Общая информация
Название Data Science Bookcamp, video edition
Тип
Размер 6.50Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 890.79Кб
1 939.58Кб
10 718.23Кб
100 687.47Кб
100 - Chapter 20. Network-driven supervised machine learning.mp4 48.95Мб
101 827.46Кб
101 - Chapter 20. The basics of supervised machine learning.mp4 49.20Мб
102 7.51Кб
102 - Chapter 20. Measuring predicted label accuracy, Part 1.mp4 37.28Мб
103 10.78Кб
103 - Chapter 20. Measuring predicted label accuracy, Part 2.mp4 55.24Мб
104 774.91Кб
104 - Chapter 20. Optimizing KNN performance.mp4 35.68Мб
105 454.37Кб
105 - Chapter 20. Running a grid search using scikit-learn.mp4 39.33Мб
106 589.82Кб
106 - Chapter 20. Limitations of the KNN algorithm.mp4 63.16Мб
107 740.84Кб
107 - Chapter 21. Training linear classifiers with logistic regression.mp4 58.26Мб
108 427.51Кб
108 - Chapter 21. Training a linear classifier, Part 1.mp4 43.52Мб
109 663.19Кб
109 - Chapter 21. Training a linear classifier, Part 2.mp4 73.26Мб
10 - Chapter 3. Using permutations to shuffle cards.mp4 35.40Мб
11 755.90Кб
110 735.31Кб
110 - Chapter 21. Improving linear classification with logistic regression, Part 1.mp4 43.42Мб
111 328.39Кб
111 - Chapter 21. Improving linear classification with logistic regression, Part 2.mp4 43.12Мб
112 617.38Кб
112 - Chapter 21. Training linear classifiers using scikit-learn.mp4 49.64Мб
113 376.21Кб
113 - Chapter 21. Measuring feature importance with coefficients.mp4 93.13Мб
114 632.63Кб
114 - Chapter 22. Training nonlinear classifiers with decision tree techniques.mp4 65.20Мб
115 744.55Кб
115 - Chapter 22. Training a nested if_else model using two features.mp4 53.25Мб
116 413.05Кб
116 - Chapter 22. Deciding which feature to split on.mp4 57.23Мб
117 784.19Кб
117 - Chapter 22. Training if_else models with more than two features.mp4 57.79Мб
118 57.11Кб
118 - Chapter 22. Training decision tree classifiers using scikit-learn.mp4 51.86Мб
119 905.53Кб
119 - Chapter 22. Studying cancerous cells using feature importance.mp4 59.29Мб
11 - Chapter 4. Case study 1 solution.mp4 34.27Мб
12 840.00Кб
120 554.27Кб
120 - Chapter 22. Improving performance using random forest classification.mp4 57.38Мб
121 619.10Кб
121 - Chapter 22. Training random forest classifiers using scikit-learn.mp4 52.96Мб
122 78.31Кб
122 - Chapter 23. Case study 5 solution.mp4 32.94Мб
123 235.59Кб
123 - Chapter 23. Exploring the experimental observations.mp4 38.99Мб
124 874.03Кб
124 - Chapter 23. Training a predictive model using network features, Part 1.mp4 52.59Мб
125 53.07Кб
125 - Chapter 23. Training a predictive model using network features, Part 2.mp4 53.87Мб
126 110.25Кб
126 - Chapter 23. Adding profile features to the model.mp4 62.03Мб
127 - Chapter 23. Optimizing performance across a steady set of features.mp4 42.55Мб
128 - Chapter 23. Interpreting the trained model.mp4 64.17Мб
12 - Chapter 4. Optimizing strategies using the sample space for a 10-card deck.mp4 47.10Мб
13 284.28Кб
13 - Case study 2 - Assessing online ad clicks for significance.mp4 31.40Мб
14 642.27Кб
14 - Chapter 5. Basic probability and statistical analysis using SciPy.mp4 76.23Мб
15 833.63Кб
15 - Chapter 5. Mean as a measure of centrality.mp4 36.58Мб
16 218.31Кб
16 - Chapter 5. Variance as a measure of dispersion.mp4 73.89Мб
17 406.40Кб
17 - Chapter 6. Making predictions using the central limit theorem and SciPy.mp4 58.61Мб
18 714.45Кб
18 - Chapter 6. Comparing two sampled normal curves.mp4 31.46Мб
19 466.94Кб
19 - Chapter 6. Determining the mean and variance of a population through random sampling.mp4 55.19Мб
1 - Case study 1 - Finding the winning strategy in a card game.mp4 6.89Мб
2 965.65Кб
20 436.39Кб
20 - Chapter 6. Computing the area beneath a normal curve.mp4 64.57Мб
21 820.39Кб
21 - Chapter 7. Statistical hypothesis testing.mp4 39.19Мб
22 291.63Кб
22 - Chapter 7. Assessing the divergence between sample mean and population mean.mp4 68.30Мб
23 439.97Кб
23 - Chapter 7. Data dredging - Coming to false conclusions through oversampling.mp4 79.88Мб
24 850.33Кб
24 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.mp4 53.28Мб
25 859.42Кб
25 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.mp4 52.78Мб
26 56.04Кб
26 - Chapter 7. Permutation testing - Comparing means of samples when the population parameters are unknown.mp4 43.69Мб
27 670.01Кб
27 - Chapter 8. Analyzing tables using Pandas.mp4 40.87Мб
28 997.70Кб
28 - Chapter 8. Retrieving table rows.mp4 38.24Мб
29 268.60Кб
29 - Chapter 8. Saving and loading table data.mp4 40.28Мб
2 - Chapter 1. Computing probabilities using Python This section covers.mp4 56.75Мб
3 618.37Кб
30 619.14Кб
30 - Chapter 9. Case study 2 solution.mp4 33.60Мб
31 822.06Кб
31 - Chapter 9. Determining statistical significance.mp4 43.58Мб
32 115.18Кб
32 - Case study 3 - Tracking disease outbreaks using news headlines.mp4 6.60Мб
33 779.81Кб
33 - Chapter 10. Clustering data into groups.mp4 61.40Мб
34 968.05Кб
34 - Chapter 10. K-means - A clustering algorithm for grouping data into K central groups.mp4 61.20Мб
35 357.36Кб
35 - Chapter 10. Using density to discover clusters.mp4 52.23Мб
36 724.65Кб
36 - Chapter 10. Clustering based on non-Euclidean distance.mp4 68.79Мб
37 101.59Кб
37 - Chapter 10. Analyzing clusters using Pandas.mp4 40.48Мб
38 173.25Кб
38 - Chapter 11. Geographic location visualization and analysis.mp4 46.58Мб
39 403.17Кб
39 - Chapter 11. Plotting maps using Cartopy.mp4 33.23Мб
3 - Chapter 1. Problem 2 - Analyzing multiple die rolls.mp4 60.89Мб
4 118.37Кб
40 743.59Кб
40 - Chapter 11. Visualizing maps.mp4 58.27Мб
41 753.44Кб
41 - Chapter 11. Location tracking using GeoNamesCache.mp4 62.35Мб
42 15.05Кб
42 - Chapter 11. Limitations of the GeoNamesCache library.mp4 69.19Мб
43 213.06Кб
43 - Chapter 12. Case study 3 solution.mp4 34.63Мб
44 379.70Кб
44 - Chapter 12. Visualizing and clustering the extracted location data.mp4 70.72Мб
45 628.04Кб
45 - Case study 4 - Using online job postings to improve your data science resume.mp4 23.95Мб
46 637.24Кб
46 - Chapter 13. Measuring text similarities.mp4 36.28Мб
47 783.40Кб
47 - Chapter 13. Simple text comparison.mp4 44.00Мб
48 252.02Кб
48 - Chapter 13. Replacing words with numeric values.mp4 42.07Мб
49 414.79Кб
49 - Chapter 13. Vectorizing texts using word counts.mp4 44.50Мб
4 - Chapter 2. Plotting probabilities using Matplotlib.mp4 53.74Мб
5 791.22Кб
50 775.76Кб
50 - Chapter 13. Using normalization to improve TF vector similarity.mp4 48.56Мб
51 824.74Кб
51 - Chapter 13. Using unit vector dot products to convert between relevance metrics.mp4 41.64Мб
52 571.96Кб
52 - Chapter 13. Basic matrix operations, Part 1.mp4 48.78Мб
53 138.01Кб
53 - Chapter 13. Basic matrix operations, Part 2.mp4 27.15Мб
54 264.47Кб
54 - Chapter 13. Computational limits of matrix multiplication.mp4 47.81Мб
55 737.98Кб
55 - Chapter 14. Dimension reduction of matrix data.mp4 61.74Мб
56 763.31Кб
56 - Chapter 14. Reducing dimensions using rotation, Part 1.mp4 38.99Мб
57 958.02Кб
57 - Chapter 14. Reducing dimensions using rotation, Part 2.mp4 37.56Мб
58 14.01Кб
58 - Chapter 14. Dimension reduction using PCA and scikit-learn.mp4 64.72Мб
59 39.88Кб
59 - Chapter 14. Clustering 4D data in two dimensions.mp4 54.44Мб
5 - Chapter 2. Comparing multiple coin-flip probability distributions.mp4 65.57Мб
6 812.11Кб
60 228.00Кб
60 - Chapter 14. Limitations of PCA.mp4 30.77Мб
61 415.60Кб
61 - Chapter 14. Computing principal components without rotation.mp4 47.80Мб
62 786.46Кб
62 - Chapter 14. Extracting eigenvectors using power iteration, Part 1.mp4 44.67Мб
63 144.96Кб
63 - Chapter 14. Extracting eigenvectors using power iteration, Part 2.mp4 34.38Мб
64 444.56Кб
64 - Chapter 14. Efficient dimension reduction using SVD and scikit-learn.mp4 68.60Мб
65 369.03Кб
65 - Chapter 15. NLP analysis of large text datasets.mp4 47.16Мб
66 817.63Кб
66 - Chapter 15. Vectorizing documents using scikit-learn.mp4 87.06Мб
67 982.68Кб
67 - Chapter 15. Ranking words by both post frequency and count, Part 1.mp4 56.59Мб
68 46.62Кб
68 - Chapter 15. Ranking words by both post frequency and count, Part 2.mp4 48.13Мб
69 230.07Кб
69 - Chapter 15. Computing similarities across large document datasets.mp4 60.24Мб
6 - Chapter 3. Running random simulations in NumPy.mp4 36.35Мб
7 943.40Кб
70 451.69Кб
70 - Chapter 15. Clustering texts by topic, Part 1.mp4 73.30Мб
71 653.80Кб
71 - Chapter 15. Clustering texts by topic, Part 2.mp4 87.08Мб
72 890.39Кб
72 - Chapter 15. Visualizing text clusters.mp4 58.90Мб
73 199.54Кб
73 - Chapter 15. Using subplots to display multiple word clouds, Part 1.mp4 50.57Мб
74 207.09Кб
74 - Chapter 15. Using subplots to display multiple word clouds, Part 2.mp4 58.83Мб
75 415.57Кб
75 - Chapter 16. Extracting text from web pages.mp4 39.55Мб
76 856.97Кб
76 - Chapter 16. The structure of HTML documents.mp4 62.95Мб
77 923.38Кб
77 - Chapter 16. Parsing HTML using Beautiful Soup, Part 1.mp4 40.42Мб
78 230.11Кб
78 - Chapter 16. Parsing HTML using Beautiful Soup, Part 2.mp4 46.78Мб
79 428.93Кб
79 - Chapter 17. Case study 4 solution.mp4 37.42Мб
7 - Chapter 3. Computing confidence intervals using histograms and NumPy arrays.mp4 47.59Мб
8 119.94Кб
80 336.42Кб
80 - Chapter 17. Exploring the HTML for skill descriptions.mp4 59.65Мб
81 347.83Кб
81 - Chapter 17. Filtering jobs by relevance.mp4 73.18Мб
82 512.96Кб
82 - Chapter 17. Clustering skills in relevant job postings.mp4 66.54Мб
83 804б
83 - Chapter 17. Investigating the technical skill clusters.mp4 41.46Мб
84 312.69Кб
84 - Chapter 17. Exploring clusters at alternative values of K.mp4 69.37Мб
85 432.10Кб
85 - Chapter 17. Analyzing the 700 most relevant postings.mp4 40.95Мб
86 489.73Кб
86 - Case study 5 - Predicting future friendships from social network data.mp4 80.40Мб
87 595.42Кб
87 - Chapter 18. An introduction to graph theory and network analysis.mp4 74.88Мб
88 900.74Кб
88 - Chapter 18. Analyzing web networks using NetworkX, Part 1.mp4 30.92Мб
89 457.18Кб
89 - Chapter 18. Analyzing web networks using NetworkX, Part 2.mp4 53.06Мб
8 - Chapter 3. Deriving probabilities from histograms.mp4 57.63Мб
9 113.81Кб
90 949.66Кб
90 - Chapter 18. Utilizing undirected graphs to optimize the travel time between towns.mp4 57.39Мб
91 366.51Кб
91 - Chapter 18. Computing the fastest travel time between nodes, Part 1.mp4 32.12Мб
92 552.72Кб
92 - Chapter 18. Computing the fastest travel time between nodes, Part 2.mp4 49.04Мб
93 53.45Кб
93 - Chapter 19. Dynamic graph theory techniques for node ranking and social network analysis.mp4 75.08Мб
94 133.05Кб
94 - Chapter 19. Computing travel probabilities using matrix multiplication.mp4 40.21Мб
95 527.65Кб
95 - Chapter 19. Deriving PageRank centrality from probability theory.mp4 48.36Мб
96 592.36Кб
96 - Chapter 19. Computing PageRank centrality using NetworkX.mp4 44.66Мб
97 733.27Кб
97 - Chapter 19. Community detection using Markov clustering, Part 1.mp4 60.05Мб
98 811.60Кб
98 - Chapter 19. Community detection using Markov clustering, Part 2.mp4 75.21Мб
99 457.38Кб
99 - Chapter 19. Uncovering friend groups in social networks.mp4 57.99Мб
9 - Chapter 3. Computing histograms in NumPy.mp4 52.99Мб
TutsNode.com.txt 63б
Статистика распространения по странам
Россия (RU) 1
США (US) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент