Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[GigaCourse.com].url |
49б |
1.1 linalg_eig.zip.zip |
297.22Кб |
1.1 linalg_inverse.zip.zip |
226.13Кб |
1.1 linalg_leastsquares.zip.zip |
315.41Кб |
1.1 linalg_matrices.zip.zip |
166.28Кб |
1.1 linalg_matrixDet.pdf.pdf |
138.29Кб |
1.1 linalg_matrixMult.zip.zip |
214.72Кб |
1.1 linalg_matrixRank.zip.zip |
179.67Кб |
1.1 linalg_matrixSpaces.zip.zip |
209.95Кб |
1.1 linalg_projorth.zip.zip |
246.46Кб |
1.1 linalg_quadformDefinite.zip.zip |
395.50Кб |
1.1 linalg_svd.zip.zip |
330.96Кб |
1.1 linalg_systems.zip.zip |
211.22Кб |
1.1 linalg_vectors.zip.zip |
385.88Кб |
1. Bonus Links to related courses.html |
2.27Кб |
1. Exercises.html |
52б |
1. Exercises + code.html |
76б |
1. Exercises + code.html |
86б |
1. Exercises + code.html |
33б |
1. Exercises + code.html |
26б |
1. Exercises + code.html |
55б |
1. Exercises + code.html |
80б |
1. Exercises + code.html |
75б |
1. Exercises + code.html |
87б |
1. Exercises + code.html |
85б |
1. Exercises + code.html |
36б |
1. Exercises + code.html |
40б |
1. Exercises + code.html |
85б |
1. What is linear algebra.mp4 |
50.15Мб |
1. What is linear algebra.vtt |
9.14Кб |
10. Code challenge Pure and impure rotation matrices.mp4 |
65.02Мб |
10. Code challenge Pure and impure rotation matrices.vtt |
12.15Кб |
10. Code challenge rank of multiplied and summed matrices.mp4 |
29.96Мб |
10. Code challenge rank of multiplied and summed matrices.vtt |
7.56Кб |
10. Complex matrices.mp4 |
6.76Мб |
10. Complex matrices.vtt |
2.15Кб |
10. Convert singular values to percent variance.mp4 |
58.38Мб |
10. Convert singular values to percent variance.vtt |
12.85Кб |
10. Dot product geometry sign and orthogonality.mp4 |
76.84Мб |
10. Dot product geometry sign and orthogonality.vtt |
17.99Кб |
10. Matrix inverse via QR decomposition.mp4 |
7.08Мб |
10. Matrix inverse via QR decomposition.vtt |
1.91Кб |
10. Matrix powers via diagonalization.mp4 |
85.67Мб |
10. Matrix powers via diagonalization.vtt |
16.43Кб |
10. One-sided inverses in MATLAB.mp4 |
45.07Мб |
10. One-sided inverses in MATLAB.vtt |
7.45Кб |
10. Proof A^TA is always positive (semi)definite.mp4 |
30.70Мб |
10. Proof A^TA is always positive (semi)definite.vtt |
7.62Кб |
11. Addition, equality, and transpose.html |
144б |
11. Code challenge eigendecomposition of matrix differences.mp4 |
48.54Мб |
11. Code challenge eigendecomposition of matrix differences.vtt |
11.81Кб |
11. Code challenge Geometric transformations via matrix multiplications.mp4 |
79.10Мб |
11. Code challenge Geometric transformations via matrix multiplications.vtt |
15.80Кб |
11. Code challenge Inverse via QR.mp4 |
72.49Мб |
11. Code challenge Inverse via QR.vtt |
9.01Кб |
11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.mp4 |
28.83Мб |
11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.vtt |
6.97Кб |
11. Making a matrix full-rank by shifting.mp4 |
59.90Мб |
11. Making a matrix full-rank by shifting.vtt |
12.20Кб |
11. Proof Eigenvalues and matrix definiteness.mp4 |
45.54Мб |
11. Proof Eigenvalues and matrix definiteness.vtt |
8.87Кб |
11. Proof the inverse is unique.mp4 |
16.45Мб |
11. Proof the inverse is unique.vtt |
3.46Кб |
11. Vector orthogonality.html |
144б |
12. Additive and multiplicative matrix identities.mp4 |
25.26Мб |
