Общая информация
Название [GigaCourse.Com] Udemy - Complete Machine Learning & Data Science Bootcamp 2022
Тип
Размер 16.32Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.ME].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
001 Become An Alumni.html 944б
001 Bonus Lecture.html 1.18Кб
001 Breaking The Flow__en.srt 3.01Кб
001 Breaking The Flow.mp4 7.40Мб
001 Course Outline__en.srt 8.85Кб
001 Course Outline.mp4 77.28Мб
001 Data Engineering Introduction__en.srt 4.28Кб
001 Data Engineering Introduction.mp4 6.57Мб
001 Endorsements On LinkedIn.html 2.05Кб
001 Milestone Projects_.html 738б
001 Section Overview__en.srt 4.79Кб
001 Section Overview__en.srt 2.05Кб
001 Section Overview__en.srt 3.69Кб
001 Section Overview__en.srt 3.25Кб
001 Section Overview__en.srt 2.64Кб
001 Section Overview__en.srt 3.98Кб
001 Section Overview__en.srt 3.16Кб
001 Section Overview__en.srt 1.89Кб
001 Section Overview__en.srt 2.85Кб
001 Section Overview__en.srt 3.40Кб
001 Section Overview.mp4 6.34Мб
001 Section Overview.mp4 1.89Мб
001 Section Overview.mp4 3.57Мб
001 Section Overview.mp4 8.09Мб
001 Section Overview.mp4 2.79Мб
001 Section Overview.mp4 5.57Мб
001 Section Overview.mp4 3.25Мб
001 Section Overview.mp4 3.67Мб
001 Section Overview.mp4 4.33Мб
001 Section Overview.mp4 3.41Мб
001 Statistics and Mathematics.html 710б
001 The 2 Paths__en.srt 4.69Кб
001 The 2 Paths.mp4 4.26Мб
001 What Is A Programming Language__en.srt 7.26Кб
001 What Is A Programming Language.mp4 18.83Мб
001 What Is Machine Learning___en.srt 8.96Кб
001 What Is Machine Learning_.mp4 28.30Мб
002 AI_Machine Learning_Data Science__en.srt 6.45Кб
002 AI_Machine Learning_Data Science.mp4 19.66Мб
002 Communicating Your Work__en.srt 4.85Кб
002 Communicating Your Work.mp4 8.41Мб
002 Conditional Logic__en.srt 16.39Кб
002 Conditional Logic.mp4 56.54Мб
002 Deep Learning and Unstructured Data__en.srt 20.97Кб
002 Deep Learning and Unstructured Data.mp4 69.83Мб
002 Downloading Workbooks and Assignments.html 967б
002 Introducing Our Framework__en.srt 3.70Кб
002 Introducing Our Framework.mp4 4.20Мб
002 Introducing Our Tools__en.srt 4.50Кб
002 Introducing Our Tools.mp4 19.27Мб
002 Join Our Online Classroom_.html 2.67Кб
002 Matplotlib Introduction__en.srt 8.20Кб
002 Matplotlib Introduction.mp4 20.90Мб
002 NumPy Introduction__en.srt 7.60Кб
002 NumPy Introduction.mp4 13.63Мб
002 Project Overview__en.srt 10.36Кб
002 Project Overview__en.srt 7.14Кб
002 Project Overview.mp4 13.67Мб
002 Project Overview.mp4 15.85Мб
002 Python + Machine Learning Monthly.html 917б
002 Python Interpreter__en.srt 8.75Кб
002 Python Interpreter.mp4 68.54Мб
002 Quick Note_ Upcoming Video.html 587б
002 Scikit-learn Introduction__en.srt 10.94Кб
002 Scikit-learn Introduction.mp4 17.17Мб
002 Thank You__en.srt 3.73Кб
002 Thank You.mp4 4.50Мб
002 What Is Data___en.srt 7.95Кб
002 What Is Data_.mp4 15.23Мб
003 6 Step Machine Learning Framework__en.srt 6.87Кб
003 6 Step Machine Learning Framework.mp4 23.45Мб
003 Communicating With Managers__en.srt 4.51Кб
003 Communicating With Managers.mp4 6.67Мб
003 Downloading the data for the next two projects.html 1.64Кб
003 Endorsements On LinkedIN.html 2.05Кб
003 Exercise_ Machine Learning Playground__en.srt 8.13Кб
003 Exercise_ Machine Learning Playground.mp4 42.57Мб
003 Exercise_ Meet The Community.html 3.04Кб
003 How To Run Python Code__en.srt 6.83Кб
003 How To Run Python Code.mp4 36.42Мб
003 Importing And Using Matplotlib__en.srt 16.68Кб
003 Importing And Using Matplotlib.mp4 86.50Мб
003 Indentation In Python__en.srt 5.47Кб
003 Indentation In Python.mp4 11.31Мб
003 Pandas Introduction__en.srt 7.01Кб
003 Pandas Introduction.mp4 11.09Мб
003 Project Environment Setup__en.srt 15.17Кб
003 Project Environment Setup.mp4 98.03Мб
003 Quick Note_ Correction In Next Video.html 1.28Кб
003 Quick Note_ Upcoming Video.html 390б
003 Setting Up With Google.html 568б
003 Thank You Part 2.html 730б
003 What If I Don't Have Enough Experience___en.srt 5.16Кб
003 What If I Don't Have Enough Experience__en.vtt 17.83Кб
003 What If I Don't Have Enough Experience_.mp4 147.35Мб
003 What Is A Data Engineer___en.srt 5.13Кб
003 What Is A Data Engineer_.mp4 9.50Мб
003 What is Conda___en.srt 3.46Кб
003 What is Conda_.mp4 12.46Мб
004 Anatomy Of A Matplotlib Figure__en.srt 14.54Кб
004 Anatomy Of A Matplotlib Figure.mp4 53.21Мб
004 Communicating With Co-Workers__en.srt 5.48Кб
004 Communicating With Co-Workers.mp4 7.34Мб
004 Conda Environments__en.srt 6.22Кб
004 Conda Environments.mp4 14.62Мб
004 How Did We Get Here___en.srt 7.34Кб
004 How Did We Get Here_.mp4 30.50Мб
004 Learning Guideline.html 336б
004 NumPy DataTypes and Attributes__en.srt 20.04Кб
004 NumPy DataTypes and Attributes.mp4 56.56Мб
004 Optional_ Windows Project Environment Setup__en.srt 5.56Кб
004 Optional_ Windows Project Environment Setup.mp4 34.50Мб
004 Our First Python Program__en.srt 9.07Кб
004 Our First Python Program.mp4 29.85Мб
004 Project Environment Setup__en.srt 16.26Кб
004 Project Environment Setup.mp4 99.11Мб
004 Refresher_ What Is Machine Learning___en.srt 6.69Кб
004 Refresher_ What Is Machine Learning_.mp4 17.85Мб
004 Series, Data Frames and CSVs__en.srt 18.45Кб
004 Series, Data Frames and CSVs.mp4 91.09Мб
004 Setting Up Google Colab__en.srt 10.33Кб
004 Setting Up Google Colab.mp4 73.72Мб
004 Truthy vs Falsey__en.srt 6.39Кб
004 Truthy vs Falsey.mp4 36.35Мб
004 Types of Machine Learning Problems__en.srt 14.46Кб
004 Types of Machine Learning Problems.mp4 20.98Мб
004 What Is A Data Engineer 2___en.srt 6.53Кб
004 What Is A Data Engineer 2_.mp4 24.21Мб
004 Your First Day__en.srt 5.37Кб
004 Your First Day.mp4 7.27Мб
005 Creating NumPy Arrays__en.srt 12.46Кб
005 Creating NumPy Arrays.mp4 56.09Мб
005 Data from URLs.html 1.13Кб
005 Exercise_ YouTube Recommendation Engine__en.srt 5.62Кб
005 Exercise_ YouTube Recommendation Engine.mp4 8.89Мб
005 Google Colab Workspace__en.srt 6.33Кб
005 Google Colab Workspace.mp4 32.23Мб
005 Latest Version Of Python__en.srt 2.69Кб
005 Latest Version Of Python.mp4 6.99Мб
005 Mac Environment Setup__en.srt 25.80Кб
005 Mac Environment Setup.mp4 139.56Мб
005 Quick Note_ Upcoming Videos.html 1018б
005 Quick Note_ Upcoming Videos.html 565б
005 Scatter Plot And Bar Plot__en.srt 14.91Кб
005 Scatter Plot And Bar Plot.mp4 44.60Мб
005 Step 1~4 Framework Setup__en.srt 17.54Кб
005 Step 1~4 Framework Setup__en.srt 12.51Кб
005 Step 1~4 Framework Setup.mp4 102.28Мб
005 Step 1~4 Framework Setup.mp4 84.12Мб
005 Ternary Operator__en.srt 4.98Кб
005 Ternary Operator.mp4 8.32Мб
005 Types of Data__en.srt 6.49Кб
005 Types of Data.mp4 20.01Мб
005 Weekend Project Principle__en.srt 9.00Кб
005 Weekend Project Principle.mp4 10.31Мб
005 What Is A Data Engineer 3___en.srt 5.64Кб
005 What Is A Data Engineer 3_.mp4 13.14Мб
006 Communicating With Outside World__en.srt 4.60Кб
006 Communicating With Outside World.mp4 6.29Мб
006 Describing Data with Pandas__en.srt 14.23Кб
006 Describing Data with Pandas.mp4 51.19Мб
006 Exploring Our Data__en.srt 21.39Кб
006 Exploring Our Data.mp4 135.50Мб
006 Getting Our Tools Ready__en.srt 13.03Кб
006 Getting Our Tools Ready.mp4 76.81Мб
006 Histograms And Subplots__en.srt 13.01Кб
006 Histograms And Subplots.mp4 57.48Мб
006 JTS_ Learn to Learn__en.srt 2.44Кб
006 JTS_ Learn to Learn.mp4 2.65Мб
006 Mac Environment Setup 2__en.srt 21.74Кб
006 Mac Environment Setup 2.mp4 122.18Мб
006 NumPy Random Seed__en.srt 10.45Кб
006 NumPy Random Seed.mp4 36.46Мб
006 Python 2 vs Python 3__en.srt 8.40Кб
006 Python 2 vs Python 3.mp4 65.78Мб
006 Scikit-learn Cheatsheet__en.srt 10.51Кб
006 Scikit-learn Cheatsheet.mp4 75.12Мб
006 Short Circuiting__en.srt 4.80Кб
006 Short Circuiting.mp4 8.15Мб
006 Types of Evaluation__en.srt 4.56Кб
006 Types of Evaluation.mp4 6.52Мб
006 Types of Machine Learning__en.srt 5.51Кб
006 Types of Machine Learning.mp4 9.63Мб
006 Uploading Project Data__en.srt 9.47Кб
006 Uploading Project Data.mp4 50.16Мб
006 What Is A Data Engineer 4___en.srt 4.01Кб
006 What Is A Data Engineer 4_.mp4 7.43Мб
007 Are You Getting It Yet_.html 160б
007 Exercise_ How Does Python Work___en.srt 2.96Кб
007 Exercise_ How Does Python Work_.mp4 9.34Мб
007 Exploring Our Data__en.srt 11.75Кб
007 Exploring Our Data.mp4 64.46Мб
007 Exploring Our Data 2__en.srt 8.86Кб
007 Exploring Our Data 2.mp4 50.70Мб
007 Features In Data__en.srt 6.88Кб
007 Features In Data.mp4 14.84Мб
007 JTS_ Start With Why__en.srt 2.94Кб
007 JTS_ Start With Why.mp4 7.45Мб
007 Logical Operators__en.srt 8.63Кб
007 Logical Operators.mp4 14.60Мб
007 Selecting and Viewing Data with Pandas__en.srt 15.22Кб
007 Selecting and Viewing Data with Pandas.mp4 61.67Мб
007 Setting Up Our Data__en.srt 6.67Кб
007 Setting Up Our Data.mp4 41.41Мб
007 Storytelling__en.srt 4.12Кб
007 Storytelling.mp4 4.86Мб
007 Subplots Option 2__en.srt 6.65Кб
007 Subplots Option 2.mp4 31.24Мб
007 Types Of Databases__en.srt 8.82Кб
007 Types Of Databases.mp4 24.34Мб
007 Typical scikit-learn Workflow__en.srt 2.42Кб
007 Typical scikit-learn Workflow_en.vtt 28.43Кб
007 Typical scikit-learn Workflow.mp4 184.59Мб
007 Viewing Arrays and Matrices__en.srt 13.86Кб
007 Viewing Arrays and Matrices.mp4 59.36Мб
007 Windows Environment Setup__en.srt 7.89Кб
007 Windows Environment Setup.mp4 32.91Мб
008 Communicating and sharing your work_ Further reading.html 3.12Кб
008 Exercise_ Logical Operators__en.srt 8.69Кб
008 Exercise_ Logical Operators.mp4 19.03Мб
008 Feature Engineering__en.srt 22.32Кб
008 Feature Engineering.mp4 157.40Мб
008 Finding Patterns__en.srt 13.67Кб
008 Finding Patterns.mp4 60.29Мб
008 Learning Python__en.srt 2.72Кб
008 Learning Python.mp4 6.56Мб
008 Manipulating Arrays__en.srt 17.15Кб
008 Manipulating Arrays.mp4 68.48Мб
008 Modelling - Splitting Data__en.srt 7.80Кб
008 Modelling - Splitting Data.mp4 11.30Мб
008 Optional_ Debugging Warnings In Jupyter__en.srt 26.84Кб
008 Optional_ Debugging Warnings In Jupyter.mp4 171.49Мб
008 Quick Note_ Upcoming Video.html 481б
008 Quick Note_ Upcoming Videos.html 352б
008 Quick Tip_ Data Visualizations__en.srt 2.31Кб
008 Quick Tip_ Data Visualizations.mp4 4.35Мб
008 Selecting and Viewing Data with Pandas Part 2__en.srt 18.95Кб
008 Selecting and Viewing Data with Pandas Part 2.mp4 103.45Мб
008 Setting Up Our Data 2__en.srt 2.31Кб
008 Setting Up Our Data 2.mp4 20.99Мб
008 What Is Machine Learning_ Round 2__en.srt 6.25Кб
008 What Is Machine Learning_ Round 2.mp4 11.85Мб
008 Windows Environment Setup 2__en.srt 33.25Кб
008 Windows Environment Setup 2.mp4 190.92Мб
009 CWD_ Git + Github__en.srt 21.45Кб
009 CWD_ Git + Github.mp4 176.27Мб
009 Finding Patterns 2__en.srt 24.16Кб
009 Finding Patterns 2.mp4 94.32Мб
009 Getting Your Data Ready_ Splitting Your Data__en.srt 7.23Кб
009 Getting Your Data Ready_ Splitting Your Data_en.vtt 10.65Кб
009 Getting Your Data Ready_ Splitting Your Data.mp4 61.01Мб
009 Importing TensorFlow 2__en.srt 17.98Кб
009 Importing TensorFlow 2.mp4 114.44Мб
009 is vs ==__en.srt 8.85Кб
009 is vs ==.mp4 15.08Мб
009 Linux Environment Setup.html 1.03Кб
009 Manipulating Arrays 2__en.srt 12.01Кб
009 Manipulating Arrays 2.mp4 57.97Мб
009 Manipulating Data__en.srt 18.56Кб
009 Manipulating Data.mp4 100.85Мб
009 Modelling - Picking the Model__en.srt 6.24Кб
009 Modelling - Picking the Model.mp4 8.74Мб
009 Optional_ OLTP Databases__en.srt 12.65Кб
009 Optional_ OLTP Databases.mp4 68.24Мб
009 Plotting From Pandas DataFrames__en.srt 9.68Кб
009 Plotting From Pandas DataFrames.mp4 49.46Мб
009 Python Data Types__en.srt 5.72Кб
009 Python Data Types.mp4 11.93Мб
009 Section Review__en.srt 2.20Кб
009 Section Review.mp4 2.25Мб
009 Turning Data Into Numbers__en.srt 22.81Кб
009 Turning Data Into Numbers.mp4 144.16Мб
010 CWD_ Git + Github 2__en.srt 19.47Кб
010 CWD_ Git + Github 2.mp4 102.62Мб
010 Filling Missing Numerical Values__en.srt 17.60Кб
010 Filling Missing Numerical Values.mp4 103.42Мб
010 Finding Patterns 3__en.srt 19.49Кб
010 Finding Patterns 3.mp4 135.93Мб
010 For Loops__en.srt 8.13Кб
010 For Loops.mp4 16.43Мб
010 How To Succeed.html 280б
010 Manipulating Data 2__en.srt 14.82Кб
010 Manipulating Data 2.mp4 84.31Мб
010 Modelling - Tuning__en.srt 5.09Кб
010 Modelling - Tuning.mp4 15.98Мб
010 Monthly Coding Challenges, Free Resources and Guides.html 1.63Кб
010 Optional_ Learn SQL.html 410б
010 Optional_ TensorFlow 2.0 Default Issue__en.srt 4.62Кб
010 Optional_ TensorFlow 2.0 Default Issue.mp4 13.98Мб
010 Quick Note_ Regular Expressions.html 632б
010 Quick Tip_ Clean, Transform, Reduce__en.srt 6.55Кб
010 Quick Tip_ Clean, Transform, Reduce.mp4 9.74Мб
010 Sharing your Conda Environment.html 2.41Кб
010 Standard Deviation and Variance__en.srt 9.82Кб
010 Standard Deviation and Variance.mp4 36.79Мб
011 Contributing To Open Source__en.srt 17.44Кб
011 Contributing To Open Source.mp4 109.38Мб
011 Filling Missing Categorical Values__en.srt 11.36Кб
011 Filling Missing Categorical Values.mp4 64.59Мб
011 Getting Your Data Ready_ Convert Data To Numbers__en.srt 23.40Кб
011 Getting Your Data Ready_ Convert Data To Numbers.mp4 130.89Мб
011 Hadoop, HDFS and MapReduce__en.srt 4.94Кб
011 Hadoop, HDFS and MapReduce.mp4 5.11Мб
011 Iterables__en.srt 7.27Кб
011 Iterables.mp4 23.53Мб
011 Jupyter Notebook Walkthrough__en.srt 15.85Кб
011 Jupyter Notebook Walkthrough.mp4 56.79Мб
011 Manipulating Data 3__en.srt 14.01Кб
011 Manipulating Data 3.mp4 76.80Мб
011 Modelling - Comparison__en.srt 13.32Кб
011 Modelling - Comparison.mp4 18.23Мб
011 Numbers__en.srt 12.02Кб
011 Numbers.mp4 55.05Мб
011 Plotting From Pandas DataFrames 2__en.srt 13.52Кб
011 Plotting From Pandas DataFrames 2.mp4 97.29Мб
011 Preparing Our Data For Machine Learning__en.srt 13.11Кб
011 Preparing Our Data For Machine Learning.mp4 70.41Мб
011 Reshape and Transpose__en.srt 9.68Кб
011 Reshape and Transpose.mp4 51.39Мб
011 Using A GPU__en.srt 12.98Кб
011 Using A GPU.mp4 78.88Мб
012 Apache Spark and Apache Flink__en.srt 2.39Кб
012 Apache Spark and Apache Flink.mp4 2.63Мб
012 Assignment_ Pandas Practice.html 2.05Кб
012 Choosing The Right Models__en.srt 14.17Кб
012 Choosing The Right Models.mp4 96.34Мб
012 Contributing To Open Source 2__en.srt 10.41Кб
012 Contributing To Open Source 2.mp4 112.99Мб
012 Dot Product vs Element Wise__en.srt 15.89Кб
012 Dot Product vs Element Wise.mp4 83.66Мб
012 Exercise_ Tricky Counter__en.srt 3.84Кб
012 Exercise_ Tricky Counter.mp4 5.52Мб
012 Fitting A Machine Learning Model__en.srt 11.10Кб
012 Fitting A Machine Learning Model.mp4 53.52Мб
012 Jupyter Notebook Walkthrough 2__en.srt 22.66Кб
012 Jupyter Notebook Walkthrough 2.mp4 87.64Мб
012 Math Functions__en.srt 5.58Кб
012 Math Functions.mp4 25.91Мб
012 Note_ Update to next video (OneHotEncoder can handle NaN_None values).html 1.57Кб
012 Optional_ GPU and Google Colab__en.srt 6.34Кб
012 Optional_ GPU and Google Colab.mp4 38.31Мб
012 Overfitting and Underfitting Definitions.html 1.95Кб
012 Plotting from Pandas DataFrames 3__en.srt 11.79Кб
012 Plotting from Pandas DataFrames 3.mp4 73.38Мб
013 Coding Challenges.html 948б
013 DEVELOPER FUNDAMENTALS_ I__en.srt 5.43Кб
013 DEVELOPER FUNDAMENTALS_ I.mp4 47.71Мб
013 Exercise_ Nut Butter Store Sales__en.srt 17.41Кб
013 Exercise_ Nut Butter Store Sales.mp4 87.17Мб
013 Experimentation__en.srt 5.09Кб
013 Experimentation.mp4 11.55Мб
013 Experimenting With Machine Learning Models__en.srt 9.89Кб
013 Experimenting With Machine Learning Models.mp4 53.94Мб
013 Getting Your Data Ready_ Handling Missing Values With Pandas__en.srt 17.96Кб
013 Getting Your Data Ready_ Handling Missing Values With Pandas.mp4 45.56Мб
013 How To Download The Course Assignments__en.srt 11.24Кб
013 How To Download The Course Assignments.mp4 64.62Мб
013 Jupyter Notebook Walkthrough 3__en.srt 12.01Кб
013 Jupyter Notebook Walkthrough 3.mp4 69.67Мб
013 Kafka and Stream Processing__en.srt 5.20Кб
013 Kafka and Stream Processing.mp4 14.36Мб
013 Optional_ Reloading Colab Notebook__en.srt 8.81Кб
013 Optional_ Reloading Colab Notebook.mp4 71.87Мб
013 Plotting from Pandas DataFrames 4__en.srt 9.97Кб
013 Plotting from Pandas DataFrames 4.mp4 14.32Мб
013 range()__en.srt 6.29Кб
013 range().mp4 20.78Мб
013 Splitting Data__en.srt 14.29Кб
013 Splitting Data.mp4 36.98Мб
014 Challenge_ What's wrong with splitting data after filling it_.html 1.72Кб
014 Comparison Operators__en.srt 5.22Кб
014 Comparison Operators.mp4 22.04Мб
014 enumerate()__en.srt 4.93Кб
014 enumerate().mp4 9.40Мб
014 Exercise_ Contribute To Open Source.html 1.48Кб
014 Extension_ Feature Scaling.html 2.93Кб
014 Loading Our Data Labels__en.srt 16.29Кб
014 Loading Our Data Labels.mp4 112.36Мб
014 Operator Precedence__en.srt 3.42Кб
014 Operator Precedence.mp4 5.78Мб
014 Plotting from Pandas DataFrames 5__en.srt 12.19Кб
014 Plotting from Pandas DataFrames 5.mp4 54.39Мб
014 Tools We Will Use__en.srt 6.08Кб
014 Tools We Will Use.mp4 12.91Мб
014 Tuning_Improving Our Model__en.srt 18.87Кб
014 Tuning_Improving Our Model.mp4 102.85Мб
015 Custom Evaluation Function__en.srt 5.31Кб
015 Custom Evaluation Function_en.vtt 14.40Кб
015 Custom Evaluation Function.mp4 67.50Мб
015 Exercise_ Operator Precedence.html 683б
015 Note_ Correction in the upcoming video (splitting data).html 2.16Кб
015 Optional_ Elements of AI.html 975б
015 Plotting from Pandas DataFrames 6__en.srt 11.73Кб
015 Plotting from Pandas DataFrames 6.mp4 67.47Мб
015 Preparing The Images__en.srt 14.99Кб
015 Preparing The Images.mp4 132.05Мб
015 Sorting Arrays__en.srt 8.95Кб
015 Sorting Arrays.mp4 24.28Мб
015 Tuning Hyperparameters__en.srt 16.34Кб
015 Tuning Hyperparameters.mp4 106.28Мб
015 While Loops__en.srt 7.71Кб
015 While Loops.mp4 13.94Мб
016 Getting Your Data Ready_ Handling Missing Values With Scikit-learn__en.srt 24.78Кб
016 Getting Your Data Ready_ Handling Missing Values With Scikit-learn.mp4 131.36Мб
016 Optional_ bin() and complex__en.srt 5.07Кб
016 Optional_ bin() and complex.mp4 10.65Мб
016 Plotting from Pandas DataFrames 7__en.srt 15.94Кб
016 Plotting from Pandas DataFrames 7.mp4 118.88Мб
016 Reducing Data__en.srt 15.41Кб
016 Reducing Data.mp4 91.44Мб
016 Tuning Hyperparameters 2__en.srt 16.07Кб
016 Tuning Hyperparameters 2.mp4 101.73Мб
016 Turn Images Into NumPy Arrays__en.srt 10.60Кб
016 Turn Images Into NumPy Arrays.mp4 71.28Мб
016 Turning Data Labels Into Numbers__en.srt 14.22Кб
016 Turning Data Labels Into Numbers.mp4 104.97Мб
016 While Loops 2__en.srt 6.93Кб
016 While Loops 2.mp4 11.48Мб
017 Assignment_ NumPy Practice.html 2.17Кб
017 break, continue, pass__en.srt 5.42Кб
017 break, continue, pass.mp4 9.25Мб
017 Creating Our Own Validation Set__en.srt 11.76Кб
017 Creating Our Own Validation Set.mp4 55.55Мб
017 Customizing Your Plots__en.srt 14.40Кб
017 Customizing Your Plots.mp4 90.98Мб
017 NEW_ Choosing The Right Model For Your Data__en.srt 30.12Кб
017 NEW_ Choosing The Right Model For Your Data.mp4 234.28Мб
017 RandomizedSearchCV__en.srt 13.34Кб
017 RandomizedSearchCV.mp4 72.09Мб
017 Tuning Hyperparameters 3__en.srt 10.30Кб
017 Tuning Hyperparameters 3.mp4 61.50Мб
017 Variables__en.srt 16.55Кб
017 Variables.mp4 56.86Мб
018 Customizing Your Plots 2__en.srt 13.25Кб
018 Customizing Your Plots 2.mp4 123.67Мб
018 Expressions vs Statements__en.srt 1.89Кб
018 Expressions vs Statements.mp4 3.16Мб
018 Improving Hyperparameters__en.srt 11.81Кб
018 Improving Hyperparameters.mp4 77.96Мб
018 NEW_ Choosing The Right Model For Your Data 2 (Regression)__en.srt 16.90Кб
018 NEW_ Choosing The Right Model For Your Data 2 (Regression).mp4 128.64Мб
018 Optional_ Extra NumPy resources.html 1.02Кб
018 Our First GUI__en.srt 10.86Кб
018 Our First GUI.mp4 46.05Мб
018 Preprocess Images__en.srt 13.63Кб
018 Preprocess Images.mp4 88.09Мб
018 Quick Note_ Confusion Matrix Labels.html 1.11Кб
019 Augmented Assignment Operator__en.srt 3.25Кб
019 Augmented Assignment Operator.mp4 5.65Мб
019 DEVELOPER FUNDAMENTALS_ IV__en.srt 8.16Кб
019 DEVELOPER FUNDAMENTALS_ IV.mp4 24.71Мб
019 Evaluating Our Model__en.srt 16.00Кб
019 Evaluating Our Model.mp4 68.05Мб
019 Preproccessing Our Data__en.srt 18.17Кб
019 Preproccessing Our Data.mp4 114.64Мб
019 Preprocess Images 2__en.srt 13.92Кб
019 Preprocess Images 2.mp4 87.19Мб
019 Quick Note_ Decision Trees.html 221б
019 Saving And Sharing Your Plots__en.srt 6.24Кб
019 Saving And Sharing Your Plots.mp4 49.62Мб
020 Assignment_ Matplotlib Practice.html 2.05Кб
020 Evaluating Our Model 2__en.srt 8.07Кб
020 Evaluating Our Model 2.mp4 34.64Мб
020 Exercise_ Find Duplicates__en.srt 4.40Кб
020 Exercise_ Find Duplicates.mp4 8.50Мб
020 Making Predictions__en.srt 11.25Кб
020 Making Predictions.mp4 77.41Мб
020 Quick Tip_ How ML Algorithms Work__en.srt 1.88Кб
020 Quick Tip_ How ML Algorithms Work.mp4 2.78Мб
020 Strings__en.srt 6.53Кб
020 Strings.mp4 11.19Мб
020 Turning Data Into Batches__en.srt 12.36Кб
020 Turning Data Into Batches.mp4 74.59Мб
021 Choosing The Right Model For Your Data 3 (Classification)__en.srt 18.55Кб
021 Choosing The Right Model For Your Data 3 (Classification).mp4 115.87Мб
021 Evaluating Our Model 3__en.srt 12.15Кб
021 Evaluating Our Model 3.mp4 62.06Мб
021 Feature Importance__en.srt 18.30Кб
021 Feature Importance.mp4 140.54Мб
021 Functions__en.srt 9.39Кб
021 Functions.mp4 21.27Мб
021 String Concatenation__en.srt 1.36Кб
021 String Concatenation.mp4 2.16Мб
021 Turning Data Into Batches 2__en.srt 21.82Кб
021 Turning Data Into Batches 2.mp4 126.99Мб
022 Finding The Most Important Features__en.srt 23.62Кб
022 Finding The Most Important Features.mp4 123.68Мб
022 Fitting A Model To The Data__en.srt 10.09Кб
022 Fitting A Model To The Data.mp4 38.41Мб
022 Parameters and Arguments__en.srt 4.99Кб
022 Parameters and Arguments.mp4 9.32Мб
022 Type Conversion__en.srt 3.46Кб
022 Type Conversion.mp4 14.59Мб
022 Visualizing Our Data__en.srt 15.38Кб
022 Visualizing Our Data.mp4 120.06Мб
023 Default Parameters and Keyword Arguments__en.srt 6.25Кб
023 Default Parameters and Keyword Arguments.mp4 18.12Мб
023 Escape Sequences__en.srt 5.21Кб
023 Escape Sequences.mp4 8.68Мб
023 Making Predictions With Our Model__en.srt 12.91Кб
023 Making Predictions With Our Model.mp4 64.10Мб
023 Preparing Our Inputs and Outputs__en.srt 8.03Кб
023 Preparing Our Inputs and Outputs.mp4 47.96Мб
023 Reviewing The Project__en.srt 14.84Кб
023 Reviewing The Project.mp4 84.78Мб
024 Formatted Strings__en.srt 9.63Кб
024 Formatted Strings.mp4 21.81Мб
024 Optional_ How machines learn and what's going on behind the scenes_.html 2.72Кб
024 predict() vs predict_proba()__en.srt 12.19Кб
024 predict() vs predict_proba().mp4 39.07Мб
024 return__en.srt 15.88Кб
024 return.mp4 36.79Мб
025 Building A Deep Learning Model__en.srt 17.32Кб
025 Building A Deep Learning Model.mp4 120.15Мб
025 Exercise_ Tesla.html 402б
025 NEW_ Making Predictions With Our Model (Regression)__en.srt 12.77Кб
025 NEW_ Making Predictions With Our Model (Regression).mp4 79.23Мб
025 String Indexes__en.srt 9.88Кб
025 String Indexes.mp4 17.42Мб
026 Building A Deep Learning Model 2__en.srt 13.02Кб
026 Building A Deep Learning Model 2.mp4 88.60Мб
026 Immutability__en.srt 3.63Кб
026 Immutability.mp4 8.19Мб
026 Methods vs Functions__en.srt 5.72Кб
026 Methods vs Functions.mp4 26.33Мб
026 NEW_ Evaluating A Machine Learning Model (Score) Part 1__en.srt 14.58Кб
026 NEW_ Evaluating A Machine Learning Model (Score) Part 1.mp4 36.57Мб
027 Building A Deep Learning Model 3__en.srt 12.49Кб
027 Building A Deep Learning Model 3.mp4 105.42Мб
027 Built-In Functions + Methods__en.srt 11.12Кб
027 Built-In Functions + Methods.mp4 44.06Мб
027 Docstrings__en.srt 4.52Кб
027 Docstrings.mp4 10.25Мб
027 NEW_ Evaluating A Machine Learning Model (Score) Part 2__en.srt 10.09Кб
027 NEW_ Evaluating A Machine Learning Model (Score) Part 2.mp4 52.92Мб
028 Booleans__en.srt 4.10Кб
028 Booleans.mp4 7.45Мб
028 Building A Deep Learning Model 4__en.srt 12.75Кб
028 Building A Deep Learning Model 4.mp4 72.00Мб
028 Clean Code__en.srt 5.45Кб
028 Clean Code.mp4 17.58Мб
028 Evaluating A Machine Learning Model 2 (Cross Validation)__en.srt 18.35Кб
028 Evaluating A Machine Learning Model 2 (Cross Validation).mp4 81.47Мб
029 _args and __kwargs__en.srt 8.38Кб
029 _args and __kwargs.mp4 32.78Мб
029 Evaluating A Classification Model 1 (Accuracy)__en.srt 6.14Кб
029 Evaluating A Classification Model 1 (Accuracy).mp4 29.87Мб
029 Exercise_ Type Conversion__en.srt 9.04Кб
029 Exercise_ Type Conversion.mp4 21.77Мб
029 Summarizing Our Model__en.srt 6.16Кб
029 Summarizing Our Model.mp4 44.38Мб
030 DEVELOPER FUNDAMENTALS_ II__en.srt 5.53Кб
030 DEVELOPER FUNDAMENTALS_ II.mp4 18.68Мб
030 Evaluating A Classification Model 2 (ROC Curve)__en.srt 12.81Кб
030 Evaluating A Classification Model 2 (ROC Curve).mp4 56.34Мб
030 Evaluating Our Model__en.srt 11.41Кб
030 Evaluating Our Model.mp4 67.15Мб
030 Exercise_ Functions__en.srt 4.94Кб
030 Exercise_ Functions.mp4 10.66Мб
031 Evaluating A Classification Model 3 (ROC Curve)__en.srt 10.54Кб
031 Evaluating A Classification Model 3 (ROC Curve).mp4 47.72Мб
031 Exercise_ Password Checker__en.srt 8.08Кб
031 Exercise_ Password Checker.mp4 21.26Мб
031 Preventing Overfitting__en.srt 5.62Кб
031 Preventing Overfitting.mp4 35.27Мб
031 Scope__en.srt 4.02Кб
031 Scope.mp4 8.10Мб
032 Lists__en.srt 6.00Кб
032 Lists.mp4 8.90Мб
032 Reading Extension_ ROC Curve + AUC.html 1.48Кб
032 Scope Rules__en.srt 8.17Кб
032 Scope Rules.mp4 18.90Мб
032 Training Your Deep Neural Network__en.srt 24.98Кб
032 Training Your Deep Neural Network.mp4 163.09Мб
033 Evaluating A Classification Model 4 (Confusion Matrix)__en.srt 15.97Кб
033 Evaluating A Classification Model 4 (Confusion Matrix).mp4 77.69Мб
033 Evaluating Performance With TensorBoard__en.srt 10.18Кб
033 Evaluating Performance With TensorBoard.mp4 73.30Мб
033 global Keyword__en.srt 7.24Кб
033 global Keyword.mp4 21.37Мб
033 List Slicing__en.srt 8.71Кб
033 List Slicing.mp4 17.54Мб
034 Make And Transform Predictions__en.srt 20.34Кб
034 Make And Transform Predictions.mp4 153.74Мб
034 Matrix__en.srt 4.81Кб
034 Matrix.mp4 8.72Мб
034 NEW_ Evaluating A Classification Model 5 (Confusion Matrix)__en.srt 21.29Кб
034 NEW_ Evaluating A Classification Model 5 (Confusion Matrix).mp4 106.50Мб
034 nonlocal Keyword__en.srt 4.15Кб
034 nonlocal Keyword.mp4 9.34Мб
035 Evaluating A Classification Model 6 (Classification Report)__en.srt 551б
035 Evaluating A Classification Model 6 (Classification Report)_en.vtt 12.99Кб
035 Evaluating A Classification Model 6 (Classification Report).mp4 84.95Мб
035 List Methods__en.srt 11.84Кб
035 List Methods.mp4 40.19Мб
035 Transform Predictions To Text__en.srt 19.19Кб
035 Transform Predictions To Text.mp4 126.28Мб
035 Why Do We Need Scope___en.srt 4.90Кб
035 Why Do We Need Scope_.mp4 8.65Мб
036 List Methods 2__en.srt 5.14Кб
036 List Methods 2.mp4 17.62Мб
036 NEW_ Evaluating A Regression Model 1 (R2 Score)__en.srt 15.06Кб
036 NEW_ Evaluating A Regression Model 1 (R2 Score).mp4 99.44Мб
036 Pure Functions__en.srt 10.88Кб
036 Pure Functions.mp4 30.01Мб
036 Visualizing Model Predictions__en.srt 18.06Кб
036 Visualizing Model Predictions.mp4 115.65Мб
037 List Methods 3__en.srt 5.51Кб
037 List Methods 3.mp4 24.46Мб
037 map()__en.srt 6.99Кб
037 map().mp4 33.47Мб
037 NEW_ Evaluating A Regression Model 2 (MAE)__en.srt 10.26Кб
037 NEW_ Evaluating A Regression Model 2 (MAE).mp4 42.90Мб
037 Visualizing And Evaluate Model Predictions 2__en.srt 18.41Кб
037 Visualizing And Evaluate Model Predictions 2.mp4 140.30Мб
038 Common List Patterns__en.srt 6.51Кб
038 Common List Patterns.mp4 16.81Мб
038 filter()__en.srt 5.43Кб
038 filter().mp4 9.92Мб
038 NEW_ Evaluating A Regression Model 3 (MSE)__en.srt 13.67Кб
038 NEW_ Evaluating A Regression Model 3 (MSE).mp4 58.75Мб
038 Visualizing And Evaluate Model Predictions 3__en.srt 14.36Кб
038 Visualizing And Evaluate Model Predictions 3.mp4 112.53Мб
039 List Unpacking__en.srt 3.13Кб
039 List Unpacking.mp4 6.19Мб
039 Machine Learning Model Evaluation.html 7.12Кб
039 Saving And Loading A Trained Model__en.srt 17.33Кб
039 Saving And Loading A Trained Model.mp4 124.82Мб
039 zip()__en.srt 3.44Кб
039 zip().mp4 10.18Мб
040 NEW_ Evaluating A Model With Cross Validation and Scoring Parameter__en.srt 36.46Кб
040 NEW_ Evaluating A Model With Cross Validation and Scoring Parameter.mp4 224.91Мб
040 None__en.srt 2.29Кб
040 None.mp4 3.08Мб
040 reduce()__en.srt 9.18Кб
040 reduce().mp4 23.79Мб
040 Training Model On Full Dataset__en.srt 20.17Кб
040 Training Model On Full Dataset.mp4 48.58Мб
041 Dictionaries__en.srt 7.97Кб
041 Dictionaries.mp4 12.49Мб
041 List Comprehensions__en.srt 9.86Кб
041 List Comprehensions.mp4 24.30Мб
041 Making Predictions On Test Images__en.srt 21.29Кб
041 Making Predictions On Test Images.mp4 120.06Мб
041 NEW_ Evaluating A Model With Scikit-learn Functions__en.srt 20.22Кб
041 NEW_ Evaluating A Model With Scikit-learn Functions.mp4 130.40Мб
042 DEVELOPER FUNDAMENTALS_ III__en.srt 3.49Кб
042 DEVELOPER FUNDAMENTALS_ III.mp4 8.66Мб
042 Improving A Machine Learning Model__en.srt 15.24Кб
042 Improving A Machine Learning Model.mp4 90.87Мб
042 Set Comprehensions__en.srt 6.94Кб
042 Set Comprehensions.mp4 17.07Мб
042 Submitting Model to Kaggle__en.srt 17.32Кб
042 Submitting Model to Kaggle.mp4 101.92Мб
043 Dictionary Keys__en.srt 4.05Кб
043 Dictionary Keys.mp4 7.88Мб
043 Exercise_ Comprehensions__en.srt 5.26Кб
043 Exercise_ Comprehensions.mp4 9.65Мб
043 Making Predictions On Our Images__en.srt 20.23Кб
043 Making Predictions On Our Images.mp4 119.42Мб
043 Tuning Hyperparameters__en.srt 32.43Кб
043 Tuning Hyperparameters.mp4 167.98Мб
044 Dictionary Methods__en.srt 5.73Кб
044 Dictionary Methods.mp4 10.08Мб
044 Finishing Dog Vision_ Where to next_.html 3.86Кб
044 Python Exam_ Testing Your Understanding.html 1.12Кб
044 Tuning Hyperparameters 2__en.srt 18.12Кб
044 Tuning Hyperparameters 2.mp4 116.86Мб
045 Dictionary Methods 2__en.srt 7.68Кб
045 Dictionary Methods 2.mp4 28.20Мб
045 Modules in Python__en.srt 13.34Кб
045 Modules in Python.mp4 78.10Мб
045 Tuning Hyperparameters 3__en.srt 20.41Кб
045 Tuning Hyperparameters 3.mp4 118.13Мб
046 Note_ Metric Comparison Improvement.html 2.18Кб
046 Quick Note_ Upcoming Videos.html 448б
046 Tuples__en.srt 6.01Кб
046 Tuples.mp4 9.99Мб
047 Optional_ PyCharm__en.srt 10.68Кб
047 Optional_ PyCharm.mp4 25.36Мб
047 Quick Tip_ Correlation Analysis__en.srt 3.04Кб
047 Quick Tip_ Correlation Analysis.mp4 16.33Мб
047 Tuples 2__en.srt 3.55Кб
047 Tuples 2.mp4 6.25Мб
048 Packages in Python__en.srt 13.10Кб
048 Packages in Python.mp4 61.84Мб
048 Saving And Loading A Model__en.srt 10.21Кб
048 Saving And Loading A Model.mp4 50.43Мб
048 Sets__en.srt 9.00Кб
048 Sets.mp4 24.27Мб
049 Different Ways To Import__en.srt 8.16Кб
049 Different Ways To Import.mp4 23.95Мб
049 Saving And Loading A Model 2__en.srt 9.39Кб
049 Saving And Loading A Model 2.mp4 47.66Мб
049 Sets 2__en.srt 10.03Кб
049 Sets 2.mp4 52.43Мб
050 Next Steps.html 959б
050 Putting It All Together__en.srt 9.59Кб
050 Putting It All Together_en.vtt 25.00Кб
050 Putting It All Together.mp4 143.21Мб
051 Bonus Resource_ Python Cheatsheet.html 489б
051 Putting It All Together 2__en.srt 16.75Кб
051 Putting It All Together 2.mp4 114.19Мб
052 Scikit-Learn Practice.html 2.07Кб
21708170-car-sales.csv 369б
21708212-pandas-anatomy-of-a-dataframe.png 333.24Кб
21708220-pandas-anatomy-of-a-dataframe.png 333.24Кб
21708590-conda-cheatsheet.pdf 201.29Кб
21708696-numpy-images.zip 7.27Мб
21709556-matplotlib-anatomy-of-a-plot.png 369.39Кб
21709558-matplotlib-anatomy-of-a-plot-with-code.png 654.77Кб
21709560-heart-disease.csv 11.06Кб
21882974-heart-disease.csv 11.06Кб
21892866-heart-disease.csv 11.06Кб
22295379-scikit-learn-data.zip 20.83Кб
22379919-car-sales-missing-data.csv 287б
22591460-6-step-ml-framework.png 324.24Кб
external-assets-links.txt 123б
external-assets-links.txt 154б
external-assets-links.txt 857б
external-assets-links.txt 1.01Кб
external-assets-links.txt 818б
external-assets-links.txt 473б
external-assets-links.txt 1.50Кб
external-assets-links.txt 565б
external-assets-links.txt 815б
external-assets-links.txt 217б
external-assets-links.txt 4.17Кб
external-assets-links.txt 381б
external-assets-links.txt 1.17Кб
external-assets-links.txt 252б
Статистика распространения по странам
Египет (EG) 5
Китай (CN) 1
Россия (RU) 1
Малайзия (MY) 1
Австралия (AU) 1
Шри-Ланка (LK) 1
Индия (IN) 1
Всего 11
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент