Общая информация
Название [Tutorialsplanet.NET] Udemy - The Complete Neural Networks Bootcamp Theory, Applications
Тип
Размер 18.79Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
[Tutorialsplanet.NET].url 128б
1. Autoencoders.mp4 42.08Мб
1. Autoencoders-en_US.srt 11.80Кб
1. Batch Gradient Descent.mp4 49.42Мб
1. Batch Gradient Descent-en_US.srt 8.26Кб
1. CNN Architectures Part 1.mp4 43.87Мб
1. CNN Architectures Part 1-en_US.srt 15.19Кб
1. Code Details.mp4 31.94Мб
1. Code Details-en_US.srt 2.68Кб
1. CODE FOR THIS COURSE.mp4 1.78Мб
1. CODE FOR THIS COURSE-en_US.srt 701б
1. Creating the Dictionary.mp4 59.88Мб
1. Creating the Dictionary-en_US.srt 7.54Кб
1. Data and the Model.mp4 74.39Мб
1. Data and the Model-en_US.srt 10.10Кб
1. Data Augmentation.mp4 224.61Мб
1. Data Augmentation-en_US.srt 15.47Кб
1. Dataset Preprocessing Part 1.mp4 83.35Мб
1. Dataset Preprocessing Part 1-en_US.srt 13.20Кб
1. GPT Part 1.mp4 88.85Мб
1. GPT Part 1-en_US.srt 13.71Кб
1. Implementation Details.mp4 50.34Мб
1. Implementation Details-en_US.srt 15.86Кб
1. Introduction.mp4 74.44Мб
1. Introduction-en_US.srt 7.80Кб
1. Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4 17.65Мб
1. Introduction to Hyperparameter Tuning and Learning Rate Recap-en_US.srt 6.64Кб
1. Introduction to Transformers.mp4 46.69Мб
1. Introduction to Transformers-en_US.srt 15.80Кб
1. Introduction to Transposed Convolutions.mp4 30.98Мб
1. Introduction to Transposed Convolutions-en_US.srt 8.95Кб
1. Loading and Normalizing the Dataset.mp4 52.57Мб
1. Loading and Normalizing the Dataset-en_US.srt 15.96Кб
1. Mean Squared Error (MSE).mp4 19.82Мб
1. Mean Squared Error (MSE)-en_US.srt 9.21Кб
1. Normal Distribution.mp4 18.73Мб
1. Normal Distribution-en_US.srt 8.63Кб
1. NST Practical Part 1.mp4 63.78Мб
1. NST Practical Part 1-en_US.srt 13.93Кб
1. NST Theory Part 1.mp4 52.53Мб
1. NST Theory Part 1-en_US.srt 9.19Кб
1. Overfitting.mp4 26.27Мб
1. Overfitting-en_US.srt 6.41Кб
1. Part 1 Data Preprocessing.mp4 123.77Мб
1. Part 1 Data Preprocessing-en_US.srt 18.58Кб
1. Practical ResNet Part 1.mp4 71.51Мб
1. Practical ResNet Part 1-en_US.srt 15.96Кб
1. Practical VAE Part 1.mp4 101.17Мб
1. Practical VAE Part 1-en_US.srt 25.48Кб
1. Prerequisite Filters.mp4 36.41Мб
1. Prerequisite Filters-en_US.srt 6.30Кб
1. Running your models on Google Colab.mp4 33.18Мб
1. Running your models on Google Colab-en_US.srt 10.41Кб
1. Saving and Loading Part 1.mp4 130.61Мб
1. Saving and Loading Part 1-en_US.srt 19.27Кб
1. Sequence Modeling.mp4 81.57Мб
1. Sequence Modeling-en_US.srt 17.25Кб
1. The Dataset and Hyperparameters.mp4 70.53Мб
1. The Dataset and Hyperparameters-en_US.srt 15.60Кб
1. Universal Transformers.mp4 21.83Мб
1. Universal Transformers-en_US.srt 9.28Кб
1. Vision Transformer Part 1.mp4 85.28Мб
1. Vision Transformer Part 1-en_US.srt 16.97Кб
1. Visualize Learning Part 1.mp4 24.38Мб
1. Visualize Learning Part 1-en_US.srt 12.01Кб
1. What are Word Embeddings.mp4 72.71Мб
1. What are Word Embeddings-en_US.srt 12.19Кб
1. What Can Deep Learning Do.mp4 156.25Мб
1. What Can Deep Learning Do-en_US.srt 18.21Кб
1. What is BERT and its structure.mp4 34.67Мб
1. What is BERT and its structure-en_US.srt 11.23Кб
1. Why do we need RNNs.mp4 18.62Мб
1. Why do we need RNNs-en_US.srt 6.66Кб
1. Why we need activation functions.mp4 22.45Мб
1. Why we need activation functions-en_US.srt 5.08Кб
1. YOLO Theory Part 1.mp4 133.82Мб
1. YOLO Theory Part 1-en_US.srt 6.75Кб
10. Classifying your own Handwritten images.mp4 55.66Мб
10. Classifying your own Handwritten images-en_US.srt 15.29Кб
10. CNN-LSTM.mp4 21.45Мб
10. CNN-LSTM-en_US.srt 6.36Кб
10. Important formulas.mp4 13.38Мб
10. Important formulas-en_US.srt 6.83Кб
10. Masked MultiHead Attention.mp4 26.69Мб
10. Masked MultiHead Attention-en_US.srt 8.69Кб
10. MultiHead Attention Implementation Part 3.mp4 123.48Мб
10. MultiHead Attention Implementation Part 3-en_US.srt 16.09Кб
10. SWATS - Switching from Adam to SGD.mp4 9.81Мб
10. SWATS - Switching from Adam to SGD-en_US.srt 2.09Кб
10. Train Function.mp4 158.91Мб
10. Train Function-en_US.srt 20.55Кб
10. Triplet Ranking Loss.mp4 125.70Мб
10. Triplet Ranking Loss-en_US.srt 16.43Кб
10. Weight Initialization in PyTorch.mp4 65.88Мб
10. Weight Initialization in PyTorch-en_US.srt 16.41Кб
10. YOLO Theory Part 10.mp4 25.29Мб
10. YOLO Theory Part 10-en_US.srt 2.86Кб
11. CNN Characteristics.mp4 45.88Мб
11. CNN Characteristics-en_US.srt 10.78Кб
11. Defining Hyperparameters.mp4 104.79Мб
11. Defining Hyperparameters-en_US.srt 18.59Кб
11. Feed Forward Implementation.mp4 42.91Мб
11. Feed Forward Implementation-en_US.srt 4.43Кб
11. MultiHead Attention in Decoder.mp4 11.07Мб
11. MultiHead Attention in Decoder-en_US.srt 3.47Кб
11. Weight Decay.mp4 75.65Мб
11. Weight Decay-en_US.srt 9.28Кб
11. YOLO Theory Part 11.mp4 52.80Мб
11. YOLO Theory Part 11-en_US.srt 7.44Кб
12. Cross Entropy Loss.mp4 32.68Мб
12. Cross Entropy Loss-en_US.srt 16.15Кб
12. Decoupling Weight Decay.mp4 52.25Мб
12. Decoupling Weight Decay-en_US.srt 5.79Кб
12. Encoder Layer.mp4 86.66Мб
12. Encoder Layer-en_US.srt 9.84Кб
12. Evaluation Function.mp4 90.60Мб
12. Evaluation Function-en_US.srt 21.66Кб
12. Regularization and Batch Normalization in CNNs.mp4 18.19Мб
12. Regularization and Batch Normalization in CNNs-en_US.srt 4.73Кб
12. YOLO Theory Part 12.mp4 58.28Мб
12. YOLO Theory Part 12-en_US.srt 13.31Кб
13. AMSGrad.mp4 85.64Мб
13. AMSGrad-en_US.srt 11.64Кб
13. Decoder Layer.mp4 62.27Мб
13. Decoder Layer-en_US.srt 6.78Кб
13. DropBlock Dropout in CNNs.mp4 99.51Мб
13. DropBlock Dropout in CNNs-en_US.srt 15.43Кб
13. KL Divergence Loss.mp4 23.59Мб
13. KL Divergence Loss-en_US.srt 7.72Кб
13. Training.mp4 12.85Мб
13. Training-en_US.srt 3.33Кб
14. Label Smoothing.mp4 13.21Мб
14. Label Smoothing-en_US.srt 5.96Кб
14. Results.mp4 33.86Мб
14. Results-en_US.srt 3.69Кб
14. Softmax with Temperature.mp4 27.35Мб
14. Softmax with Temperature-en_US.srt 12.56Кб
14. Transformer.mp4 117.13Мб
14. Transformer-en_US.srt 14.72Кб
15. AdamWarmup.mp4 75.29Мб
15. AdamWarmup-en_US.srt 8.75Кб
15. Dropout.mp4 75.25Мб
15. Dropout-en_US.srt 11.98Кб
16. Learning Rate Warmup.mp4 29.07Мб
16. Learning Rate Warmup-en_US.srt 8.61Кб
16. Loss with Label Smoothing.mp4 214.69Мб