12. Additive and multiplicative matrix identities.vtt |
5.73Кб |
12. Code challenge is this vector in the span of this set.mp4 |
24.39Мб |
12. Code challenge is this vector in the span of this set.vtt |
7.96Кб |
12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.mp4 |
55.69Мб |
12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.vtt |
15.58Кб |
12. Diagonal and trace.mp4 |
27.24Мб |
12. Diagonal and trace.vtt |
6.52Кб |
12. Eigenvectors of distinct eigenvalues.mp4 |
41.53Мб |
12. Eigenvectors of distinct eigenvalues.vtt |
9.01Кб |
12. Pseudo-inverse, part 1.mp4 |
54.50Мб |
12. Pseudo-inverse, part 1.vtt |
9.67Кб |
12. Relative vector angles.html |
144б |
12. Singular values of an orthogonal matrix.html |
144б |
13. Additive and multiplicative symmetric matrices.mp4 |
54.22Мб |
13. Additive and multiplicative symmetric matrices.vtt |
13.24Кб |
13. Code challenge A^TA = R^TR.mp4 |
21.93Мб |
13. Code challenge A^TA = R^TR.vtt |
4.81Кб |
13. Code challenge dot product sign and scalar multiplication.mp4 |
44.80Мб |
13. Code challenge dot product sign and scalar multiplication.vtt |
13.04Кб |
13. Code challenge linearity of trace.mp4 |
36.24Мб |
13. Code challenge linearity of trace.vtt |
9.78Кб |
13. Code challenge pseudoinverse of invertible matrices.mp4 |
19.32Мб |
13. Code challenge pseudoinverse of invertible matrices.vtt |
4.88Кб |
13. Eigenvectors of repeated eigenvalues.mp4 |
47.92Мб |
13. Eigenvectors of repeated eigenvalues.vtt |
11.72Кб |
13. SVD, matrix inverse, and pseudoinverse.mp4 |
44.68Мб |
13. SVD, matrix inverse, and pseudoinverse.vtt |
10.23Кб |
14. Code challenge is the dot product commutative.mp4 |
27.52Мб |
14. Code challenge is the dot product commutative.vtt |
8.42Кб |
14. Condition number of a matrix.mp4 |
42.41Мб |
14. Condition number of a matrix.vtt |
9.74Кб |
14. Eigendecomposition of symmetric matrices.mp4 |
60.44Мб |
14. Eigendecomposition of symmetric matrices.vtt |
13.08Кб |
14. Hadamard (element-wise) multiplication.mp4 |
11.93Мб |
14. Hadamard (element-wise) multiplication.vtt |
2.90Кб |
15. Code challenge Create matrix with desired condition number.mp4 |
72.32Мб |
15. Code challenge Create matrix with desired condition number.vtt |
14.04Кб |
15. Eigenlayers of a matrix.mp4 |
24.75Мб |
15. Eigenlayers of a matrix.vtt |
6.44Кб |
15. Matrix operation equality.html |
144б |
15. Vector Hadamard multiplication.mp4 |
12.14Мб |
15. Vector Hadamard multiplication.vtt |
2.75Кб |
16. Code challenge reconstruct a matrix from eigenlayers.mp4 |
49.85Мб |
16. Code challenge reconstruct a matrix from eigenlayers.vtt |
11.79Кб |
16. Code challenge symmetry of combined symmetric matrices.mp4 |
34.19Мб |
16. Code challenge symmetry of combined symmetric matrices.vtt |
9.29Кб |
16. Outer product.mp4 |
42.02Мб |
16. Outer product.vtt |
9.57Кб |
17. Eigendecomposition of singular matrices.mp4 |
20.06Мб |
17. Eigendecomposition of singular matrices.vtt |
5.47Кб |
17. Multiplication of two symmetric matrices.mp4 |
49.74Мб |
17. Multiplication of two symmetric matrices.vtt |
11.20Кб |
17. Vector cross product.mp4 |
44.38Мб |
17. Vector cross product.vtt |
7.55Кб |
18. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4 |
19.94Мб |
18. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt |
5.71Кб |
18. Code challenge trace and determinant, eigenvalues sum and product.mp4 |
33.04Мб |
18. Code challenge trace and determinant, eigenvalues sum and product.vtt |
9.69Кб |
18. Vectors with complex numbers.mp4 |
32.88Мб |
18. Vectors with complex numbers.vtt |
9.15Кб |
19. Code challenge Fourier transform via matrix multiplication!.mp4 |
47.83Мб |
19. Code challenge Fourier transform via matrix multiplication!.vtt |
11.75Кб |
19. Generalized eigendecomposition.mp4 |
45.27Мб |
19. Generalized eigendecomposition.vtt |
10.10Кб |
19. Hermitian transpose (a.k.a. conjugate transpose).mp4 |
55.50Мб |
19. Hermitian transpose (a.k.a. conjugate transpose).vtt |
13.66Кб |
2. Algebraic and geometric interpretations of vectors.mp4 |
40.69Мб |
2. Algebraic and geometric interpretations of vectors.vtt |
10.89Кб |
2. Column space of a matrix.mp4 |
55.61Мб |
2. Column space of a matrix.vtt |
14.41Кб |
2. Determinant concept and applications.mp4 |
33.76Мб |
2. Determinant concept and applications.vtt |
7.21Кб |
2. Introduction to least-squares.mp4 |
80.55Мб |
2. Introduction to least-squares.vtt |
14.93Кб |
2. Introduction to standard matrix multiplication.mp4 |
37.79Мб |
2. Introduction to standard matrix multiplication.vtt |
9.31Кб |
2. Linear algebra applications.mp4 |
29.58Мб |
2. Linear algebra applications.vtt |
6.85Кб |
2. Matrix inverse Concept and applications.mp4 |
48.79Мб |
2. Matrix inverse Concept and applications.vtt |
14.36Кб |
2. Matrix terminology and dimensionality.mp4 |
32.58Мб |
2. Matrix terminology and dimensionality.vtt |
8.96Кб |
2. Projections in R^2.mp4 |
36.88Мб |
2. Projections in R^2.vtt |
9.62Кб |
2. Rank concepts, terms, and applications.mp4 |
48.93Мб |
2. Rank concepts, terms, and applications.vtt |
12.18Кб |
2. Singular value decomposition (SVD).mp4 |
70.93Мб |
2. Singular value decomposition (SVD).vtt |
15.72Кб |
2. Systems of equations algebra and geometry.mp4 |
84.61Мб |
2. Systems of equations algebra and geometry.vtt |
17.74Кб |
2. The quadratic form in algebra.mp4 |
46.50Мб |
2. The quadratic form in algebra.vtt |
12.09Кб |
2. What are eigenvalues and eigenvectors.mp4 |
63.49Мб |
2. What are eigenvalues and eigenvectors.vtt |
13.99Кб |
20. Code challenge GED in small and large matrices.mp4 |
72.37Мб |
20. Code challenge GED in small and large matrices.vtt |
14.93Кб |
20. Frobenius dot product.mp4 |
45.14Мб |
20. Frobenius dot product.vtt |
9.38Кб |
20. Interpreting and creating unit vectors.mp4 |
26.54Мб |
20. Interpreting and creating unit vectors.vtt |
6.15Кб |
21. Code challenge dot products with unit vectors.mp4 |
44.88Мб |
21. Code challenge dot products with unit vectors.vtt |
11.79Кб |
21. What about matrix division.mp4 |
14.08Мб |
21. What about matrix division.vtt |
4.85Кб |
22. Dimensions and fields in linear algebra.mp4 |
38.73Мб |
22. Dimensions and fields in linear algebra.vtt |
8.81Кб |
23. Subspaces.mp4 |
69.59Мб |
23. Subspaces.vtt |
16.98Кб |
24. Subspaces vs. subsets.mp4 |
29.05Мб |
24. Subspaces vs. subsets.vtt |
6.17Кб |
25. Span.mp4 |
59.92Мб |
25. Span.vtt |
12.54Кб |
26. In the span.html |
144б |
27. Linear independence.mp4 |
75.68Мб |
27. Linear independence.vtt |
17.58Кб |
28. Basis.mp4 |
50.94Мб |
28. Basis.vtt |
12.85Кб |
3. Are these two expressions equal.html |
144б |
3. Column space, visualized in MATLAB.mp4 |
28.04Мб |
3. Column space, visualized in MATLAB.vtt |
4.22Кб |
