Общая информация
Название [FreeCourseSite.com] Udemy - Complete Machine Learning & Data Science Bootcamp 2022
Тип
Размер 16.59Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[FreeCourseSite.com].url 127б
[GigaCourse.Com].url 49б
001 Become An Alumni.html 944б
001 Bonus Lecture.html 1.19Кб
001 Breaking The Flow_en.vtt 2.68Кб
001 Breaking The Flow.mp4 7.40Мб
001 Course Outline_en.vtt 8.05Кб
001 Course Outline.mp4 77.27Мб
001 Data Engineering Introduction_en.vtt 3.77Кб
001 Data Engineering Introduction.mp4 6.57Мб
001 Endorsements On LinkedIn.html 1.37Кб
001 Milestone Projects!.html 738б
001 Section Overview_en.vtt 4.18Кб
001 Section Overview_en.vtt 1.76Кб
001 Section Overview_en.vtt 3.23Кб
001 Section Overview_en.vtt 2.88Кб
001 Section Overview_en.vtt 2.30Кб
001 Section Overview_en.vtt 3.44Кб
001 Section Overview_en.vtt 2.75Кб
001 Section Overview_en.vtt 1.63Кб
001 Section Overview_en.vtt 2.51Кб
001 Section Overview_en.vtt 2.96Кб
001 Section Overview.mp4 6.34Мб
001 Section Overview.mp4 2.48Мб
001 Section Overview.mp4 5.07Мб
001 Section Overview.mp4 12.50Мб
001 Section Overview.mp4 3.84Мб
001 Section Overview.mp4 5.57Мб
001 Section Overview.mp4 4.57Мб
001 Section Overview.mp4 8.72Мб
001 Section Overview.mp4 6.39Мб
001 Section Overview.mp4 4.83Мб
001 Statistics and Mathematics.html 710б
001 The 2 Paths_en.vtt 4.12Кб
001 The 2 Paths.mp4 4.89Мб
001 What Is A Programming Language_en.vtt 6.36Кб
001 What Is A Programming Language.mp4 76.43Мб
001 What Is Machine Learning_en.vtt 7.80Кб
001 What Is Machine Learning.mp4 28.30Мб
002 AIMachine LearningData Science_en.vtt 5.68Кб
002 AIMachine LearningData Science.mp4 19.67Мб
002 Communicating Your Work_en.vtt 4.25Кб
002 Communicating Your Work.mp4 8.42Мб
002 Conditional Logic_en.vtt 13.97Кб
002 Conditional Logic.mp4 56.56Мб
002 Deep Learning and Unstructured Data_en.vtt 18.26Кб
002 Deep Learning and Unstructured Data.mp4 69.84Мб
002 Downloading Workbooks and Assignments.html 967б
002 Introducing Our Framework_en.vtt 3.28Кб
002 Introducing Our Framework.mp4 4.29Мб
002 Introducing Our Tools_en.vtt 3.96Кб
002 Introducing Our Tools.mp4 19.28Мб
002 Join Our Online Classroom!_en.vtt 5.19Кб
002 Join Our Online Classroom!.mp4 77.56Мб
002 Matplotlib Introduction_en.vtt 7.15Кб
002 Matplotlib Introduction.mp4 20.90Мб
002 NumPy Introduction_en.vtt 6.69Кб
002 NumPy Introduction.mp4 13.62Мб
002 Project Overview_en.vtt 9.06Кб
002 Project Overview_en.vtt 6.23Кб
002 Project Overview.mp4 13.67Мб
002 Project Overview.mp4 13.49Мб
002 Python + Machine Learning Monthly.html 917б
002 Python Interpreter_en.vtt 7.61Кб
002 Python Interpreter.mp4 68.50Мб
002 Quick Note Upcoming Video.html 587б
002 Scikit-learn Introduction_en.vtt 9.53Кб
002 Scikit-learn Introduction.mp4 17.16Мб
002 Thank You_en.vtt 3.25Кб
002 Thank You.mp4 11.09Мб
002 What Is Data_en.vtt 6.93Кб
002 What Is Data.mp4 30.66Мб
003 6 Step Machine Learning Framework_en.vtt 6.04Кб
003 6 Step Machine Learning Framework.mp4 23.47Мб
003 Communicating With Managers_en.vtt 3.93Кб
003 Communicating With Managers.mp4 6.67Мб
003 conda-cheatsheet.pdf 201.29Кб
003 Downloading the data for the next two projects.html 1.64Кб
003 Endorsements On LinkedIN.html 1.37Кб
003 Exercise Machine Learning Playground_en.vtt 7.06Кб
003 Exercise Machine Learning Playground.mp4 42.62Мб
003 Exercise Meet Your Classmates and Instructor.html 3.70Кб
003 How To Run Python Code_en.vtt 5.92Кб
003 How To Run Python Code.mp4 36.45Мб
003 Importing And Using Matplotlib_en.vtt 14.22Кб
003 Importing And Using Matplotlib.mp4 83.89Мб
003 Indentation In Python_en.vtt 4.79Кб
003 Indentation In Python.mp4 11.30Мб
003 Pandas Introduction_en.vtt 6.09Кб
003 Pandas Introduction.mp4 11.09Мб
003 Project Environment Setup_en.vtt 13.17Кб
003 Project Environment Setup.mp4 97.97Мб
003 Quick Note Correction In Next Video.html 1.24Кб
003 Quick Note Upcoming Video.html 390б
003 Setting Up With Google.html 568б
003 Thank You Part 2.html 730б
003 What If I Don't Have Enough Experience_en.vtt 17.83Кб
003 What If I Don't Have Enough Experience.mp4 147.31Мб
003 What Is A Data Engineer_en.vtt 4.53Кб
003 What Is A Data Engineer.mp4 9.50Мб
003 What is Conda_en.vtt 3.07Кб
003 What is Conda.mp4 4.81Мб
004 Anatomy Of A Matplotlib Figure_en.vtt 12.36Кб
004 Anatomy Of A Matplotlib Figure.mp4 53.23Мб
004 Communicating With Co-Workers_en.vtt 4.83Кб
004 Communicating With Co-Workers.mp4 7.34Мб
004 Conda Environments_en.vtt 5.50Кб
004 Conda Environments.mp4 14.63Мб
004 How Did We Get Here_en.vtt 6.48Кб
004 How Did We Get Here.mp4 30.50Мб
004 Learning Guideline.html 336б
004 matplotlib-anatomy-of-a-plot.png 369.39Кб
004 matplotlib-anatomy-of-a-plot-with-code.png 654.77Кб
004 NumPy DataTypes and Attributes_en.vtt 17.24Кб
004 NumPy DataTypes and Attributes.mp4 56.55Мб
004 Optional Windows Project Environment Setup_en.vtt 4.68Кб
004 Optional Windows Project Environment Setup.mp4 11.21Мб
004 Our First Python Program_en.vtt 7.84Кб
004 Our First Python Program.mp4 29.77Мб
004 pandas-anatomy-of-a-dataframe.png 333.24Кб
004 Project Environment Setup_en.vtt 13.96Кб
004 Project Environment Setup.mp4 99.05Мб
004 Refresher What Is Machine Learning_en.vtt 5.83Кб
004 Refresher What Is Machine Learning.mp4 17.85Мб
004 Series, Data Frames and CSVs_en.vtt 15.85Кб
004 Series, Data Frames and CSVs.mp4 91.07Мб
004 Setting Up Google Colab_en.vtt 9.03Кб
004 Setting Up Google Colab.mp4 73.92Мб
004 Truthy vs Falsey_en.vtt 5.57Кб
004 Truthy vs Falsey.mp4 36.34Мб
004 Types of Machine Learning Problems_en.vtt 12.79Кб
004 Types of Machine Learning Problems.mp4 20.98Мб
004 What Is A Data Engineer 2_en.vtt 5.69Кб
004 What Is A Data Engineer 2.mp4 24.21Мб
004 Your First Day_en.vtt 4.66Кб
004 Your First Day.mp4 27.98Мб
005 Creating NumPy Arrays_en.vtt 10.61Кб
005 Creating NumPy Arrays.mp4 45.62Мб
005 Data from URLs.html 1.08Кб
005 Exercise YouTube Recommendation Engine_en.vtt 4.86Кб
005 Exercise YouTube Recommendation Engine.mp4 8.89Мб
005 Google Colab Workspace_en.vtt 5.54Кб
005 Google Colab Workspace.mp4 32.22Мб
005 Latest Version Of Python_en.vtt 2.37Кб
005 Latest Version Of Python.mp4 6.97Мб
005 Mac Environment Setup_en.vtt 22.28Кб
005 Mac Environment Setup.mp4 139.47Мб
005 Quick Note Upcoming Videos.html 1018б
005 Quick Note Upcoming Videos.html 565б
005 Scatter Plot And Bar Plot_en.vtt 12.71Кб
005 Scatter Plot And Bar Plot.mp4 44.65Мб
005 Step 1~4 Framework Setup_en.vtt 15.25Кб
005 Step 1~4 Framework Setup_en.vtt 10.70Кб
005 Step 1~4 Framework Setup.mp4 102.16Мб
005 Step 1~4 Framework Setup.mp4 84.12Мб
005 Ternary Operator_en.vtt 4.31Кб
005 Ternary Operator.mp4 8.31Мб
005 Types of Data_en.vtt 5.75Кб
005 Types of Data.mp4 19.99Мб
005 Weekend Project Principle_en.vtt 7.91Кб
005 Weekend Project Principle.mp4 10.32Мб
005 What Is A Data Engineer 3_en.vtt 4.98Кб
005 What Is A Data Engineer 3.mp4 10.96Мб
006 Communicating With Outside World_en.vtt 4.05Кб
006 Communicating With Outside World.mp4 6.29Мб
006 Describing Data with Pandas_en.vtt 12.23Кб
006 Describing Data with Pandas.mp4 63.50Мб
006 Exploring Our Data_en.vtt 18.33Кб
006 Exploring Our Data.mp4 135.66Мб
006 Getting Our Tools Ready_en.vtt 11.28Кб
006 Getting Our Tools Ready.mp4 76.79Мб
006 Histograms And Subplots_en.vtt 10.98Кб
006 Histograms And Subplots.mp4 57.51Мб
006 JTS Learn to Learn_en.vtt 2.14Кб
006 JTS Learn to Learn.mp4 5.38Мб
006 Mac Environment Setup 2_en.vtt 18.64Кб
006 Mac Environment Setup 2.mp4 122.18Мб
006 NumPy Random Seed_en.vtt 8.93Кб
006 NumPy Random Seed.mp4 36.47Мб
006 Python 2 vs Python 3_en.vtt 7.31Кб
006 Python 2 vs Python 3.mp4 65.82Мб
006 Scikit-learn Cheatsheet_en.vtt 9.23Кб
006 Scikit-learn Cheatsheet.mp4 75.13Мб
006 Short Circuiting_en.vtt 4.17Кб
006 Short Circuiting.mp4 8.14Мб