16. Loss with Label Smoothing-en_US.srt 24.79Кб
17. Defining the Model.mp4 43.71Мб
17. Defining the Model-en_US.srt 8.35Кб
18. Training Function.mp4 100.55Мб
18. Training Function-en_US.srt 13.91Кб
19. Evaluation Function.mp4 109.81Мб
19. Evaluation Function-en_US.srt 20.63Кб
2. Computation Graphs and Deep Learning Frameworks.mp4 55.23Мб
2. Computation Graphs and Deep Learning Frameworks-en_US.srt 17.33Кб
2. Convolution Operation as Matrix Multiplication.mp4 70.98Мб
2. Convolution Operation as Matrix Multiplication-en_US.srt 11.18Кб
2. Dataset Preprocessing Part 2.mp4 134.64Мб
2. Dataset Preprocessing Part 2-en_US.srt 19.87Кб
2. Denoising Autoencoders.mp4 30.00Мб
2. Denoising Autoencoders-en_US.srt 9.27Кб
2. External URLs.txt 70б
2. GPT Part 2.mp4 45.39Мб
2. GPT Part 2-en_US.srt 12.18Кб
2. Gradient Accumulation.mp4 56.83Мб
2. Gradient Accumulation-en_US.srt 20.70Кб
2. Image Captioning.mp4 34.74Мб
2. Image Captioning-en_US.srt 6.66Кб
2. Importing and Defining Parameters.mp4 142.18Мб
2. Importing and Defining Parameters-en_US.srt 15.92Кб
2. Input Embeddings.mp4 65.76Мб
2. Input Embeddings-en_US.srt 8.51Кб
2. Introduction to Convolutional Networks and the need for them.mp4 25.12Мб
2. Introduction to Convolutional Networks and the need for them-en_US.srt 9.22Кб
2. L1 and L2 Regularization.mp4 33.50Мб
2. L1 and L2 Regularization-en_US.srt 11.81Кб
2. L1 Loss (MAE).mp4 77.21Мб
2. L1 Loss (MAE)-en_US.srt 10.96Кб
2. Loading the Dataset.mp4 177.38Мб
2. Loading the Dataset-en_US.srt 14.10Кб
2. Masked Language Modelling.mp4 23.09Мб
2. Masked Language Modelling-en_US.srt 7.12Кб
2. NST Practical Part 2.mp4 127.87Мб
2. NST Practical Part 2-en_US.srt 12.48Кб
2. NST Theory Part 2.mp4 35.19Мб
2. NST Theory Part 2-en_US.srt 7.90Кб
2. Part 2 Data Normalization.mp4 55.43Мб
2. Part 2 Data Normalization-en_US.srt 10.21Кб
2. Practical ResNet Part 2.mp4 85.73Мб
2. Practical ResNet Part 2-en_US.srt 16.04Кб
2. Practical Universal Transformers Modifying the Transformers code.mp4 161.10Мб
2. Practical Universal Transformers Modifying the Transformers code-en_US.srt 17.27Кб
2. Practical VAE Part 2.mp4 103.79Мб
2. Practical VAE Part 2-en_US.srt 14.70Кб
2. Processing the Model.mp4 142.48Мб
2. Processing the Model-en_US.srt 17.53Кб
2. Processing the Text.mp4 108.66Мб
2. Processing the Text-en_US.srt 13.42Кб
2. Residual Networks Part 1.mp4 122.27Мб
2. Residual Networks Part 1-en_US.srt 14.13Кб
2. Saving and Loading Part 2.mp4 96.57Мб
2. Saving and Loading Part 2-en_US.srt 10.03Кб
2. Sigmoid Activation.mp4 20.16Мб
2. Sigmoid Activation-en_US.srt 8.23Кб
2. Step Learning Rate Decay.mp4 62.86Мб
2. Step Learning Rate Decay-en_US.srt 16.36Кб
2. Stochastic Gradient Descent.mp4 18.11Мб
2. Stochastic Gradient Descent-en_US.srt 6.51Кб
2. The Rise of Deep Learning.mp4 41.80Мб
2. The Rise of Deep Learning-en_US.srt 8.13Кб
2. Understanding the Encoder.mp4 92.74Мб
2. Understanding the Encoder-en_US.srt 7.73Кб
2. Understanding the Implementation.mp4 23.40Мб
2. Understanding the Implementation-en_US.srt 10.90Кб
2. Utility Functions.mp4 41.36Мб
2. Utility Functions-en_US.srt 18.16Кб
2. Vanilla RNNs.mp4 51.57Мб
2. Vanilla RNNs-en_US.srt 10.83Кб
2. Vision Transformer Part 2.mp4 35.31Мб
2. Vision Transformer Part 2-en_US.srt 11.86Кб
2. Visualize Learning Part 2.mp4 12.21Мб
2. Visualize Learning Part 2-en_US.srt 2.49Кб
2. Visualizing and Loading the Dataset.mp4 60.74Мб
2. Visualizing and Loading the Dataset-en_US.srt 12.37Кб
2. Visualizing Word Embeddings.mp4 12.19Мб
2. Visualizing Word Embeddings-en_US.srt 4.30Кб
2. What happens when all weights are initialized to the same value.mp4 59.96Мб
2. What happens when all weights are initialized to the same value-en_US.srt 12.74Кб
2. YOLO Theory Part 2.mp4 80.65Мб
2. YOLO Theory Part 2-en_US.srt 16.11Кб
20. Main Function and User Evaluation.mp4 93.28Мб
20. Main Function and User Evaluation-en_US.srt 12.47Кб
21. Action.mp4 32.24Мб
21. Action-en_US.srt 3.95Кб
3. Accuracy Calculation.mp4 74.06Мб
3. Accuracy Calculation-en_US.srt 13.71Кб
3. Attention Mechanisms.mp4 16.49Мб
3. Attention Mechanisms-en_US.srt 7.00Кб
3. Building the CNN.mp4 251.43Мб
3. Building the CNN-en_US.srt 31.83Кб
3. Cyclic Learning Rate.mp4 69.37Мб
3. Cyclic Learning Rate-en_US.srt 12.97Кб
3. Dataset Preprocessing Part 3.mp4 80.05Мб
3. Dataset Preprocessing Part 3-en_US.srt 13.91Кб
3. Defining and Visualizing the Parameters.mp4 69.54Мб
3. Defining and Visualizing the Parameters-en_US.srt 9.53Кб
3. Defining the Encoder.mp4 404.31Мб
3. Defining the Encoder-en_US.srt 30.95Кб
3. Defining the Network Class.mp4 85.95Мб
3. Defining the Network Class-en_US.srt 12.03Кб
3. Dropout.mp4 75.22Мб
3. Dropout-en_US.srt 11.98Кб
3. Filters and Features.mp4 51.93Мб
3. Filters and Features-en_US.srt 12.21Кб
3. Forward Propagation.mp4 85.20Мб
3. Forward Propagation-en_US.srt 15.30Кб
3. Huber Loss.mp4 28.65Мб
3. Huber Loss-en_US.srt 8.22Кб
3. Installing PyTorch and an Introduction.mp4 99.25Мб
3. Installing PyTorch and an Introduction-en_US.srt 14.25Кб
3. Measuring Word Embeddings.mp4 5.53Мб
3. Measuring Word Embeddings-en_US.srt 2.57Кб
3. Mini-Batch Gradient Descent.mp4 6.94Мб
3. Mini-Batch Gradient Descent-en_US.srt 3.44Кб
3. Modifying the Network.mp4 96.99Мб
3. Modifying the Network-en_US.srt 10.79Кб
3. Next Sentence Prediction.mp4 42.59Мб
3. Next Sentence Prediction-en_US.srt 11.52Кб
3. NST Practical Part 3.mp4 105.89Мб
3. NST Practical Part 3-en_US.srt 14.56Кб
3. NST Theory Part 3.mp4 69.11Мб
3. NST Theory Part 3-en_US.srt 13.50Кб
3. Part 3 Creating and Loading the Dataset.mp4 66.20Мб
3. Part 3 Creating and Loading the Dataset-en_US.srt 9.46Кб
3. Positional Encoding.mp4 95.97Мб
3. Positional Encoding-en_US.srt 18.06Кб
3. Practical ResNet Part 3.mp4 103.17Мб
3. Practical ResNet Part 3-en_US.srt 15.57Кб
3. Practical VAE Part 3.mp4 93.22Мб
3. Practical VAE Part 3-en_US.srt 15.32Кб
3. Quiz Solution Discussion.mp4 15.38Мб
3. Quiz Solution Discussion-en_US.srt 5.12Кб
3. Residual Networks Part 2.mp4 151.37Мб
3. Residual Networks Part 2-en_US.srt 23.05Кб
3. Saving and Loading Part 3.mp4 52.79Мб
3. Saving and Loading Part 3-en_US.srt 7.53Кб
3. Tanh Activation.mp4 13.87Мб
3. Tanh Activation-en_US.srt 4.10Кб
3. The Essence of Neural Networks.mp4 49.99Мб
3. The Essence of Neural Networks-en_US.srt 12.75Кб
3. The Problem in Autoencoders.mp4 13.42Мб
3. The Problem in Autoencoders-en_US.srt 6.43Кб
3. Transformers for other tasks.mp4 112.79Мб
3. Transformers for other tasks-en_US.srt 11.14Кб
3. Transposed Convolutions.mp4 36.09Мб
3. Transposed Convolutions-en_US.srt 8.33Кб
3. Vision Transformer Part 3.mp4 106.39Мб
3. Vision Transformer Part 3-en_US.srt 15.46Кб
3. Visualize Learning Part 3.mp4 27.37Мб
3. Visualize Learning Part 3-en_US.srt 10.34Кб
3. Visualizing the Feature Maps.mp4 133.26Мб
3. Visualizing the Feature Maps-en_US.srt 16.38Кб
3. Xavier Initialization.mp4 109.71Мб
3. Xavier Initialization-en_US.srt 12.61Кб
3. YOLO Theory Part 3.mp4 123.91Мб
3. YOLO Theory Part 3-en_US.srt 12.26Кб
3. Zero-Shot Predictions with GPT.mp4 43.41Мб
3. Zero-Shot Predictions with GPT-en_US.srt 10.37Кб
4. Backpropagation Through Time.mp4 61.56Мб
4. Backpropagation Through Time-en_US.srt 16.52Кб
4. Binary Cross Entropy Loss.mp4 44.94Мб
4. Binary Cross Entropy Loss-en_US.srt 17.16Кб
4. Byte-Pair Encoding.mp4 39.26Мб
4. Byte-Pair Encoding-en_US.srt 10.44Кб
4. CNN Architectures Part 2.mp4 13.38Мб
4. CNN Architectures Part 2-en_US.srt 4.63Кб
4. Constructing the Dataset Part 1.mp4 136.13Мб
4. Constructing the Dataset Part 1-en_US.srt 18.22Кб
4. Convolution over Volume Animation.mp4 21.31Мб
4. Convolution over Volume Animation-en_US.srt 4.54Кб
4. Cosine Annealing with Warm Restarts.mp4 35.21Мб
4. Cosine Annealing with Warm Restarts-en_US.srt 7.16Кб
4. Creating the Network.mp4 112.10Мб
4. Creating the network class and the network functions.mp4 56.20Мб
4. Creating the network class and the network functions-en_US.srt
4. Creating the Network-en_US.srt 14.15Кб
4. Dataset Preprocessing Part 4.mp4 20.34Мб
4. Dataset Preprocessing Part 4-en_US.srt 5.68Кб
4. Defining the Model.mp4 18.68Мб
4. Defining the Model-en_US.srt 5.57Кб
4. DropConnect.mp4 14.18Мб
4. DropConnect-en_US.srt 2.23Кб
4. Exponentially Weighted Average Intuition.mp4 22.92Мб
4. Exponentially Weighted Average Intuition-en_US.srt 6.87Кб
4. Fine-tuning BERT.mp4 50.66Мб
4. Fine-tuning BERT-en_US.srt 9.13Кб
4. He Norm Initialization.mp4 13.32Мб
4. He Norm Initialization-en_US.srt 4.95Кб
4. How Attention Mechanisms Work.mp4 40.15Мб
4. How Attention Mechanisms Work-en_US.srt 14.68Кб
4. How PyTorch Works.mp4 147.44Мб
4. How PyTorch Works-en_US.srt 24.02Кб
4. Loss Function.mp4 68.48Мб
4. Loss Function-en_US.srt 21.05Кб
4. MultiHead Attention Part 1.mp4 58.32Мб
4. MultiHead Attention Part 1-en_US.srt 13.00Кб
4. NST Practical Part 4.mp4 130.96Мб
4. NST Practical Part 4-en_US.srt 18.42Кб
4. Part 4 Building the Network.mp4 170.51Мб
4. Part 4 Building the Network-en_US.srt 22.44Кб
4. Practical ResNet Part 4.mp4 143.28Мб
4. Practical ResNet Part 4-en_US.srt 16.97Кб
4. ReLU and PReLU.mp4 20.77Мб
4. ReLU and PReLU-en_US.srt 9.16Кб
4. The Perceptron.mp4 110.88Мб
4. The Perceptron-en_US.srt 21.20Кб
4. Understanding Pack Padded Sequence.mp4 29.21Мб
4. Understanding Pack Padded Sequence-en_US.srt 9.76Кб
4. Understanding the data.mp4 101.76Мб
4. Understanding the data-en_US.srt 14.59Кб
4. Variational Autoencoders.mp4 70.20Мб
4. Variational Autoencoders-en_US.srt 13.86Кб
4. Visualize Learning Part 4.mp4 20.10Мб
4. Visualize Learning Part 4-en_US.srt 7.03Кб
4. Word Embeddings Models.mp4 10.65Мб
4. Word Embeddings Models-en_US.srt 4.15Кб
4. YOLO Theory Part 4.mp4 25.77Мб
4. YOLO Theory Part 4-en_US.srt 8.65Кб
5. Batch Size vs Learning Rate.mp4 24.72Мб
5. Batch Size vs Learning Rate-en_US.srt 4.06Кб
5. Constructing the Dataset Part 2.mp4 56.91Мб
5. Constructing the Dataset Part 2-en_US.srt 15.57Кб
5. Cross Entropy Loss.mp4 24.66Мб
5. Cross Entropy Loss-en_US.srt 10.76Кб
5. Dataset Preprocessing Part 5.mp4 92.39Мб
5. Dataset Preprocessing Part 5-en_US.srt 12.55Кб
5. Densely Connected Networks.mp4 95.14Мб
5. Densely Connected Networks-en_US.srt 17.86Кб
5. Designing the Attention Model.mp4 260.29Мб
5. Designing the Attention Model-en_US.srt 20.40Кб
5. Exploring Transformers.mp4 136.61Мб
5. Exploring Transformers-en_US.srt 20.08Кб
5. Exponentially Linear Units (ELU).mp4 10.64Мб
5. Exponentially Linear Units (ELU)-en_US.srt 4.86Кб
5. Exponentially Weighted Average Implementation.mp4 43.15Мб
5. Exponentially Weighted Average Implementation-en_US.srt 11.38Кб
5. Fast Neural Style Transfer.mp4 44.83Мб
5. Fast Neural Style Transfer-en_US.srt 5.13Кб
5. Finetuning the Network.mp4 50.02Мб
5. Finetuning the Network-en_US.srt 6.79Кб
5. Gradient Descent.mp4 40.60Мб
5. Gradient Descent-en_US.srt 15.19Кб
5. More on Convolutions.mp4 29.98Мб
5. More on Convolutions-en_US.srt 8.67Кб
5. MultiHead Attention Part 2.mp4 45.85Мб
5. MultiHead Attention Part 2-en_US.srt 10.44Кб
5. Normalization.mp4 13.54Мб
5. Normalization-en_US.srt 6.04Кб
5. Part 5 Training the Network.mp4 156.22Мб
5. Part 5 Training the Network-en_US.srt 23.16Кб
5. Prediction.mp4 27.71Мб
5. Prediction-en_US.srt 6.92Кб
5. Probability Distributions Recap.mp4 259.26Мб
5. Probability Distributions Recap-en_US.srt 42.49Кб
5. Stacked RNNs.mp4 7.77Мб
5. Stacked RNNs-en_US.srt 3.48Кб
5. Technical Details of GPT.mp4 51.40Мб
5. Technical Details of GPT-en_US.srt 9.03Кб
5. Torch Tensors - Part 1.mp4 87.09Мб
5. Torch Tensors - Part 1-en_US.srt 15.06Кб
5. Training the Network.mp4 333.24Мб
5. Training the Network.mp4 151.65Мб
5. Training the Network-en_US.srt 32.56Кб
5. Training the Network-en_US.srt 13.28Кб
5. Understanding the Propagation.mp4 26.19Мб
5. Understanding the Propagation-en_US.srt 7.65Кб
5. Visualize Learning Part 5.mp4 71.66Мб
5. Visualize Learning Part 5-en_US.srt 14.13Кб
5. Word Embeddings in PyTorch.mp4 53.24Мб
5. Word Embeddings in PyTorch-en_US.srt 7.81Кб
5. YOLO Theory Part 5.mp4 104.97Мб
5. YOLO Theory Part 5-en_US.srt 10.26Кб
6. Backpropagation Equations.mp4 98.77Мб
6. Backpropagation Equations-en_US.srt 15.95Кб
6. Batch Normalization.mp4 100.34Мб
6. Batch Normalization-en_US.srt 15.93Кб
6. Bias Correction in Exponentially Weighted Averages.mp4 30.92Мб
6. Bias Correction in Exponentially Weighted Averages-en_US.srt 7.91Кб
6. Concat and Linear.mp4 9.77Мб
6. Concat and Linear-en_US.srt 4.00Кб
6. Creating the Encoder.mp4 84.85Мб
6. Creating the Encoder-en_US.srt 22.87Кб
6. Data Loading and Masking.mp4 75.82Мб
6. Data Loading and Masking-en_US.srt 16.83Кб
6. Designing the Decoder Part 1.mp4 139.29Мб
6. Designing the Decoder Part 1-en_US.srt 18.08Кб
6. Gated Linear Units (GLU).mp4 26.52Мб
6. Gated Linear Units (GLU)-en_US.srt 3.98Кб
6. Generating Text.mp4 177.83Мб
6. Generating Text-en_US.srt 16.33Кб
6. Loss Function Derivation for VAE.mp4 319.16Мб
6. Loss Function Derivation for VAE-en_US.srt 37.35Кб
6. Playing with HuggingFace models.mp4 30.23Мб
6. Playing with HuggingFace models-en_US.srt 9.73Кб
6. Quiz Solution Discussion.mp4 5.87Мб
6. Quiz Solution Discussion-en_US.srt 4.50Кб
6. Softmax Function.mp4 44.73Мб
6. Softmax Function-en_US.srt 9.84Кб
6. Squeeze-Excite Networks.mp4 39.60Мб
6. Squeeze-Excite Networks-en_US.srt 13.19Кб
6. Testing and Visualizing the results.mp4 118.43Мб
6. Testing and Visualizing the results-en_US.srt 12.96Кб
6. Testing the Network.mp4 47.10Мб
6. Testing the Network-en_US.srt 5.69Кб
6. The Forward Propagation.mp4 52.23Мб
6. The Forward Propagation-en_US.srt 13.77Кб
6. Torch Tensors - Part 2.mp4 67.94Мб
6. Torch Tensors - Part 2-en_US.srt 13.12Кб
6. Training the CNN.mp4 131.06Мб
6. Training the CNN-en_US.srt 20.82Кб
6. Vanishing and Exploding Gradient Problem.mp4 66.86Мб
6. Vanishing and Exploding Gradient Problem-en_US.srt 13.59Кб
6. Visualize Learning Part 6.mp4 64.39Мб
6. Visualize Learning Part 6-en_US.srt 9.99Кб
6. YOLO Theory Part 6.mp4 123.77Мб
6. YOLO Theory Part 6-en_US.srt 12.16Кб
7. A Tool for Convolution Visualization.mp4 27.97Мб
7. A Tool for Convolution Visualization-en_US.srt 5.98Кб
7. Backpropagation.mp4 148.09Мб
7. Backpropagation-en_US.srt 27.58Кб
7. Backpropagation Part 1.mp4 29.37Мб
7. Backpropagation Part 1-en_US.srt 14.16Кб
7. Creating the Decoder Part 1.mp4 118.19Мб
7. Creating the Decoder Part 1-en_US.srt 22.46Кб
7. Deep Fake.mp4 85.25Мб
7. Deep Fake-en_US.srt 10.07Кб
7. Designing the Decoder Part 2.mp4 176.14Мб
7. Designing the Decoder Part 2-en_US.srt 22.56Кб
7. Embeddings.mp4 81.22Мб
7. Embeddings-en_US.srt 18.73Кб
7. KL divergence Loss.mp4 25.40Мб
7. KL divergence Loss-en_US.srt 9.58Кб
7. Layer Normalization.mp4 45.48Мб
7. Layer Normalization-en_US.srt 10.08Кб
7. LSTMs.mp4 111.65Мб
7. LSTMs-en_US.srt 28.42Кб
7. Momentum.mp4 27.32Мб
7. Momentum-en_US.srt 7.66Кб
7. Neural Networks Playground.mp4 32.52Мб
7. Neural Networks Playground-en_US.srt 6.78Кб
7. Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4 75.07Мб
7. Numpy Bridge, Tensor Concatenation and Adding Dimensions-en_US.srt 14.80Кб
7. Residual Learning.mp4 28.02Мб
7. Residual Learning-en_US.srt 8.38Кб
7. Seperable Convolutions.mp4 60.51Мб
7. Seperable Convolutions-en_US.srt 14.85Кб
7. Swish Activation.mp4 12.87Мб
7. Swish Activation-en_US.srt 5.14Кб
7. Testing the CNN.mp4 35.82Мб
7. Testing the CNN-en_US.srt 8.84Кб
7. YOLO Theory Part 7.mp4 69.72Мб
7. YOLO Theory Part 7-en_US.srt 8.82Кб
8. Activation, Pooling and FC.mp4 80.68Мб
8. Activation, Pooling and FC-en_US.srt 16.85Кб
8. Automatic Differentiation.mp4 76.40Мб
8. Automatic Differentiation-en_US.srt 11.93Кб
8. Backpropagation Part 2.mp4 27.82Мб
8. Backpropagation Part 2-en_US.srt 12.01Кб
8. Bidirectional RNNs.mp4 15.03Мб
8. Bidirectional RNNs-en_US.srt 5.17Кб
8. Contrastive Loss.mp4 62.66Мб
8. Contrastive Loss-en_US.srt 15.96Кб
8. Creating the Decoder Part 2.mp4 97.47Мб
8. Creating the Decoder Part 2-en_US.srt 14.70Кб
8. Group Normalization.mp4 26.46Мб
8. Group Normalization-en_US.srt 7.83Кб
8. Initializing the Network.mp4 58.90Мб
8. Initializing the Network-en_US.srt 8.26Кб
8. Layer Normalization.mp4 21.79Мб
8. Layer Normalization-en_US.srt 9.36Кб
8. Mish Activation.mp4 38.14Мб
8. Mish Activation-en_US.srt 7.51Кб
8. MultiHead Attention Implementation Part 1.mp4 60.43Мб
8. MultiHead Attention Implementation Part 1-en_US.srt 8.73Кб
8. Plotting and Putting into Action.mp4 45.32Мб
8. Plotting and Putting into Action-en_US.srt 6.37Кб
8. RMSProp.mp4 38.96Мб
8. RMSProp-en_US.srt 15.18Кб
8. Teacher Forcing.mp4 21.72Мб
8. Teacher Forcing-en_US.srt 6.47Кб
8. Transfer Learning.mp4 29.24Мб
8. Transfer Learning-en_US.srt 11.55Кб
8. YOLO Theory Part 8.mp4 77.19Мб
8. YOLO Theory Part 8-en_US.srt 7.06Кб
9. Adam Optimization.mp4 77.77Мб
9. Adam Optimization-en_US.srt 9.29Кб
9. CNN Visualization.mp4 15.41Мб
9. CNN Visualization-en_US.srt 2.73Кб
9. Creating the Decoder Part 3.mp4 131.05Мб
9. Creating the Decoder Part 3-en_US.srt 17.10Кб
9. Feed Forward.mp4 15.53Мб
9. Feed Forward-en_US.srt 4.29Кб
9. GRUs.mp4 26.15Мб
9. GRUs-en_US.srt 8.90Кб
9. Hinge Loss.mp4 67.43Мб
9. Hinge Loss-en_US.srt 16.52Кб
9. Loss Functions in PyTorch.mp4 222.75Мб
9. Loss Functions in PyTorch-en_US.srt 36.85Кб
9. MultiHead Attention Implementation Part 2.mp4 51.41Мб
9. MultiHead Attention Implementation Part 2-en_US.srt 10.35Кб
9. Predicting an image.mp4 17.46Мб
9. Predicting an image-en_US.srt 6.35Кб
9. Training the Model.mp4 47.19Мб
9. Training the Model-en_US.srt 5.29Кб
9. YOLO Theory Part 9.mp4 17.69Мб
9. YOLO Theory Part 9-en_US.srt 5.28Кб
Before Proceeding with the Backpropagation.html 341б
BEFORE STARTING...PLEASE READ THIS.html 630б
CODE.html 268б
Convolution over Volume Animation Resource.html 321б
dog.jpg 93.28Кб
Download the Dataset.html 312б
Download the Dataset.html 252б
Download the Dataset.html 322б
DropBlock in CNNs.html 256б
imagenet-class-index.json 34.53Кб
Implementation.html 87б
Notebook for the following Lecture.html 532б
Note on Residual Networks Implementation.html 109б
Note on Weight Decay.html 354б
Practical Loss Functions Note.html 179б
Practical Weight Initialization Note.html 186б
SANITY CHECK ON PREVIOUS SECTIONS.html 272б
SANITY CHECK ON PREVIOUS SECTIONS.html 272б
SANITY CHECK ON PREVIOUS SECTIONS.html 272б
SANITY CHECK ON PREVIOUS SECTIONS.html 272б
Softmax with Temperature Controlling your distribution.html 394б
The MNIST Dataset.html 421б
YOLO Code Note.html 1.40Кб
Статистика распространения по странам
ОАЭ (AE) 1
Израиль (IL) 1
Тунис (TN) 1
Вьетнам (VN) 1
Южная Корея (KR) 1
Алжир (DZ) 1
Польша (PL) 1
Индия (IN) 1
Всего 8
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент