Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[FreeCourseSite.com].txt |
1.07Кб |
[FreeCourseSite.com].url |
127б |
[HaxTech.me].txt |
1.05Кб |
[HaxTech.me].url |
123б |
001 Applications of Machine Learning.mp4 |
9.81Мб |
001 Data Preprocessing.html |
4.62Кб |
002 Simple Linear Regression.html |
4.47Кб |
002 Why Machine Learning is the Future.mp4 |
14.48Мб |
003 Installing R and R Studio MAC Windows.mp4 |
23.21Мб |
003 Multiple Linear Regression.html |
4.68Кб |
004 Installing Python and Anaconda MAC Windows.mp4 |
23.96Мб |
004 Logistic Regression.html |
4.13Кб |
005 BONUS Meet your instructors.html |
1.33Кб |
005 K-Nearest Neighbor.html |
4.07Кб |
006 K-Means Clustering.html |
4.12Кб |
006 Welcome to Part 1 - Data Preprocessing.mp4 |
3.52Мб |
007 Get the dataset.mp4 |
21.15Мб |
007 Hierarchical Clustering.html |
4.38Кб |
008 Importing the Libraries.mp4 |
13.56Мб |
009 Importing the Dataset.mp4 |
28.64Мб |
011 Missing Data.mp4 |
39.32Мб |
012 Categorical Data.mp4 |
52.88Мб |
013 Splitting the Dataset into the Training set and Test set.mp4 |
50.91Мб |
014 Feature Scaling.mp4 |
44.59Мб |
015 And here is our Data Preprocessing Template.mp4 |
25.86Мб |
016 Welcome to Part 2 - Regression.html |
1.12Кб |
017 How to get the dataset.mp4 |
11.71Мб |
018 Dataset Business Problem Description.mp4 |
7.77Мб |
019 Simple Linear Regression Intuition - Step 1.mp4 |
10.52Мб |
020 Simple Linear Regression Intuition - Step 2.mp4 |
5.99Мб |
021 Simple Linear Regression in Python - Step 1.mp4 |
27.92Мб |
022 Simple Linear Regression in Python - Step 2.mp4 |
24.62Мб |
023 Simple Linear Regression in Python - Step 3.mp4 |
20.55Мб |
024 Simple Linear Regression in Python - Step 4.mp4 |
39.37Мб |
025 Simple Linear Regression in R - Step 1.mp4 |
11.52Мб |
026 Simple Linear Regression in R - Step 2.mp4 |
24.87Мб |
027 Simple Linear Regression in R - Step 3.mp4 |
11.42Мб |
028 Simple Linear Regression in R - Step 4.mp4 |
49.16Мб |
029 How to get the dataset.mp4 |
11.71Мб |
030 Dataset Business Problem Description.mp4 |
12.56Мб |
031 Multiple Linear Regression Intuition - Step 1.mp4 |
2.00Мб |
032 Multiple Linear Regression Intuition - Step 2.mp4 |
2.03Мб |
033 Multiple Linear Regression Intuition - Step 3.mp4 |
16.59Мб |
034 Multiple Linear Regression Intuition - Step 4.mp4 |
5.34Мб |
035 Multiple Linear Regression Intuition - Step 5.mp4 |
32.80Мб |
036 Multiple Linear Regression in Python - Step 1.mp4 |
52.18Мб |
037 Multiple Linear Regression in Python - Step 2.mp4 |
9.84Мб |
038 Multiple Linear Regression in Python - Step 3.mp4 |
25.48Мб |
039 Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 |
54.54Мб |
040 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK.mp4 |
59.14Мб |
041 Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 |
54.26Мб |
042 Multiple Linear Regression in R - Step 1.mp4 |
23.44Мб |
043 Multiple Linear Regression in R - Step 2.mp4 |
45.22Мб |
044 Multiple Linear Regression in R - Step 3.mp4 |
13.85Мб |
045 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp4 |
50.78Мб |
046 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 |
21.95Мб |
047 Polynomial Regression Intuition.mp4 |
9.44Мб |
048 How to get the dataset.mp4 |
11.71Мб |
049 Polynomial Regression in Python - Step 1.mp4 |
31.64Мб |
050 Polynomial Regression in Python - Step 2.mp4 |
35.11Мб |
051 Polynomial Regression in Python - Step 3.mp4 |
54.50Мб |
052 Polynomial Regression in Python - Step 4.mp4 |
17.65Мб |
053 Python Regression Template.mp4 |
36.78Мб |
054 Polynomial Regression in R - Step 1.mp4 |
21.21Мб |
055 Polynomial Regression in R - Step 2.mp4 |
32.28Мб |
056 Polynomial Regression in R - Step 3.mp4 |
54.80Мб |
057 Polynomial Regression in R - Step 4.mp4 |
28.52Мб |
058 R Regression Template.mp4 |
31.33Мб |
059 How to get the dataset.mp4 |
11.71Мб |
060 SVR in Python.mp4 |
60.22Мб |
061 SVR in R.mp4 |
33.73Мб |
062 Decision Tree Regression Intuition.mp4 |
25.33Мб |
063 How to get the dataset.mp4 |
11.71Мб |
064 Decision Tree Regression in Python.mp4 |
43.44Мб |
065 Decision Tree Regression in R.mp4 |
56.23Мб |
066 Random Forest Regression Intuition.mp4 |
15.65Мб |
067 How to get the dataset.mp4 |
11.71Мб |
068 Random Forest Regression in Python.mp4 |
52.69Мб |
069 Random Forest Regression in R.mp4 |
51.86Мб |
070 R-Squared Intuition.mp4 |
9.80Мб |
071 Adjusted R-Squared Intuition.mp4 |
21.41Мб |
072 Evaluating Regression Models Performance - Homeworks Final Part.mp4 |
28.35Мб |
073 Interpreting Linear Regression Coefficients.mp4 |
27.38Мб |
074 Conclusion of Part 2 - Regression.html |
3.34Кб |
075 Welcome to Part 3 - Classification.html |
1.08Кб |
076 Logistic Regression Intuition.mp4 |
29.17Мб |
077 How to get the dataset.mp4 |
11.71Мб |
078 Logistic Regression in Python - Step 1.mp4 |
16.84Мб |
079 Logistic Regression in Python - Step 2.mp4 |
11.10Мб |
080 Logistic Regression in Python - Step 3.mp4 |
7.98Мб |
081 Logistic Regression in Python - Step 4.mp4 |
13.87Мб |
082 Logistic Regression in Python - Step 5.mp4 |
53.15Мб |
083 Python Classification Template.mp4 |
17.58Мб |
084 Logistic Regression in R - Step 1.mp4 |
15.72Мб |
085 Logistic Regression in R - Step 2.mp4 |
14.85Мб |
086 Logistic Regression in R - Step 3.mp4 |
27.44Мб |
087 Logistic Regression in R - Step 4.mp4 |
11.73Мб |
088 Logistic Regression in R - Step 5.mp4 |
93.76Мб |
089 R Classification Template.mp4 |
17.50Мб |
090 K-Nearest Neighbor Intuition.mp4 |
10.48Мб |
091 How to get the dataset.mp4 |
11.71Мб |
092 K-NN in Python.mp4 |
46.98Мб |
093 K-NN in R.mp4 |
55.77Мб |
094 SVM Intuition.mp4 |
19.92Мб |
095 How to get the dataset.mp4 |
11.71Мб |
096 SVM in Python.mp4 |
41.71Мб |
097 SVM in R.mp4 |
65.31Мб |
098 Kernel SVM Intuition.mp4 |
6.42Мб |
099 Mapping to a higher dimension.mp4 |
15.39Мб |
100 The Kernel Trick.mp4 |
34.72Мб |
101 Types of Kernel Functions.mp4 |
15.71Мб |
102 How to get the dataset.mp4 |
11.71Мб |
103 Kernel SVM in Python.mp4 |
54.86Мб |
104 Kernel SVM in R.mp4 |
52.82Мб |
105 Bayes Theorem.mp4 |
50.43Мб |
106 Naive Bayes Intuition.mp4 |
31.10Мб |
107 Naive Bayes Intuition Challenge Reveal.mp4 |
13.27Мб |
108 Naive Bayes Intuition Extras.mp4 |
18.94Мб |
109 How to get the dataset.mp4 |
11.71Мб |
110 Naive Bayes in Python.mp4 |
31.14Мб |
111 Naive Bayes in R.mp4 |
49.79Мб |
112 Decision Tree Classification Intuition.mp4 |
21.63Мб |
113 How to get the dataset.mp4 |
11.71Мб |
114 Decision Tree Classification in Python.mp4 |
38.85Мб |
115 Decision Tree Classification in R.mp4 |
68.18Мб |
116 Random Forest Classification Intuition.mp4 |
25.66Мб |
117 How to get the dataset.mp4 |
11.71Мб |
118 Random Forest Classification in Python.mp4 |
62.04Мб |
119 Random Forest Classification in R.mp4 |
64.11Мб |
120 False Positives False Negatives.mp4 |
15.12Мб |
121 Confusion Matrix.mp4 |
8.91Мб |
122 Accuracy Paradox.mp4 |
4.21Мб |
123 CAP Curve.mp4 |
20.31Мб |
124 CAP Curve Analysis.mp4 |
12.94Мб |
125 Conclusion of Part 3 - Classification.html |
3.86Кб |
126 Welcome to Part 4 - Clustering.html |
1004б |
127 K-Means Clustering Intuition.mp4 |
29.97Мб |
128 K-Means Random Initialization Trap.mp4 |
15.36Мб |
129 K-Means Selecting The Number Of Clusters.mp4 |
25.68Мб |
130 How to get the dataset.mp4 |
11.71Мб |
131 K-Means Clustering in Python.mp4 |
49.81Мб |
132 K-Means Clustering in R.mp4 |
36.91Мб |
133 Hierarchical Clustering Intuition.mp4 |
16.52Мб |
134 Hierarchical Clustering How Dendrograms Work.mp4 |
17.46Мб |
135 Hierarchical Clustering Using Dendrograms.mp4 |
22.81Мб |
136 How to get the dataset.mp4 |
11.71Мб |
137 HC in Python - Step 1.mp4 |
13.77Мб |
138 HC in Python - Step 2.mp4 |
15.51Мб |
139 HC in Python - Step 3.mp4 |
16.17Мб |
140 HC in Python - Step 4.mp4 |
21.32Мб |
141 HC in Python - Step 5.mp4 |
9.92Мб |
142 HC in R - Step 1.mp4 |
8.59Мб |
143 HC in R - Step 2.mp4 |
13.87Мб |
144 HC in R - Step 3.mp4 |
9.95Мб |
145 HC in R - Step 4.mp4 |
10.17Мб |
146 HC in R - Step 5.mp4 |
13.68Мб |
147 Conclusion of Part 4 - Clustering.html |
809б |
148 Welcome to Part 5 - Association Rule Learning.html |
713б |
149 Apriori Intuition.mp4 |
35.02Мб |
150 How to get the dataset.mp4 |
11.71Мб |
151 Apriori in R - Step 1.mp4 |
52.83Мб |
152 Apriori in R - Step 2.mp4 |
38.81Мб |
153 Apriori in R - Step 3.mp4 |
56.51Мб |
154 Apriori in Python - Step 1.mp4 |
47.41Мб |
155 Apriori in Python - Step 2.mp4 |
37.32Мб |
156 Apriori in Python - Step 3.mp4 |
35.30Мб |
157 Eclat Intuition.mp4 |
10.65Мб |
158 How to get the dataset.mp4 |
11.71Мб |
159 Eclat in R.mp4 |
25.26Мб |
160 Welcome to Part 6 - Reinforcement Learning.html |
1.09Кб |
161 The Multi-Armed Bandit Problem.mp4 |
30.19Мб |
162 Upper Confidence Bound UCB Intuition.mp4 |
29.32Мб |
163 How to get the dataset.mp4 |
11.71Мб |
164 Upper Confidence Bound in Python - Step 1.mp4 |
39.01Мб |
165 Upper Confidence Bound in Python - Step 2.mp4 |
44.49Мб |
166 Upper Confidence Bound in Python - Step 3.mp4 |
53.71Мб |
167 Upper Confidence Bound in Python - Step 4.mp4 |
12.44Мб |
168 Upper Confidence Bound in R - Step 1.mp4 |
34.01Мб |
169 Upper Confidence Bound in R - Step 2.mp4 |
34.10Мб |
170 Upper Confidence Bound in R - Step 3.mp4 |
57.84Мб |
171 Upper Confidence Bound in R - Step 4.mp4 |
9.55Мб |
172 Thompson Sampling Intuition.mp4 |
37.27Мб |
173 Algorithm Comparison UCB vs Thompson Sampling.mp4 |
14.08Мб |
174 How to get the dataset.mp4 |
11.71Мб |
175 Thompson Sampling in Python - Step 1.mp4 |
55.52Мб |
176 Thompson Sampling in Python - Step 2.mp4 |
11.22Мб |
177 Thompson Sampling in R - Step 1.mp4 |
51.04Мб |
178 Thompson Sampling in R - Step 2.mp4 |
9.56Мб |
179 Welcome to Part 7 - Natural Language Processing.html |
2.00Кб |
180 How to get the dataset.mp4 |
11.71Мб |
181 Natural Language Processing in Python - Step 1.mp4 |
46.06Мб |
182 Natural Language Processing in Python - Step 2.mp4 |
27.44Мб |
183 Natural Language Processing in Python - Step 3.mp4 |
4.16Мб |
184 Natural Language Processing in Python - Step 4.mp4 |
29.75Мб |
185 Natural Language Processing in Python - Step 5.mp4 |
18.80Мб |
186 Natural Language Processing in Python - Step 6.mp4 |
8.32Мб |
187 Natural Language Processing in Python - Step 7.mp4 |
22.13Мб |
188 Natural Language Processing in Python - Step 8.mp4 |
52.02Мб |
189 Natural Language Processing in Python - Step 9.mp4 |
18.90Мб |
190 Natural Language Processing in Python - Step 10.mp4 |
32.91Мб |
191 Homework Challenge.html |
1.65Кб |
192 Natural Language Processing in R - Step 1.mp4 |
51.20Мб |
193 Natural Language Processing in R - Step 2.mp4 |
21.66Мб |
194 Natural Language Processing in R - Step 3.mp4 |
16.89Мб |
195 Natural Language Processing in R - Step 4.mp4 |
8.24Мб |
196 Natural Language Processing in R - Step 5.mp4 |
5.78Мб |
197 Natural Language Processing in R - Step 6.mp4 |
16.09Мб |
198 Natural Language Processing in R - Step 7.mp4 |
9.59Мб |
199 Natural Language Processing in R - Step 8.mp4 |
17.23Мб |
200 Natural Language Processing in R - Step 9.mp4 |
37.69Мб |
201 Natural Language Processing in R - Step 10.mp4 |
54.14Мб |
202 Homework Challenge.html |
1.68Кб |
203 Welcome to Part 8 - Deep Learning.html |
1.15Кб |
204 What is Deep Learning.mp4 |
31.31Мб |
205 Plan of attack.mp4 |
4.74Мб |
206 The Neuron.mp4 |
29.86Мб |
207 The Activation Function.mp4 |
14.75Мб |
208 How do Neural Networks work.mp4 |
23.53Мб |
209 How do Neural Networks learn.mp4 |
26.55Мб |
210 Gradient Descent.mp4 |
18.53Мб |
211 Stochastic Gradient Descent.mp4 |
16.82Мб |
212 Backpropagation.mp4 |
10.92Мб |
213 How to get the dataset.mp4 |
11.71Мб |
214 Business Problem Description.mp4 |
29.23Мб |
215 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras.mp4 |
37.45Мб |
216 ANN in Python - Step 2.mp4 |
84.87Мб |
217 ANN in Python - Step 3.mp4 |
14.62Мб |
218 ANN in Python - Step 4.mp4 |
9.69Мб |
219 ANN in Python - Step 5.mp4 |
39.36Мб |
220 ANN in Python - Step 6.mp4 |
11.93Мб |
221 ANN in Python - Step 7.mp4 |
14.92Мб |
222 ANN in Python - Step 8.mp4 |
34.03Мб |
223 ANN in Python - Step 9.mp4 |
28.47Мб |
224 ANN in Python - Step 10.mp4 |
28.42Мб |
225 ANN in R - Step 1.mp4 |
49.89Мб |
226 ANN in R - Step 2.mp4 |
18.24Мб |
227 ANN in R - Step 3.mp4 |
37.85Мб |
228 ANN in R - Step 4 Last step.mp4 |
43.75Мб |
229 Plan of attack.mp4 |
5.90Мб |
230 What are convolutional neural networks.mp4 |
29.50Мб |
231 Step 1 - Convolution Operation.mp4 |
31.02Мб |
232 Step 1b - ReLU Layer.mp4 |
14.09Мб |
233 Step 2 - Pooling.mp4 |
40.24Мб |
234 Step 3 - Flattening.mp4 |
3.27Мб |
235 Step 4 - Full Connection.mp4 |
42.74Мб |
236 Summary.mp4 |
7.91Мб |
237 Softmax Cross-Entropy.mp4 |
33.23Мб |
238 How to get the dataset.mp4 |
11.71Мб |
239 CNN in Python - Step 1.mp4 |
30.60Мб |
240 CNN in Python - Step 2.mp4 |
7.20Мб |
241 CNN in Python - Step 3.mp4 |
2.80Мб |
242 CNN in Python - Step 4.mp4 |
34.62Мб |
243 CNN in Python - Step 5.mp4 |
12.38Мб |
244 CNN in Python - Step 6.mp4 |
11.94Мб |
245 CNN in Python - Step 7.mp4 |
16.65Мб |
246 CNN in Python - Step 8.mp4 |
8.95Мб |
247 CNN in Python - Step 9.mp4 |
62.41Мб |
248 CNN in Python - Step 10.mp4 |
27.74Мб |
249 CNN in R.html |
2.65Кб |
250 Welcome to Part 9 - Dimensionality Reduction.html |
1.57Кб |
251 How to get the dataset.mp4 |
11.71Мб |
252 PCA in Python - Step 1.mp4 |
31.95Мб |
253 PCA in Python - Step 2.mp4 |
22.07Мб |
254 PCA in Python - Step 3.mp4 |
25.51Мб |
255 PCA in R - Step 1.mp4 |
30.65Мб |
256 PCA in R - Step 2.mp4 |
29.02Мб |
257 PCA in R - Step 3.mp4 |
36.73Мб |
258 How to get the dataset.mp4 |
11.71Мб |
259 LDA in Python.mp4 |
45.42Мб |
260 LDA in R.mp4 |
51.29Мб |
261 How to get the dataset.mp4 |
11.71Мб |
262 Kernel PCA in Python.mp4 |
33.38Мб |
263 Kernel PCA in R.mp4 |
56.57Мб |
264 Welcome to Part 10 - Model Selection Boosting.html |
1.19Кб |
265 How to get the dataset.mp4 |
11.71Мб |
266 k-Fold Cross Validation in Python.mp4 |
32.83Мб |
267 k-Fold Cross Validation in R.mp4 |
43.63Мб |
268 Grid Search in Python - Step 1.mp4 |
38.21Мб |
269 Grid Search in Python - Step 2.mp4 |
29.51Мб |
270 Grid Search in R.mp4 |
35.54Мб |
271 How to get the dataset.mp4 |
11.71Мб |
272 XGBoost in Python - Step 1.mp4 |
21.39Мб |
273 XGBoost in Python - Step 2.mp4 |
31.97Мб |
274 XGBoost in R.mp4 |
47.26Мб |
275 YOUR SPECIAL BONUS.html |
5.02Кб |
Eclat.zip |
48.54Кб |
SVM.zip |
8.27Кб |