3. Computing the inverse in MATLAB.mp4 |
18.88Мб |
3. Computing the inverse in MATLAB.vtt |
3.78Кб |
3. Converting systems of equations to matrix equations.mp4 |
20.98Мб |
3. Converting systems of equations to matrix equations.vtt |
5.10Кб |
3. Determinant of a 2x2 matrix.mp4 |
27.36Мб |
3. Determinant of a 2x2 matrix.vtt |
8.10Кб |
3. Finding eigenvalues.mp4 |
70.05Мб |
3. Finding eigenvalues.vtt |
17.20Кб |
3. Four ways to think about matrix multiplication.mp4 |
50.62Мб |
3. Four ways to think about matrix multiplication.vtt |
13.12Кб |
3. How best to learn from this course.mp4 |
26.98Мб |
3. How best to learn from this course.vtt |
5.21Кб |
3. Least-squares via left inverse.mp4 |
44.38Мб |
3. Least-squares via left inverse.vtt |
10.68Кб |
3. Matrix sizes and dimensionality.html |
144б |
3. Maximum possible rank..html |
144б |
3. Projections in R^N.mp4 |
52.71Мб |
3. Projections in R^N.vtt |
11.47Кб |
3. The quadratic form in geometry.mp4 |
55.22Мб |
3. The quadratic form in geometry.vtt |
12.37Кб |
3. Vector addition and subtraction.mp4 |
25.82Мб |
3. Vector addition and subtraction.vtt |
6.89Кб |
4. A zoo of matrices.mp4 |
55.12Мб |
4. A zoo of matrices.vtt |
12.98Кб |
4. Code challenge determinant of small and large singular matrices.mp4 |
38.72Мб |
4. Code challenge determinant of small and large singular matrices.vtt |
10.25Кб |
4. Code challenge matrix multiplication by layering.mp4 |
35.63Мб |
4. Code challenge matrix multiplication by layering.vtt |
9.25Кб |
4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4 |
82.88Мб |
4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt |
16.96Кб |
4. Computing rank theory and practice.mp4 |
90.32Мб |
4. Computing rank theory and practice.vtt |
19.04Кб |
4. Gaussian elimination.mp4 |
63.49Мб |
4. Gaussian elimination.vtt |
18.10Кб |
4. Inverse of a 2x2 matrix.mp4 |
38.90Мб |
4. Inverse of a 2x2 matrix.vtt |
8.94Кб |
4. Least-squares via orthogonal projection.mp4 |
42.43Мб |
4. Least-squares via orthogonal projection.vtt |
9.95Кб |
4. Orthogonal and parallel vector components.mp4 |
57.27Мб |
4. Orthogonal and parallel vector components.txt |
249б |
4. Orthogonal and parallel vector components.vtt |
14.13Кб |
4. Row space of a matrix.mp4 |
23.45Мб |
4. Row space of a matrix.vtt |
4.76Кб |
4. Shortcut for eigenvalues of a 2x2 matrix.mp4 |
12.61Мб |
4. Shortcut for eigenvalues of a 2x2 matrix.vtt |
3.01Кб |
4. The normalized quadratic form.mp4 |
31.25Мб |
4. The normalized quadratic form.vtt |
7.27Кб |
4. Using MATLAB, Octave, or Python in this course.mp4 |
21.20Мб |
4. Using MATLAB, Octave, or Python in this course.vtt |
4.59Кб |
4. Vector-scalar multiplication.mp4 |
29.42Мб |
4. Vector-scalar multiplication.vtt |
7.58Кб |
5. Can the matrices be concatenated.html |
144б |
5. Code challenge decompose vector to orthogonal components.mp4 |
59.03Мб |
5. Code challenge decompose vector to orthogonal components.vtt |
12.81Кб |
5. Code challenge eigenvalues of diagonal and triangular matrices.mp4 |
33.88Мб |
5. Code challenge eigenvalues of diagonal and triangular matrices.vtt |
9.45Кб |
5. Code challenge U from eigendecomposition of A^TA.mp4 |
67.23Мб |
5. Code challenge U from eigendecomposition of A^TA.vtt |
14.28Кб |
5. Code challenge Visualize the normalized quadratic form.mp4 |
94.03Мб |
5. Code challenge Visualize the normalized quadratic form.vtt |
16.02Кб |
5. Determinant of a 3x3 matrix.mp4 |
63.26Мб |
5. Determinant of a 3x3 matrix.vtt |
15.40Кб |
5. Echelon form and pivots.mp4 |
29.30Мб |
5. Echelon form and pivots.vtt |
8.48Кб |
5. Least-squares via row-reduction.mp4 |
54.07Мб |
5. Least-squares via row-reduction.vtt |
13.01Кб |
5. Leaving reviews, course coupons.mp4 |
17.84Мб |
5. Leaving reviews, course coupons.vtt |
2.85Кб |
5. Matrix multiplication with a diagonal matrix.mp4 |
18.55Мб |
5. Matrix multiplication with a diagonal matrix.vtt |
4.33Кб |
5. Null space and left null space of a matrix.mp4 |
61.81Мб |
5. Null space and left null space of a matrix.mp4.jpg |
59.66Кб |
5. Null space and left null space of a matrix.txt |
250б |
5. Null space and left null space of a matrix.vtt |
15.83Кб |
5. Rank of added and multiplied matrices.mp4 |
58.88Мб |
5. Rank of added and multiplied matrices.vtt |
12.65Кб |
5. The MCA algorithm to compute the inverse.mp4 |
64.27Мб |
5. The MCA algorithm to compute the inverse.vtt |
15.90Кб |
5. Vector-vector multiplication the dot product.mp4 |
32.38Мб |
5. Vector-vector multiplication the dot product.vtt |
8.47Кб |
6. Code challenge A^TA, Av, and singular vectors.mp4 |
51.43Мб |
6. Code challenge A^TA, Av, and singular vectors.vtt |
12.59Кб |
6. Code challenge eigenvalues of random matrices.mp4 |
62.78Мб |
6. Code challenge eigenvalues of random matrices.vtt |
10.85Кб |
6. Code challenge Implement the MCA algorithm!!.mp4 |
72.20Мб |
6. Code challenge Implement the MCA algorithm!!.vtt |
17.16Кб |
6. Code challenge large matrices with row exchanges.mp4 |
17.72Мб |
6. Code challenge large matrices with row exchanges.vtt |
5.61Кб |
6. Columnleft-null and rownull spaces are orthogonal.mp4 |
49.34Мб |
6. Columnleft-null and rownull spaces are orthogonal.vtt |
11.96Кб |
6. Dot product properties associative, distributive, commutative.mp4 |
57.32Мб |
6. Dot product properties associative, distributive, commutative.vtt |
14.65Кб |
6. Eigenvectors and the quadratic form surface.mp4 |
24.94Мб |
6. Eigenvectors and the quadratic form surface.vtt |
4.06Кб |
6. Matrix addition and subtraction.mp4 |
27.07Мб |
6. Matrix addition and subtraction.vtt |
6.75Кб |
6. Model-predicted values and residuals.mp4 |
34.37Мб |
6. Model-predicted values and residuals.vtt |
7.61Кб |
6. Order-of-operations on matrices.mp4 |
36.81Мб |
6. Order-of-operations on matrices.vtt |
7.28Кб |
6. Orthogonal matrices.mp4 |
43.88Мб |
6. Orthogonal matrices.vtt |
13.10Кб |
6. Reduced row echelon form.mp4 |
79.21Мб |
6. Reduced row echelon form.vtt |
19.55Кб |
6. Using the Q&A forum.mp4 |
26.80Мб |
6. Using the Q&A forum.vtt |
6.52Кб |
6. What's the maximum possible rank.html |
144б |
7. Application of the normalized quadratic form PCA.mp4 |
126.33Мб |
7. Application of the normalized quadratic form PCA.vtt |
19.82Кб |
7. Code challenge dot products with matrix columns.mp4 |
23.05Мб |
7. Code challenge dot products with matrix columns.vtt |
7.95Кб |
7. Code challenge reduced-rank matrix via multiplication.mp4 |
34.47Мб |
7. Code challenge reduced-rank matrix via multiplication.vtt |
8.80Кб |
7. Code challenge RREF of matrices with different sizes and ranks.mp4 |
50.71Мб |
7. Code challenge RREF of matrices with different sizes and ranks.vtt |
13.40Кб |
7. Computing the inverse via row reduction.mp4 |
56.13Мб |
7. Computing the inverse via row reduction.vtt |
13.35Кб |
7. Dimensions of columnrownull spaces.mp4 |
39.90Мб |
7. Dimensions of columnrownull spaces.vtt |
9.11Кб |
7. Finding eigenvectors.mp4 |
56.89Мб |
7. Finding eigenvectors.vtt |
13.24Кб |
7. Find matrix values for a given determinant.mp4 |
21.51Мб |
7. Find matrix values for a given determinant.vtt |
5.80Кб |
7. Gram-Schmidt procedure.mp4 |
50.73Мб |
7. Gram-Schmidt procedure.vtt |
15.16Кб |
7. Least-squares application 1.mp4 |
75.92Мб |
7. Least-squares application 1.vtt |
13.94Кб |
7. Matrix-scalar multiplication.mp4 |
7.96Мб |
7. Matrix-scalar multiplication.vtt |
1.85Кб |
7. Matrix-vector multiplication.mp4 |
75.83Мб |
7. Matrix-vector multiplication.vtt |
16.98Кб |
7. SVD and the four subspaces.mp4 |
37.16Мб |
7. SVD and the four subspaces.vtt |
8.00Кб |
8. Code challenge determinant of shifted matrices.mp4 |
76.13Мб |
8. Code challenge determinant of shifted matrices.vtt |
15.73Кб |
8. Code challenge inverse of a diagonal matrix.mp4 |
37.27Мб |
8. Code challenge inverse of a diagonal matrix.vtt |
9.47Кб |
8. Code challenge is matrix-scalar multiplication a linear operation.mp4 |
25.27Мб |
8. Code challenge is matrix-scalar multiplication a linear operation.vtt |
6.24Кб |
8. Code challenge scalar multiplication and rank.mp4 |
55.71Мб |
8. Code challenge scalar multiplication and rank.vtt |
15.00Кб |
8. Eigendecomposition by hand two examples.mp4 |
46.60Мб |
8. Eigendecomposition by hand two examples.vtt |
10.86Кб |
8. Example of the four subspaces.mp4 |
50.95Мб |
8. Example of the four subspaces.vtt |
13.30Кб |
8. Find the missing value!.html |
144б |
8. Least-squares application 2.mp4 |
145.91Мб |
8. Least-squares application 2.vtt |
21.69Кб |
8. Matrix spaces after row reduction.mp4 |
45.73Мб |
8. Matrix spaces after row reduction.vtt |
10.57Кб |
8. QR decomposition.mp4 |
69.04Мб |
8. QR decomposition.mp4.jpg |
54.34Кб |
8. QR decomposition.txt |
224б |
8. QR decomposition.vtt |
14.13Кб |
8. Quadratic form of generalized eigendecomposition.mp4 |
64.05Мб |
8. Quadratic form of generalized eigendecomposition.vtt |
10.71Кб |
8. Spectral theory of matrices.mp4 |
121.41Мб |
8. Spectral theory of matrices.vtt |
15.53Кб |
8. Vector length.mp4 |
23.81Мб |
8. Vector length.vtt |
6.53Кб |
9. 2D transformation matrices.mp4 |
52.49Мб |
9. 2D transformation matrices.vtt |
13.33Кб |
9. Code challenge Gram-Schmidt algorithm.mp4 |
63.93Мб |
9. Code challenge Gram-Schmidt algorithm.vtt |
15.46Кб |
9. Code challenge Least-squares via QR decomposition.mp4 |
29.28Мб |
9. Code challenge Least-squares via QR decomposition.vtt |
8.25Кб |
9. Diagonalization.mp4 |
49.66Мб |
9. Diagonalization.vtt |
11.42Кб |
9. Left inverse and right inverse.mp4 |
41.56Мб |
9. Left inverse and right inverse.vtt |
10.53Кб |
9. Matrix definiteness, geometry, and eigenvalues.mp4 |
63.08Мб |
9. Matrix definiteness, geometry, and eigenvalues.vtt |
10.84Кб |
9. More on Ax=b and Ax=0.mp4 |
34.01Мб |
9. More on Ax=b and Ax=0.vtt |
8.13Кб |
9. Rank of A^TA and AA^T.mp4 |
45.03Мб |
9. Rank of A^TA and AA^T.vtt |
11.71Кб |
9. SVD for low-rank approximations.mp4 |
73.91Мб |
9. SVD for low-rank approximations.vtt |
13.01Кб |
9. Transpose.mp4 |
31.32Мб |
9. Transpose.vtt |
7.54Кб |
9. Vector length in MATLAB.html |
144б |