006 Types of Evaluation_en.vtt 4.05Кб
006 Types of Evaluation.mp4 6.52Мб
006 Types of Machine Learning_en.vtt 4.87Кб
006 Types of Machine Learning.mp4 9.63Мб
006 Uploading Project Data_en.vtt 8.16Кб
006 Uploading Project Data.mp4 50.22Мб
006 What Is A Data Engineer 4_en.vtt 3.54Кб
006 What Is A Data Engineer 4.mp4 7.43Мб
007 Are You Getting It Yet.html 160б
007 car-sales.csv 369б
007 Exercise How Does Python Work_en.vtt 2.57Кб
007 Exercise How Does Python Work.mp4 9.36Мб
007 Exploring Our Data_en.vtt 10.19Кб
007 Exploring Our Data.mp4 64.39Мб
007 Exploring Our Data 2_en.vtt 7.71Кб
007 Exploring Our Data 2.mp4 50.64Мб
007 Features In Data_en.vtt 6.09Кб
007 Features In Data.mp4 14.83Мб
007 heart-disease.csv 11.06Кб
007 JTS Start With Why_en.vtt 2.61Кб
007 JTS Start With Why.mp4 15.42Мб
007 Logical Operators_en.vtt 7.38Кб
007 Logical Operators.mp4 14.60Мб
007 Selecting and Viewing Data with Pandas_en.vtt 13.00Кб
007 Selecting and Viewing Data with Pandas.mp4 61.69Мб
007 Setting Up Our Data_en.vtt 5.72Кб
007 Setting Up Our Data.mp4 41.33Мб
007 Storytelling_en.vtt 3.60Кб
007 Storytelling.mp4 4.86Мб
007 Subplots Option 2_en.vtt 5.70Кб
007 Subplots Option 2.mp4 31.22Мб
007 Types Of Databases_en.vtt 7.72Кб
007 Types Of Databases.mp4 24.34Мб
007 Typical scikit-learn Workflow_en.vtt 28.43Кб
007 Typical scikit-learn Workflow.mp4 184.52Мб
007 Viewing Arrays and Matrices_en.vtt 11.76Кб
007 Viewing Arrays and Matrices.mp4 59.35Мб
007 Windows Environment Setup_en.vtt 6.89Кб
007 Windows Environment Setup.mp4 32.90Мб
008 Communicating and sharing your work Further reading.html 3.12Кб
008 Exercise Logical Operators_en.vtt 7.54Кб
008 Exercise Logical Operators.mp4 23.49Мб
008 Feature Engineering_en.vtt 19.10Кб
008 Feature Engineering.mp4 157.46Мб
008 Finding Patterns_en.vtt 11.81Кб
008 Finding Patterns.mp4 60.29Мб
008 Learning Python_en.vtt 2.38Кб
008 Learning Python.mp4 6.55Мб
008 Manipulating Arrays_en.vtt 14.56Кб
008 Manipulating Arrays.mp4 68.46Мб
008 Modelling - Splitting Data_en.vtt 6.88Кб
008 Modelling - Splitting Data.mp4 11.29Мб
008 Optional Debugging Warnings In Jupyter_en.vtt 23.26Кб
008 Optional Debugging Warnings In Jupyter.mp4 171.51Мб
008 Quick Note Upcoming Video.html 481б
008 Quick Note Upcoming Videos.html 352б
008 Quick Tip Data Visualizations_en.vtt 2.03Кб
008 Quick Tip Data Visualizations.mp4 5.36Мб
008 Selecting and Viewing Data with Pandas Part 2_en.vtt 16.25Кб
008 Selecting and Viewing Data with Pandas Part 2.mp4 103.38Мб
008 Setting Up Our Data 2_en.vtt 2.02Кб
008 Setting Up Our Data 2.mp4 21.05Мб
008 What Is Machine Learning Round 2_en.vtt 5.53Кб
008 What Is Machine Learning Round 2.mp4 11.85Мб
008 Windows Environment Setup 2_en.vtt 28.59Кб
008 Windows Environment Setup 2.mp4 222.74Мб
009 car-sales-missing-data.csv 287б
009 CWD Git + Github_en.vtt 18.60Кб
009 CWD Git + Github.mp4 169.84Мб
009 Finding Patterns 2_en.vtt 20.80Кб
009 Finding Patterns 2.mp4 94.27Мб
009 Getting Your Data Ready Splitting Your Data_en.vtt 10.65Кб
009 Getting Your Data Ready Splitting Your Data.mp4 60.96Мб
009 Importing TensorFlow 2_en.vtt 15.32Кб
009 Importing TensorFlow 2.mp4 114.67Мб
009 is vs ==_en.vtt 7.58Кб
009 is vs ==.mp4 18.05Мб
009 Linux Environment Setup.html 1.03Кб
009 Manipulating Arrays 2_en.vtt 10.30Кб
009 Manipulating Arrays 2.mp4 57.97Мб
009 Manipulating Data_en.vtt 15.96Кб
009 Manipulating Data.mp4 100.96Мб
009 Modelling - Picking the Model_en.vtt 5.54Кб
009 Modelling - Picking the Model.mp4 8.74Мб
009 Optional OLTP Databases_en.vtt 11.11Кб
009 Optional OLTP Databases.mp4 68.25Мб
009 Plotting From Pandas DataFrames_en.vtt 8.19Кб
009 Plotting From Pandas DataFrames.mp4 49.44Мб
009 Python Data Types_en.vtt 4.94Кб
009 Python Data Types.mp4 11.96Мб
009 scikit-learn-data.zip 20.83Кб
009 Section Review_en.vtt 1.95Кб
009 Section Review.mp4 2.81Мб
009 Turning Data Into Numbers_en.vtt 19.37Кб
009 Turning Data Into Numbers.mp4 144.14Мб
010 CWD Git + Github 2_en.vtt 16.72Кб
010 CWD Git + Github 2.mp4 102.55Мб
010 Filling Missing Numerical Values_en.vtt 14.95Кб
010 Filling Missing Numerical Values.mp4 103.35Мб
010 Finding Patterns 3_en.vtt 16.77Кб
010 Finding Patterns 3.mp4 135.88Мб
010 For Loops_en.vtt 7.03Кб
010 For Loops.mp4 16.42Мб
010 How To Succeed.html 280б
010 Manipulating Data 2_en.vtt 12.58Кб
010 Manipulating Data 2.mp4 84.27Мб
010 Modelling - Tuning_en.vtt 4.47Кб
010 Modelling - Tuning.mp4 6.17Мб
010 Monthly Coding Challenges, Free Resources and Guides.html 1.58Кб
010 Optional Learn SQL.html 410б
010 Optional TensorFlow 2.0 Default Issue_en.vtt 4.00Кб
010 Optional TensorFlow 2.0 Default Issue.mp4 13.98Мб
010 pandas-anatomy-of-a-dataframe.png 333.24Кб
010 Quick Note Regular Expressions.html 632б
010 Quick Tip Clean, Transform, Reduce_en.vtt 5.74Кб
010 Quick Tip Clean, Transform, Reduce.mp4 9.74Мб
010 Sharing your Conda Environment.html 2.41Кб
010 Standard Deviation and Variance_en.vtt 8.38Кб
010 Standard Deviation and Variance.mp4 36.77Мб
011 6-step-ml-framework.png 324.24Кб
011 Contributing To Open Source_en.vtt 15.20Кб
011 Contributing To Open Source.mp4 126.78Мб
011 Filling Missing Categorical Values_en.vtt 9.77Кб
011 Filling Missing Categorical Values.mp4 64.55Мб
011 Getting Your Data Ready Convert Data To Numbers_en.vtt 20.05Кб
011 Getting Your Data Ready Convert Data To Numbers.mp4 130.92Мб
011 Hadoop, HDFS and MapReduce_en.vtt 4.36Кб
011 Hadoop, HDFS and MapReduce.mp4 10.07Мб
011 heart-disease.csv 11.06Кб
011 Iterables_en.vtt 6.25Кб
011 Iterables.mp4 23.53Мб
011 Jupyter Notebook Walkthrough_en.vtt 13.64Кб
011 Jupyter Notebook Walkthrough.mp4 56.81Мб
011 Manipulating Data 3_en.vtt 12.10Кб
011 Manipulating Data 3.mp4 76.71Мб
011 Modelling - Comparison_en.vtt 11.72Кб
011 Modelling - Comparison.mp4 18.23Мб
011 Numbers_en.vtt 10.34Кб
011 Numbers.mp4 55.10Мб
011 Plotting From Pandas DataFrames 2_en.vtt 11.64Кб
011 Plotting From Pandas DataFrames 2.mp4 97.25Мб
011 Preparing Our Data For Machine Learning_en.vtt 11.26Кб
011 Preparing Our Data For Machine Learning.mp4 70.46Мб
011 Reshape and Transpose_en.vtt 8.30Кб
011 Reshape and Transpose.mp4 51.46Мб
011 Using A GPU_en.vtt 11.17Кб
011 Using A GPU.mp4 78.90Мб
012 Apache Spark and Apache Flink_en.vtt 2.14Кб
012 Apache Spark and Apache Flink.mp4 2.93Мб
012 Assignment Pandas Practice.html 2.05Кб
012 Choosing The Right Models_en.vtt 12.23Кб
012 Choosing The Right Models.mp4 94.08Мб
012 Contributing To Open Source 2_en.vtt 8.94Кб
012 Contributing To Open Source 2.mp4 113.11Мб
012 Dot Product vs Element Wise_en.vtt 13.58Кб
012 Dot Product vs Element Wise.mp4 69.76Мб
012 Exercise Tricky Counter_en.vtt 3.33Кб
012 Exercise Tricky Counter.mp4 8.11Мб
012 Fitting A Machine Learning Model_en.vtt 9.63Кб
012 Fitting A Machine Learning Model.mp4 53.48Мб
012 Jupyter Notebook Walkthrough 2_en.vtt 19.54Кб
012 Jupyter Notebook Walkthrough 2.mp4 87.67Мб
012 Math Functions_en.vtt 4.87Кб
012 Math Functions.mp4 25.88Мб
012 Note Update to next video (OneHotEncoder can handle NaNNone values).html 1.52Кб
012 Optional GPU and Google Colab_en.vtt 5.47Кб
012 Optional GPU and Google Colab.mp4 38.21Мб
012 Overfitting and Underfitting Definitions.html 1.95Кб
012 Plotting from Pandas DataFrames 3_en.vtt 10.21Кб
012 Plotting from Pandas DataFrames 3.mp4 73.40Мб
013 DEVELOPER FUNDAMENTALS I_en.vtt 4.78Кб
013 DEVELOPER FUNDAMENTALS I.mp4 47.73Мб
013 Exercise Contribute To Open Source.html 1.29Кб
013 Exercise Nut Butter Store Sales_en.vtt 14.77Кб
013 Exercise Nut Butter Store Sales.mp4 87.18Мб
013 Experimentation_en.vtt 4.45Кб
013 Experimentation.mp4 11.55Мб
013 Experimenting With Machine Learning Models_en.vtt 8.60Кб
013 Experimenting With Machine Learning Models.mp4 53.99Мб
013 Getting Your Data Ready Handling Missing Values With Pandas_en.vtt 15.38Кб
013 Getting Your Data Ready Handling Missing Values With Pandas.mp4 102.27Мб
013 heart-disease.csv 11.06Кб
013 How To Download The Course Assignments_en.vtt 9.76Кб
013 How To Download The Course Assignments.mp4 64.53Мб
013 Jupyter Notebook Walkthrough 3_en.vtt 10.36Кб
013 Jupyter Notebook Walkthrough 3.mp4 69.55Мб
013 Kafka and Stream Processing_en.vtt 4.60Кб
013 Kafka and Stream Processing.mp4 14.35Мб
013 Optional Reloading Colab Notebook_en.vtt 7.63Кб
013 Optional Reloading Colab Notebook.mp4 89.27Мб
013 Plotting from Pandas DataFrames 4_en.vtt 8.55Кб
013 Plotting from Pandas DataFrames 4.mp4 40.57Мб
013 range()_en.vtt 5.46Кб
013 range().mp4 20.79Мб
013 Splitting Data_en.vtt 12.31Кб
013 Splitting Data.mp4 80.07Мб
014 Challenge What's wrong with splitting data after filling it.html 1.72Кб
014 Coding Challenges.html 948б
014 Comparison Operators_en.vtt 4.41Кб
014 Comparison Operators.mp4 22.01Мб
014 enumerate()_en.vtt 4.28Кб
014 enumerate().mp4 9.40Мб
014 Extension Feature Scaling.html 2.93Кб
014 Loading Our Data Labels_en.vtt 13.93Кб
014 Loading Our Data Labels.mp4 112.35Мб
014 Operator Precedence_en.vtt 2.98Кб
014 Operator Precedence.mp4 5.78Мб
014 Plotting from Pandas DataFrames 5_en.vtt 10.46Кб
014 Plotting from Pandas DataFrames 5.mp4 54.46Мб
014 Tools We Will Use_en.vtt 5.34Кб
014 Tools We Will Use.mp4 12.91Мб
014 TuningImproving Our Model_en.vtt 16.20Кб
014 TuningImproving Our Model.mp4 102.77Мб
015 Custom Evaluation Function_en.vtt 14.40Кб
015 Custom Evaluation Function.mp4 100.73Мб
015 Exercise Operator Precedence.html 683б
015 Note Correction in the upcoming video (splitting data).html 2.16Кб
015 Optional Elements of AI.html 975б
015 Plotting from Pandas DataFrames 6_en.vtt 10.08Кб
015 Plotting from Pandas DataFrames 6.mp4 67.43Мб
015 Preparing The Images_en.vtt 12.86Кб
015 Preparing The Images.mp4 132.02Мб
015 Sorting Arrays_en.vtt 7.64Кб
015 Sorting Arrays.mp4 24.26Мб
015 Tuning Hyperparameters_en.vtt 14.16Кб
015 Tuning Hyperparameters.mp4 106.21Мб
015 While Loops_en.vtt 6.66Кб
015 While Loops.mp4 13.94Мб
016 Getting Your Data Ready Handling Missing Values With Scikit-learn_en.vtt 21.25Кб
016 Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4 131.31Мб
016 numpy-images.zip 7.27Мб
016 Optional bin() and complex_en.vtt 4.41Кб
016 Optional bin() and complex.mp4 14.45Мб
016 Plotting from Pandas DataFrames 7_en.vtt 13.56Кб
016 Plotting from Pandas DataFrames 7.mp4 119.01Мб
016 Reducing Data_en.vtt 13.15Кб
016 Reducing Data.mp4 91.43Мб
016 Tuning Hyperparameters 2_en.vtt 13.83Кб
016 Tuning Hyperparameters 2.mp4 101.81Мб
016 Turn Images Into NumPy Arrays_en.vtt 9.11Кб
016 Turn Images Into NumPy Arrays.mp4 71.28Мб
016 Turning Data Labels Into Numbers_en.vtt 12.19Кб
016 Turning Data Labels Into Numbers.mp4 70.52Мб
016 While Loops 2_en.vtt 5.98Кб
016 While Loops 2.mp4 11.48Мб
017 break, continue, pass_en.vtt 4.67Кб
017 break, continue, pass.mp4 9.26Мб
017 Creating Our Own Validation Set_en.vtt 10.19Кб
017 Creating Our Own Validation Set.mp4 55.57Мб
017 Customizing Your Plots_en.vtt 12.32Кб
017 Customizing Your Plots.mp4 90.94Мб
017 Exercise Imposter Syndrome_en.vtt 3.89Кб
017 Exercise Imposter Syndrome.mp4 26.52Мб
017 NEW Choosing The Right Model For Your Data_en.vtt 25.57Кб
017 NEW Choosing The Right Model For Your Data.mp4 234.14Мб
017 RandomizedSearchCV_en.vtt 11.62Кб
017 RandomizedSearchCV.mp4 72.06Мб
017 Tuning Hyperparameters 3_en.vtt 8.93Кб
017 Tuning Hyperparameters 3.mp4 61.52Мб
017 Variables_en.vtt 14.35Кб
017 Variables.mp4 56.87Мб
018 Assignment NumPy Practice.html 2.17Кб
018 Customizing Your Plots 2_en.vtt 11.35Кб
018 Customizing Your Plots 2.mp4 123.59Мб
018 Expressions vs Statements_en.vtt 1.63Кб
018 Expressions vs Statements.mp4 3.16Мб
018 Improving Hyperparameters_en.vtt 10.23Кб
018 Improving Hyperparameters.mp4 78.03Мб
018 NEW Choosing The Right Model For Your Data 2 (Regression)_en.vtt 14.50Кб
018 NEW Choosing The Right Model For Your Data 2 (Regression).mp4 128.55Мб
018 Our First GUI_en.vtt 9.29Кб
018 Our First GUI.mp4 46.04Мб
018 Preprocess Images_en.vtt 11.81Кб
018 Preprocess Images.mp4 88.01Мб
018 Quick Note Confusion Matrix Labels.html 1.11Кб
019 Augmented Assignment Operator_en.vtt 2.79Кб
019 Augmented Assignment Operator.mp4 13.35Мб
019 DEVELOPER FUNDAMENTALS IV_en.vtt 7.15Кб
019 DEVELOPER FUNDAMENTALS IV.mp4 24.69Мб
019 Evaluating Our Model_en.vtt 13.71Кб
019 Evaluating Our Model.mp4 68.07Мб
019 Optional Extra NumPy resources.html 1.02Кб
019 Preproccessing Our Data_en.vtt 15.56Кб
019 Preproccessing Our Data.mp4 138.17Мб
019 Preprocess Images 2_en.vtt 11.90Кб
019 Preprocess Images 2.mp4 103.44Мб
019 Quick Note Decision Trees.html 221б
019 Saving And Sharing Your Plots_en.vtt 5.42Кб
019 Saving And Sharing Your Plots.mp4 49.68Мб
020 Assignment Matplotlib Practice.html 2.05Кб
020 Evaluating Our Model 2_en.vtt 6.98Кб
020 Evaluating Our Model 2.mp4 34.64Мб
020 Exercise Find Duplicates_en.vtt 3.84Кб
020 Exercise Find Duplicates.mp4 10.29Мб
020 Making Predictions_en.vtt 9.75Кб
020 Making Predictions.mp4 28.67Мб
020 Quick Tip How ML Algorithms Work_en.vtt 1.64Кб
020 Quick Tip How ML Algorithms Work.mp4 6.36Мб
020 Strings_en.vtt 5.65Кб
020 Strings.mp4 11.19Мб
020 Turning Data Into Batches_en.vtt 10.66Кб
020 Turning Data Into Batches.mp4 74.64Мб
021 Choosing The Right Model For Your Data 3 (Classification)_en.vtt 15.80Кб
021 Choosing The Right Model For Your Data 3 (Classification).mp4 115.90Мб
021 Evaluating Our Model 3_en.vtt 10.37Кб
021 Evaluating Our Model 3.mp4 62.15Мб
021 Feature Importance_en.vtt 15.73Кб
021 Feature Importance.mp4 140.53Мб
021 Functions_en.vtt 8.13Кб
021 Functions.mp4 21.27Мб
021 String Concatenation_en.vtt 1.17Кб
021 String Concatenation.mp4 2.50Мб
021 Turning Data Into Batches 2_en.vtt 18.75Кб
021 Turning Data Into Batches 2.mp4 126.96Мб
022 Finding The Most Important Features_en.vtt 20.15Кб
022 Finding The Most Important Features.mp4 123.66Мб
022 Fitting A Model To The Data_en.vtt 8.71Кб
022 Fitting A Model To The Data.mp4 38.40Мб
022 Parameters and Arguments_en.vtt 4.36Кб
022 Parameters and Arguments.mp4 11.29Мб
022 Type Conversion_en.vtt 2.95Кб
022 Type Conversion.mp4 14.60Мб
022 Visualizing Our Data_en.vtt 13.18Кб
022 Visualizing Our Data.mp4 120.07Мб
023 Default Parameters and Keyword Arguments_en.vtt 5.45Кб
023 Default Parameters and Keyword Arguments.mp4 18.12Мб
023 Escape Sequences_en.vtt 4.49Кб
023 Escape Sequences.mp4 8.68Мб
023 Making Predictions With Our Model_en.vtt 11.01Кб
023 Making Predictions With Our Model.mp4 64.20Мб
023 Preparing Our Inputs and Outputs_en.vtt 7.00Кб
023 Preparing Our Inputs and Outputs.mp4 47.95Мб
023 Reviewing The Project_en.vtt 12.79Кб
023 Reviewing The Project.mp4 84.81Мб
024 Formatted Strings_en.vtt 8.26Кб
024 Formatted Strings.mp4 21.81Мб
024 Optional How machines learn and what's going on behind the scenes.html 2.72Кб
024 predict() vs predict_proba()_en.vtt 10.46Кб
024 predict() vs predict_proba().mp4 39.10Мб
024 return_en.vtt 13.63Кб
024 return.mp4 36.79Мб
025 Building A Deep Learning Model_en.vtt 14.85Кб
025 Building A Deep Learning Model.mp4 102.61Мб
025 Exercise Tesla.html 402б
025 NEW Making Predictions With Our Model (Regression)_en.vtt 10.92Кб
025 NEW Making Predictions With Our Model (Regression).mp4 79.24Мб
025 String Indexes_en.vtt 8.53Кб
025 String Indexes.mp4 17.42Мб
026 Building A Deep Learning Model 2_en.vtt 11.18Кб
026 Building A Deep Learning Model 2.mp4 88.56Мб
026 Immutability_en.vtt 3.16Кб
026 Immutability.mp4 6.65Мб
026 Methods vs Functions_en.vtt 4.97Кб
026 Methods vs Functions.mp4 22.10Мб
026 NEW Evaluating A Machine Learning Model (Score) Part 1_en.vtt 12.47Кб
026 NEW Evaluating A Machine Learning Model (Score) Part 1.mp4 83.49Мб
027 Building A Deep Learning Model 3_en.vtt 10.75Кб
027 Building A Deep Learning Model 3.mp4 105.33Мб
027 Built-In Functions + Methods_en.vtt 9.60Кб
027 Built-In Functions + Methods.mp4 44.07Мб
027 Docstrings_en.vtt 3.96Кб
027 Docstrings.mp4 10.25Мб
027 NEW Evaluating A Machine Learning Model (Score) Part 2_en.vtt 8.71Кб
027 NEW Evaluating A Machine Learning Model (Score) Part 2.mp4 52.96Мб
028 Booleans_en.vtt 3.55Кб
028 Booleans.mp4 7.45Мб
028 Building A Deep Learning Model 4_en.vtt 11.14Кб
028 Building A Deep Learning Model 4.mp4 86.42Мб
028 Clean Code_en.vtt 4.70Кб
028 Clean Code.mp4 17.58Мб
028 Evaluating A Machine Learning Model 2 (Cross Validation)_en.vtt 15.85Кб
028 Evaluating A Machine Learning Model 2 (Cross Validation).mp4 46.72Мб
029 args and kwargs_en.vtt 7.28Кб
029 args and kwargs.mp4 17.54Мб
029 Evaluating A Classification Model 1 (Accuracy)_en.vtt 5.33Кб
029 Evaluating A Classification Model 1 (Accuracy).mp4 29.85Мб
029 Exercise Type Conversion_en.vtt 7.88Кб
029 Exercise Type Conversion.mp4 21.75Мб
029 Summarizing Our Model_en.vtt 5.36Кб
029 Summarizing Our Model.mp4 44.43Мб
030 DEVELOPER FUNDAMENTALS II_en.vtt 4.85Кб
030 DEVELOPER FUNDAMENTALS II.mp4 18.67Мб
030 Evaluating A Classification Model 2 (ROC Curve)_en.vtt 10.94Кб
030 Evaluating A Classification Model 2 (ROC Curve).mp4 63.09Мб
030 Evaluating Our Model_en.vtt 9.83Кб
030 Evaluating Our Model.mp4 67.09Мб
030 Exercise Functions_en.vtt 4.30Кб
030 Exercise Functions.mp4 10.66Мб
031 Evaluating A Classification Model 3 (ROC Curve)_en.vtt 9.02Кб
031 Evaluating A Classification Model 3 (ROC Curve).mp4 47.70Мб
031 Exercise Password Checker_en.vtt 6.93Кб
031 Exercise Password Checker.mp4 24.55Мб
031 Preventing Overfitting_en.vtt 4.88Кб
031 Preventing Overfitting.mp4 35.26Мб
031 Scope_en.vtt 3.50Кб
031 Scope.mp4 8.10Мб
032 Lists_en.vtt 5.19Кб
032 Lists.mp4 8.90Мб
032 Reading Extension ROC Curve + AUC.html 1.48Кб
032 Scope Rules_en.vtt 7.02Кб
032 Scope Rules.mp4 18.90Мб
032 Training Your Deep Neural Network_en.vtt 21.50Кб
032 Training Your Deep Neural Network.mp4 163.18Мб
033 Evaluating A Classification Model 4 (Confusion Matrix)_en.vtt 13.63Кб
033 Evaluating A Classification Model 4 (Confusion Matrix).mp4 25.73Мб
033 Evaluating Performance With TensorBoard_en.vtt 8.80Кб
033 Evaluating Performance With TensorBoard.mp4 73.28Мб
033 global Keyword_en.vtt 6.24Кб
033 global Keyword.mp4 21.37Мб
033 List Slicing_en.vtt 7.51Кб
033 List Slicing.mp4 17.54Мб
034 Make And Transform Predictions_en.vtt 17.46Кб
034 Make And Transform Predictions.mp4 153.65Мб
034 Matrix_en.vtt 4.14Кб
034 Matrix.mp4 8.72Мб
034 NEW Evaluating A Classification Model 5 (Confusion Matrix)_en.vtt 18.18Кб
034 NEW Evaluating A Classification Model 5 (Confusion Matrix).mp4 106.56Мб
034 nonlocal Keyword_en.vtt 3.63Кб
034 nonlocal Keyword.mp4 9.34Мб
035 Evaluating A Classification Model 6 (Classification Report)_en.vtt 12.99Кб
035 Evaluating A Classification Model 6 (Classification Report).mp4 84.93Мб
035 List Methods_en.vtt 10.18Кб
035 List Methods.mp4 40.19Мб
035 Transform Predictions To Text_en.vtt 16.42Кб
035 Transform Predictions To Text.mp4 126.30Мб
035 Why Do We Need Scope_en.vtt 4.28Кб
035 Why Do We Need Scope.mp4 8.64Мб
036 List Methods 2_en.vtt 4.41Кб
036 List Methods 2.mp4 17.63Мб
036 NEW Evaluating A Regression Model 1 (R2 Score)_en.vtt 12.89Кб
036 NEW Evaluating A Regression Model 1 (R2 Score).mp4 99.55Мб
036 Pure Functions_en.vtt 9.40Кб
036 Pure Functions.mp4 30.02Мб
036 Visualizing Model Predictions_en.vtt 15.44Кб
036 Visualizing Model Predictions.mp4 115.62Мб
037 List Methods 3_en.vtt 4.72Кб
037 List Methods 3.mp4 18.30Мб
037 map()_en.vtt 6.05Кб
037 map().mp4 33.46Мб
037 NEW Evaluating A Regression Model 2 (MAE)_en.vtt 8.84Кб
037 NEW Evaluating A Regression Model 2 (MAE).mp4 42.90Мб
037 Visualizing And Evaluate Model Predictions 2_en.vtt 15.59Кб
037 Visualizing And Evaluate Model Predictions 2.mp4 63.49Мб
038 Common List Patterns_en.vtt 5.59Кб
038 Common List Patterns.mp4 16.82Мб
038 filter()_en.vtt 4.69Кб
038 filter().mp4 9.92Мб
038 NEW Evaluating A Regression Model 3 (MSE)_en.vtt 11.67Кб
038 NEW Evaluating A Regression Model 3 (MSE).mp4 75.54Мб
038 Visualizing And Evaluate Model Predictions 3_en.vtt 12.28Кб
038 Visualizing And Evaluate Model Predictions 3.mp4 112.65Мб
039 List Unpacking_en.vtt 2.69Кб
039 List Unpacking.mp4 6.20Мб
039 Machine Learning Model Evaluation.html 7.12Кб
039 Saving And Loading A Trained Model_en.vtt 14.89Кб
039 Saving And Loading A Trained Model.mp4 54.07Мб
039 zip()_en.vtt 2.95Кб
039 zip().mp4 10.18Мб
040 NEW Evaluating A Model With Cross Validation and Scoring Parameter_en.vtt 31.31Кб
040 NEW Evaluating A Model With Cross Validation and Scoring Parameter.mp4 224.79Мб
040 None_en.vtt 1.99Кб
040 None.mp4 3.08Мб
040 reduce()_en.vtt 7.95Кб
040 reduce().mp4 27.69Мб
040 Training Model On Full Dataset_en.vtt 17.29Кб
040 Training Model On Full Dataset.mp4 137.65Мб
041 Dictionaries_en.vtt 6.85Кб
041 Dictionaries.mp4 12.48Мб
041 List Comprehensions_en.vtt 8.50Кб
041 List Comprehensions.mp4 24.29Мб
041 Making Predictions On Test Images_en.vtt 18.36Кб
041 Making Predictions On Test Images.mp4 119.93Мб
041 NEW Evaluating A Model With Scikit-learn Functions_en.vtt 17.23Кб
041 NEW Evaluating A Model With Scikit-learn Functions.mp4 130.44Мб
042 DEVELOPER FUNDAMENTALS III_en.vtt 3.05Кб
042 DEVELOPER FUNDAMENTALS III.mp4 8.66Мб
042 Improving A Machine Learning Model_en.vtt 13.34Кб
042 Improving A Machine Learning Model.mp4 87.27Мб
042 Set Comprehensions_en.vtt 5.96Кб
042 Set Comprehensions.mp4 17.08Мб
042 Submitting Model to Kaggle_en.vtt 14.81Кб
042 Submitting Model to Kaggle.mp4 102.00Мб
043 Dictionary Keys_en.vtt 3.48Кб
043 Dictionary Keys.mp4 7.88Мб
043 Exercise Comprehensions_en.vtt 4.50Кб
043 Exercise Comprehensions.mp4 9.64Мб
043 Making Predictions On Our Images_en.vtt 17.24Кб
043 Making Predictions On Our Images.mp4 119.39Мб
043 Tuning Hyperparameters_en.vtt 27.95Кб
043 Tuning Hyperparameters.mp4 168.05Мб
044 Dictionary Methods_en.vtt 4.92Кб
044 Dictionary Methods.mp4 10.07Мб
044 Finishing Dog Vision Where to next.html 3.86Кб
044 Python Exam Testing Your Understanding.html 1.12Кб
044 Tuning Hyperparameters 2_en.vtt 15.56Кб
044 Tuning Hyperparameters 2.mp4 112.39Мб
045 Dictionary Methods 2_en.vtt 6.60Кб
045 Dictionary Methods 2.mp4 28.18Мб
045 Modules in Python_en.vtt 11.55Кб
045 Modules in Python.mp4 78.21Мб
045 Tuning Hyperparameters 3_en.vtt 17.63Кб
045 Tuning Hyperparameters 3.mp4 118.20Мб
046 Note Metric Comparison Improvement.html 2.18Кб
046 Quick Note Upcoming Videos.html 448б
046 Tuples_en.vtt 5.19Кб
046 Tuples.mp4 9.99Мб
047 Optional PyCharm_en.vtt 9.21Кб
047 Optional PyCharm.mp4 25.34Мб
047 Quick Tip Correlation Analysis_en.vtt 2.67Кб
047 Quick Tip Correlation Analysis.mp4 16.41Мб
047 Tuples 2_en.vtt 3.00Кб
047 Tuples 2.mp4 7.45Мб
048 Packages in Python_en.vtt 11.23Кб
048 Packages in Python.mp4 61.85Мб
048 Saving And Loading A Model_en.vtt 8.90Кб
048 Saving And Loading A Model.mp4 44.06Мб
048 Sets_en.vtt 7.75Кб
048 Sets.mp4 24.25Мб
049 Different Ways To Import_en.vtt 7.10Кб
049 Different Ways To Import.mp4 23.94Мб
049 Saving And Loading A Model 2_en.vtt 8.11Кб
049 Saving And Loading A Model 2.mp4 47.61Мб
049 Sets 2_en.vtt 8.59Кб
049 Sets 2.mp4 52.47Мб
050 Next Steps.html 959б
050 Putting It All Together_en.vtt 25.00Кб
050 Putting It All Together.mp4 143.19Мб
051 Bonus Resource Python Cheatsheet.html 489б
051 Putting It All Together 2_en.vtt 14.44Кб
051 Putting It All Together 2.mp4 114.25Мб
052 Scikit-Learn Practice.html 2.07Кб
Статистика распространения по странам
Румыния (RO) 2
Македония (MK) 1
Южная Корея (KR) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент