.31Мб
098 Kernel SVM Intuition.mp4 6.42Мб
099 Mapping to a higher dimension.mp4 15.39Мб
100 The Kernel Trick.mp4 34.72Мб
101 Types of Kernel Functions.mp4 15.71Мб
102 How to get the dataset.mp4 11.71Мб
103 Kernel SVM in Python.mp4 54.86Мб
104 Kernel SVM in R.mp4 52.82Мб
105 Bayes Theorem.mp4 50.43Мб
106 Naive Bayes Intuition.mp4 31.10Мб
107 Naive Bayes Intuition Challenge Reveal.mp4 13.27Мб
108 Naive Bayes Intuition Extras.mp4 18.94Мб
109 How to get the dataset.mp4 11.71Мб
110 Naive Bayes in Python.mp4 31.14Мб
111 Naive Bayes in R.mp4 49.79Мб
112 Decision Tree Classification Intuition.mp4 21.63Мб
113 How to get the dataset.mp4 11.71Мб
114 Decision Tree Classification in Python.mp4 38.85Мб
115 Decision Tree Classification in R.mp4 68.18Мб
116 Random Forest Classification Intuition.mp4 25.66Мб
117 How to get the dataset.mp4 11.71Мб
118 Random Forest Classification in Python.mp4 62.04Мб
119 Random Forest Classification in R.mp4 64.11Мб
120 False Positives False Negatives.mp4 15.12Мб
121 Confusion Matrix.mp4 8.91Мб
122 Accuracy Paradox.mp4 4.21Мб
123 CAP Curve.mp4 20.31Мб
124 CAP Curve Analysis.mp4 12.94Мб
125 Conclusion of Part 3 - Classification.html 3.86Кб
126 Welcome to Part 4 - Clustering.html 1004б
127 K-Means Clustering Intuition.mp4 29.97Мб
128 K-Means Random Initialization Trap.mp4 15.36Мб
129 K-Means Selecting The Number Of Clusters.mp4 25.68Мб
130 How to get the dataset.mp4 11.71Мб
131 K-Means Clustering in Python.mp4 49.81Мб
132 K-Means Clustering in R.mp4 36.91Мб
133 Hierarchical Clustering Intuition.mp4 16.52Мб
134 Hierarchical Clustering How Dendrograms Work.mp4 17.46Мб
135 Hierarchical Clustering Using Dendrograms.mp4 22.81Мб
136 How to get the dataset.mp4 11.71Мб
137 HC in Python - Step 1.mp4 13.77Мб
138 HC in Python - Step 2.mp4 15.51Мб
139 HC in Python - Step 3.mp4 16.17Мб
140 HC in Python - Step 4.mp4 21.32Мб
141 HC in Python - Step 5.mp4 9.92Мб
142 HC in R - Step 1.mp4 8.59Мб
143 HC in R - Step 2.mp4 13.87Мб
144 HC in R - Step 3.mp4 9.95Мб
145 HC in R - Step 4.mp4 10.17Мб
146 HC in R - Step 5.mp4 13.68Мб
147 Conclusion of Part 4 - Clustering.html 809б
148 Welcome to Part 5 - Association Rule Learning.html 713б
149 Apriori Intuition.mp4 35.02Мб
150 How to get the dataset.mp4 11.71Мб
151 Apriori in R - Step 1.mp4 52.83Мб
152 Apriori in R - Step 2.mp4 38.81Мб
153 Apriori in R - Step 3.mp4 56.51Мб
154 Apriori in Python - Step 1.mp4 47.41Мб
155 Apriori in Python - Step 2.mp4 37.32Мб
156 Apriori in Python - Step 3.mp4 35.30Мб
157 Eclat Intuition.mp4 10.65Мб
158 How to get the dataset.mp4 11.71Мб
159 Eclat in R.mp4 25.26Мб
160 Welcome to Part 6 - Reinforcement Learning.html 1.09Кб
161 The Multi-Armed Bandit Problem.mp4 30.19Мб
162 Upper Confidence Bound UCB Intuition.mp4 29.32Мб
163 How to get the dataset.mp4 11.71Мб
164 Upper Confidence Bound in Python - Step 1.mp4 39.01Мб
165 Upper Confidence Bound in Python - Step 2.mp4 44.49Мб
166 Upper Confidence Bound in Python - Step 3.mp4 53.71Мб
167 Upper Confidence Bound in Python - Step 4.mp4 12.44Мб
168 Upper Confidence Bound in R - Step 1.mp4 34.01Мб
169 Upper Confidence Bound in R - Step 2.mp4 34.10Мб
170 Upper Confidence Bound in R - Step 3.mp4 57.84Мб
171 Upper Confidence Bound in R - Step 4.mp4 9.55Мб
172 Thompson Sampling Intuition.mp4 37.27Мб
173 Algorithm Comparison UCB vs Thompson Sampling.mp4 14.08Мб
174 How to get the dataset.mp4 11.71Мб
175 Thompson Sampling in Python - Step 1.mp4 55.52Мб
176 Thompson Sampling in Python - Step 2.mp4 11.22Мб
177 Thompson Sampling in R - Step 1.mp4 51.04Мб
178 Thompson Sampling in R - Step 2.mp4 9.56Мб
179 Welcome to Part 7 - Natural Language Processing.html 2.00Кб
180 How to get the dataset.mp4 11.71Мб
181 Natural Language Processing in Python - Step 1.mp4 46.06Мб
182 Natural Language Processing in Python - Step 2.mp4 27.44Мб
183 Natural Language Processing in Python - Step 3.mp4 4.16Мб
184 Natural Language Processing in Python - Step 4.mp4 29.75Мб
185 Natural Language Processing in Python - Step 5.mp4 18.80Мб
186 Natural Language Processing in Python - Step 6.mp4 8.32Мб
187 Natural Language Processing in Python - Step 7.mp4 22.13Мб
188 Natural Language Processing in Python - Step 8.mp4 52.02Мб
189 Natural Language Processing in Python - Step 9.mp4 18.90Мб
190 Natural Language Processing in Python - Step 10.mp4 32.91Мб
191 Homework Challenge.html 1.65Кб
192 Natural Language Processing in R - Step 1.mp4 51.20Мб
193 Natural Language Processing in R - Step 2.mp4 21.66Мб
194 Natural Language Processing in R - Step 3.mp4 16.89Мб
195 Natural Language Processing in R - Step 4.mp4 8.24Мб
196 Natural Language Processing in R - Step 5.mp4 5.78Мб
197 Natural Language Processing in R - Step 6.mp4 16.09Мб
198 Natural Language Processing in R - Step 7.mp4 9.59Мб
199 Natural Language Processing in R - Step 8.mp4 17.23Мб
200 Natural Language Processing in R - Step 9.mp4 37.69Мб
201 Natural Language Processing in R - Step 10.mp4 54.14Мб
202 Homework Challenge.html 1.68Кб
203 Welcome to Part 8 - Deep Learning.html 1.15Кб
204 What is Deep Learning.mp4 31.31Мб
205 Plan of attack.mp4 4.74Мб
206 The Neuron.mp4 29.86Мб
207 The Activation Function.mp4 14.75Мб
208 How do Neural Networks work.mp4 23.53Мб
209 How do Neural Networks learn.mp4 26.55Мб
210 Gradient Descent.mp4 18.53Мб
211 Stochastic Gradient Descent.mp4 16.82Мб
212 Backpropagation.mp4 10.92Мб
213 How to get the dataset.mp4 11.71Мб
214 Business Problem Description.mp4 29.23Мб
215 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras.mp4 37.45Мб
216 ANN in Python - Step 2.mp4 84.87Мб
217 ANN in Python - Step 3.mp4 14.62Мб
218 ANN in Python - Step 4.mp4 9.69Мб
219 ANN in Python - Step 5.mp4 39.36Мб
220 ANN in Python - Step 6.mp4 11.93Мб
221 ANN in Python - Step 7.mp4 14.92Мб
222 ANN in Python - Step 8.mp4 34.03Мб
223 ANN in Python - Step 9.mp4 28.47Мб
224 ANN in Python - Step 10.mp4 28.42Мб
225 ANN in R - Step 1.mp4 49.89Мб
226 ANN in R - Step 2.mp4 18.24Мб
227 ANN in R - Step 3.mp4 37.85Мб
228 ANN in R - Step 4 Last step.mp4 43.75Мб
229 Plan of attack.mp4 5.90Мб
230 What are convolutional neural networks.mp4 29.50Мб
231 Step 1 - Convolution Operation.mp4 31.02Мб
232 Step 1b - ReLU Layer.mp4 14.09Мб
233 Step 2 - Pooling.mp4 40.24Мб
234 Step 3 - Flattening.mp4 3.27Мб
235 Step 4 - Full Connection.mp4 42.74Мб
236 Summary.mp4 7.91Мб
237 Softmax Cross-Entropy.mp4 33.23Мб
238 How to get the dataset.mp4 11.71Мб
239 CNN in Python - Step 1.mp4 30.60Мб
240 CNN in Python - Step 2.mp4 7.20Мб
241 CNN in Python - Step 3.mp4 2.80Мб
242 CNN in Python - Step 4.mp4 34.62Мб
243 CNN in Python - Step 5.mp4 12.38Мб
244 CNN in Python - Step 6.mp4 11.94Мб
245 CNN in Python - Step 7.mp4 16.65Мб
246 CNN in Python - Step 8.mp4 8.95Мб
247 CNN in Python - Step 9.mp4 62.41Мб
248 CNN in Python - Step 10.mp4 27.74Мб
249 CNN in R.html 2.65Кб
250 Welcome to Part 9 - Dimensionality Reduction.html 1.57Кб
251 How to get the dataset.mp4 11.71Мб
252 PCA in Python - Step 1.mp4 31.95Мб
253 PCA in Python - Step 2.mp4 22.07Мб
254 PCA in Python - Step 3.mp4 25.51Мб
255 PCA in R - Step 1.mp4 30.65Мб
256 PCA in R - Step 2.mp4 29.02Мб
257 PCA in R - Step 3.mp4 36.73Мб
258 How to get the dataset.mp4 11.71Мб
259 LDA in Python.mp4 45.42Мб
260 LDA in R.mp4 51.29Мб
261 How to get the dataset.mp4 11.71Мб
262 Kernel PCA in Python.mp4 33.38Мб
263 Kernel PCA in R.mp4 56.57Мб
264 Welcome to Part 10 - Model Selection Boosting.html 1.19Кб
265 How to get the dataset.mp4 11.71Мб
266 k-Fold Cross Validation in Python.mp4 32.83Мб
267 k-Fold Cross Validation in R.mp4 43.63Мб
268 Grid Search in Python - Step 1.mp4 38.21Мб
269 Grid Search in Python - Step 2.mp4 29.51Мб
270 Grid Search in R.mp4 35.54Мб
271 How to get the dataset.mp4 11.71Мб
272 XGBoost in Python - Step 1.mp4 21.39Мб
273 XGBoost in Python - Step 2.mp4 31.97Мб
274 XGBoost in R.mp4 47.26Мб
275 YOUR SPECIAL BONUS.html 5.02Кб
Eclat.zip 48.54Кб
SVM.zip 8.27Кб
Статистика распространения по странам
Румыния (RO) 2
Великобритания (GB) 1
Австралия (AU) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент