Общая информация
Название [DesireCourse.Net] Udemy - Complete Tensorflow 2 and Keras Deep Learning Bootcamp
Тип
Размер 6.74Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 48б
[DesireCourse.Net].url 51б
[FreeCourseWorld.Com].url 54б
1. CNN Section Overview.mp4 7.52Мб
1. CNN Section Overview.srt 2.47Кб
1. Course Overview.mp4 26.16Мб
1. Course Overview.srt 7.49Кб
1. GANs Overview.mp4 53.86Мб
1. GANs Overview.srt 11.75Кб
1. Introduction to ANN Section.mp4 9.70Мб
1. Introduction to ANN Section.srt 3.33Кб
1. Introduction to Autoencoders.mp4 20.88Мб
1. Introduction to Deployment.mp4 23.43Мб
1. Introduction to Deployment.srt 5.41Кб
1. Introduction to NLP Section.mp4 35.12Мб
1. Introduction to NLP Section.srt 8.82Кб
1. Introduction to NumPy.mp4 11.38Мб
1. Introduction to NumPy.srt 3.49Кб
1. Introduction to Pandas.mp4 25.50Мб
1. Introduction to Pandas.srt 6.13Кб
1. Introduction to Python Visualization.mp4 6.82Мб
1. Introduction to Python Visualization.srt 1.96Кб
1. PLEASE WATCH COURSE OVERVIEW LECTURE.html 165б
1. RNN Section Overview.mp4 10.91Мб
1. RNN Section Overview.srt 3.97Кб
1. What is Machine Learning.mp4 28.20Мб
1. What is Machine Learning.srt 8.13Кб
10. CNN on CIFAR-10 - Part Two - Evaluating the Model.mp4 45.34Мб
10. CNN on CIFAR-10 - Part Two - Evaluating the Model.srt 10.48Кб
10. Keras Syntax Basics - Part Two - Creating and Training the Model.mp4 84.64Мб
10. Keras Syntax Basics - Part Two - Creating and Training the Model.srt 19.91Кб
10. Pandas Exercises - Solutions.mp4 51.46Мб
10. Pandas Exercises - Solutions.srt 10.00Кб
10. RNN on a Time Series - Part One.mp4 45.01Мб
10. RNN on a Time Series - Part One.srt 13.53Кб
11.1 Direct Link to Download cell_images.zip (Note You can't preview a zip file) Just download it..html 127б
11. Downloading Data Set for Real Image Lectures.mp4 28.23Мб
11. Downloading Data Set for Real Image Lectures.srt 8.56Кб
11. Keras Syntax Basics - Part Three - Model Evaluation.mp4 64.96Мб
11. Keras Syntax Basics - Part Three - Model Evaluation.srt 16.73Кб
11. RNN on a Time Series - Part Two.mp4 131.02Мб
11. RNN on a Time Series - Part Two.srt 31.40Кб
12. CNN on Real Image Files - Part One - Reading in the Data.mp4 80.69Мб
12. CNN on Real Image Files - Part One - Reading in the Data.srt 19.88Кб
12. Keras Regression Code Along - Exploratory Data Analysis.mp4 137.06Мб
12. Keras Regression Code Along - Exploratory Data Analysis.srt 25.83Кб
12. RNN Exercise.mp4 29.92Мб
12. RNN Exercise.srt 6.75Кб
13. CNN on Real Image Files - Part Two - Data Processing.mp4 87.92Мб
13. CNN on Real Image Files - Part Two - Data Processing.srt 22.93Кб
13. Keras Regression Code Along - Exploratory Data Analysis - Continued.mp4 76.18Мб
13. Keras Regression Code Along - Exploratory Data Analysis - Continued.srt 18.39Кб
13. RNN Exercise - Solutions.mp4 148.08Мб
13. RNN Exercise - Solutions.srt 32.20Кб
14. Bonus - Multivariate Time Series - RNN and LSTMs.mp4 149.33Мб
14. Bonus - Multivariate Time Series - RNN and LSTMs.srt 25.92Кб
14. CNN on Real Image Files - Part Three - Creating the Model.mp4 90.63Мб
14. CNN on Real Image Files - Part Three - Creating the Model.srt 19.60Кб
14. Keras Regression Code Along - Data Preprocessing and Creating a Model.mp4 47.01Мб
14. Keras Regression Code Along - Data Preprocessing and Creating a Model.srt 11.78Кб
15. CNN on Real Image Files - Part Four - Evaluating the Model.mp4 47.11Мб
15. CNN on Real Image Files - Part Four - Evaluating the Model.srt 11.99Кб
15. Keras Regression Code Along - Model Evaluation and Predictions.mp4 68.91Мб
15. Keras Regression Code Along - Model Evaluation and Predictions.srt 15.86Кб
16. CNN Exercise Overview.mp4 17.88Мб
16. CNN Exercise Overview.srt 3.77Кб
16. Keras Classification Code Along - EDA and Preprocessing.mp4 56.15Мб
16. Keras Classification Code Along - EDA and Preprocessing.srt 11.16Кб
17. CNN Exercise Solutions.mp4 56.02Мб
17. CNN Exercise Solutions.srt 11.60Кб
17. Keras Classification - Dealing with Overfitting and Evaluation.mp4 111.25Мб
17. Keras Classification - Dealing with Overfitting and Evaluation.srt 23.92Кб
18. TensorFlow 2.0 Keras Project Options Overview.mp4 7.86Мб
18. TensorFlow 2.0 Keras Project Options Overview.srt 2.50Кб
19. TensorFlow 2.0 Keras Project Notebook Overview.mp4 80.56Мб
19. TensorFlow 2.0 Keras Project Notebook Overview.srt 12.38Кб
2.1 FINAL_TF2_FILES.zip.zip 99.27Мб
2.2 requirements.txt.txt 138б
2. Autoencoder Basics.mp4 42.64Мб
2. Autoencoder Basics.srt 11.36Кб
2. Course Setup and Installation.mp4 152.41Мб
2. Course Setup and Installation.srt 34.57Кб
2. Creating a GAN - Part One- The Data.mp4 19.12Мб
2. Creating a GAN - Part One- The Data.srt 6.50Кб
2. Creating the Model.mp4 87.07Мб
2. Creating the Model.srt 22.15Кб
2. Image Filters and Kernels.mp4 72.34Мб
2. Image Filters and Kernels.srt 17.94Кб
2. Matplotlib Basics.mp4 41.03Мб
2. Matplotlib Basics.srt 13.40Кб
2. NLP - Part One - The Data.mp4 22.29Мб
2. NLP - Part One - The Data.srt 6.85Кб
2. NumPy Arrays.mp4 88.58Мб
2. NumPy Arrays.srt 27.40Кб
2. Pandas Series.mp4 37.88Мб
2. Pandas Series.srt 12.49Кб
2. Perceptron Model.mp4 47.80Мб
2. Perceptron Model.srt 14.59Кб
2. RNN Basic Theory.mp4 29.97Мб
2. Supervised Learning Overview.mp4 40.03Мб
2. Supervised Learning Overview.srt 12.25Кб
20. Keras Project Solutions - Exploratory Data Analysis.mp4 143.63Мб
20. Keras Project Solutions - Exploratory Data Analysis.srt 27.86Кб
21. Keras Project Solutions - Dealing with Missing Data.mp4 96.78Мб
21. Keras Project Solutions - Dealing with Missing Data.srt 20.41Кб
22. Keras Project Solutions - Dealing with Missing Data - Part Two.mp4 85.40Мб
22. Keras Project Solutions - Dealing with Missing Data - Part Two.srt 17.10Кб
23. Keras Project Solutions - Categorical Data.mp4 125.03Мб
23. Keras Project Solutions - Categorical Data.srt 24.97Кб
24. Keras Project Solutions - Data PreProcessing.mp4 23.95Мб
24. Keras Project Solutions - Data PreProcessing.srt 4.99Кб
25. Keras Project Solutions - Creating and Training a Model.mp4 29.72Мб
25. Keras Project Solutions - Creating and Training a Model.srt 5.89Кб
26. Keras Project Solutions - Model Evaluation.mp4 63.17Мб
26. Keras Project Solutions - Model Evaluation.srt 13.42Кб
27. Tensorboard.mp4 144.18Мб
27. Tensorboard.srt 28.72Кб
3.1 FINAL_TF2_FILES.zip.zip 99.27Мб
3. Autoencoder for Dimensionality Reduction.mp4 117.47Мб
3. Autoencoder for Dimensionality Reduction.srt 28.02Кб
3. Convolutional Layers.mp4 58.00Мб
3. Convolutional Layers.srt 20.76Кб
3. Creating a GAN - Part Two - The Model.mp4 69.80Мб
3. Creating a GAN - Part Two - The Model.srt 17.30Кб
3. FAQ - Frequently Asked Questions.html 5.34Кб
3. Model Prediction Function.mp4 53.03Мб
3. Model Prediction Function.srt 12.43Кб
3. Neural Networks.mp4 35.79Мб
3. Neural Networks.srt 10.78Кб
3. NLP - Part Two - Text Processing.mp4 22.88Мб
3. NLP - Part Two - Text Processing.srt 5.90Кб
3. Numpy Index Selection.mp4 46.37Мб
3. Numpy Index Selection.srt 15.06Кб
3. Overfitting.mp4 26.31Мб
3. Overfitting.srt 11.81Кб
3. Pandas DataFrames - Part One.mp4 45.17Мб
3. Pandas DataFrames - Part One.srt 17.30Кб
3. Seaborn Basics.mp4 91.85Мб
3. Seaborn Basics.srt 24.39Кб
3. Vanishing Gradients.mp4 28.12Мб
3. Vanishing Gradients.srt 10.83Кб
4.1 Great Blog Post on Exploring LSTM Neurons.html 109б
4.2 Famous Karpathy Blog Post.html 116б
4.3 Wikipedia Article Describing LSTM Variants.html 113б
4.4 How to choose between LSTM vs GRU.html 140б
4. Activation Functions.mp4 62.52Мб
4. Activation Functions.srt 16.06Кб
4. Autoencoder for Images - Part One.mp4 94.09Мб
4. Autoencoder for Images - Part One.srt 23.48Кб
4. Creating a GAN - Part Three - Model Training.mp4 131.58Мб
4. Creating a GAN - Part Three - Model Training.srt 34.19Кб
4. Data Visualization Exercises.mp4 22.82Мб
4. Data Visualization Exercises.srt 5.08Кб
4. Evaluating Performance - Classification Error Metrics.mp4 82.69Мб
4. Evaluating Performance - Classification Error Metrics.srt 24.71Кб
4. LSTMS and GRU.mp4 41.94Мб
4. LSTMS and GRU.srt 16.71Кб
4. NLP - Part Three - Creating Batches.mp4 81.69Мб
4. NLP - Part Three - Creating Batches.srt 17.93Кб
4. NumPy Operations.mp4 48.60Мб
4. NumPy Operations.srt 11.65Кб
4. Pandas DataFrames - Part Two.mp4 37.01Мб
4. Pandas DataFrames - Part Two.srt 13.60Кб
4. Pooling Layers.mp4 27.65Мб
4. Pooling Layers.srt 9.92Кб
4. Running a Basic Flask Application.mp4 62.02Мб
4. Running a Basic Flask Application.srt 15.16Кб
5. Autoencoder for Images - Part Two - Noise Removal.mp4 60.51Мб
5. Autoencoder for Images - Part Two - Noise Removal.srt 11.35Кб
5. Data Visualization Exercises - Solutions.mp4 50.46Мб
5. Data Visualization Exercises - Solutions.srt 10.78Кб
5. DCGAN - Deep Convolutional Generative Adversarial Networks.mp4 57.17Мб
5. DCGAN - Deep Convolutional Generative Adversarial Networks.srt 9.58Кб
5. Evaluating Performance - Regression Error Metrics.mp4 23.69Мб
5. Evaluating Performance - Regression Error Metrics.srt 8.40Кб
5. Flask Postman API.mp4 69.11Мб
5. Flask Postman API.srt 14.96Кб
5. MNIST Data Set Overview.mp4 21.11Мб
5. MNIST Data Set Overview.srt 6.94Кб
5. Multi-Class Classification Considerations.mp4 45.90Мб
5. Multi-Class Classification Considerations.srt 15.94Кб
5. NLP - Part Four - Creating the Model.mp4 64.31Мб
5. NLP - Part Four - Creating the Model.srt 14.30Кб
5. NumPy Exercises.mp4 11.51Мб
5. NumPy Exercises.srt 2.13Кб
5. Pandas Missing Data.mp4 44.06Мб
5. Pandas Missing Data.srt 15.04Кб
5. RNN Batches.mp4 32.72Мб
5. RNN Batches.srt 11.87Кб
6. Autoencoder Exercise Overview.mp4 33.92Мб
6. Autoencoder Exercise Overview.srt 5.15Кб
6. CNN on MNIST - Part One - The Data.mp4 59.82Мб
6. CNN on MNIST - Part One - The Data.srt 17.66Кб
6. Cost Functions and Gradient Descent.mp4 75.67Мб
6. Cost Functions and Gradient Descent.srt 27.02Кб
6. Flask API - Using Requests Programmatically.mp4 19.90Мб
6. Flask API - Using Requests Programmatically.srt 5.66Кб
6. GroupBy Operations.mp4 56.37Мб
6. GroupBy Operations.srt 13.98Кб
6. NLP - Part Five - Training the Model.mp4 65.26Мб
6. NLP - Part Five - Training the Model.srt 13.80Кб
6. Numpy Exercises - Solutions.mp4 48.59Мб
6. Numpy Exercises - Solutions.srt 10.66Кб
6. RNN on a Sine Wave - The Data.mp4 40.13Мб
6. RNN on a Sine Wave - The Data.srt 12.20Кб
6. Unsupervised Learning.mp4 18.82Мб
6. Unsupervised Learning.srt 7.02Кб
7.1 Great walkthrough for BackPropagation!.html 112б
7. Autoencoder Exercise - Solutions.mp4 77.76Мб
7. Autoencoder Exercise - Solutions.srt 13.94Кб
7. Backpropagation.mp4 57.68Мб
7. Backpropagation.srt 20.30Кб
7. CNN on MNIST - Part Two - Creating and Training the Model.mp4 98.92Мб
7. CNN on MNIST - Part Two - Creating and Training the Model.srt 23.34Кб
7. Flask Front End.mp4 149.59Мб
7. Flask Front End.srt 26.31Кб
7. NLP - Part Six - Generating Text.mp4 52.30Мб
7. NLP - Part Six - Generating Text.srt 11.65Кб
7. Pandas Operations.mp4 61.21Мб
7. Pandas Operations.srt 18.66Кб
7. RNN on a Sine Wave - Batch Generator.mp4 50.03Мб
7. RNN on a Sine Wave - Batch Generator.srt 11.26Кб
8. CNN on MNIST - Part Three - Model Evaluation.mp4 38.48Мб
8. CNN on MNIST - Part Three - Model Evaluation.srt 9.53Кб
8. Data Input and Output.mp4 93.48Мб
8. Data Input and Output.srt 16.94Кб
8. Live Deployment to the Web.mp4 126.54Мб
8. Live Deployment to the Web.srt 24.35Кб
8. RNN on a Sine Wave - Creating the Model.mp4 83.80Мб
8. RNN on a Sine Wave - Creating the Model.srt 20.64Кб
8. TensorFlow vs. Keras Explained.mp4 10.47Мб
8. TensorFlow vs. Keras Explained.srt 2.91Кб
9. CNN on CIFAR-10 - Part One - The Data.mp4 64.31Мб
9. CNN on CIFAR-10 - Part One - The Data.srt 16.46Кб
9. Keras Syntax Basics - Part One - Preparing the Data.mp4 50.50Мб
9. Keras Syntax Basics - Part One - Preparing the Data.srt 14.73Кб
9. Pandas Exercises.mp4 23.48Мб
9. Pandas Exercises.srt 4.32Кб
9. RNN on a Sine Wave - LSTMs and Forecasting.mp4 83.49Мб
9. RNN on a Sine Wave - LSTMs and Forecasting.srt 17.94Кб
Статистика распространения по странам
США (US) 2
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент