Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[Tutorialsplanet.NET].url |
128б |
[Tutorialsplanet.NET].url |
128б |
[Tutorialsplanet.NET].url |
128б |
[Tutorialsplanet.NET].url |
128б |
[Tutorialsplanet.NET].url |
128б |
[Tutorialsplanet.NET].url |
128б |
1. Autoencoders.mp4 |
42.08Мб |
1. Autoencoders-en_US.srt |
11.80Кб |
1. Batch Gradient Descent.mp4 |
49.42Мб |
1. Batch Gradient Descent-en_US.srt |
8.26Кб |
1. CNN Architectures Part 1.mp4 |
43.87Мб |
1. CNN Architectures Part 1-en_US.srt |
15.19Кб |
1. Code Details.mp4 |
31.94Мб |
1. Code Details-en_US.srt |
2.68Кб |
1. CODE FOR THIS COURSE.mp4 |
1.78Мб |
1. CODE FOR THIS COURSE-en_US.srt |
701б |
1. Creating the Dictionary.mp4 |
59.88Мб |
1. Creating the Dictionary-en_US.srt |
7.54Кб |
1. Data and the Model.mp4 |
74.39Мб |
1. Data and the Model-en_US.srt |
10.10Кб |
1. Data Augmentation.mp4 |
224.61Мб |
1. Data Augmentation-en_US.srt |
15.47Кб |
1. Dataset Preprocessing Part 1.mp4 |
83.35Мб |
1. Dataset Preprocessing Part 1-en_US.srt |
13.20Кб |
1. GPT Part 1.mp4 |
88.85Мб |
1. GPT Part 1-en_US.srt |
13.71Кб |
1. Implementation Details.mp4 |
50.34Мб |
1. Implementation Details-en_US.srt |
15.86Кб |
1. Introduction.mp4 |
74.44Мб |
1. Introduction-en_US.srt |
7.80Кб |
1. Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4 |
17.65Мб |
1. Introduction to Hyperparameter Tuning and Learning Rate Recap-en_US.srt |
6.64Кб |
1. Introduction to Transformers.mp4 |
46.69Мб |
1. Introduction to Transformers-en_US.srt |
15.80Кб |
1. Introduction to Transposed Convolutions.mp4 |
30.98Мб |
1. Introduction to Transposed Convolutions-en_US.srt |
8.95Кб |
1. Loading and Normalizing the Dataset.mp4 |
52.57Мб |
1. Loading and Normalizing the Dataset-en_US.srt |
15.96Кб |
1. Mean Squared Error (MSE).mp4 |
19.82Мб |
1. Mean Squared Error (MSE)-en_US.srt |
9.21Кб |
1. Normal Distribution.mp4 |
18.73Мб |
1. Normal Distribution-en_US.srt |
8.63Кб |
1. NST Practical Part 1.mp4 |
63.78Мб |
1. NST Practical Part 1-en_US.srt |
13.93Кб |
1. NST Theory Part 1.mp4 |
52.53Мб |
1. NST Theory Part 1-en_US.srt |
9.19Кб |
1. Overfitting.mp4 |
26.27Мб |
1. Overfitting-en_US.srt |
6.41Кб |
1. Part 1 Data Preprocessing.mp4 |
123.77Мб |
1. Part 1 Data Preprocessing-en_US.srt |
18.58Кб |
1. Practical ResNet Part 1.mp4 |
71.51Мб |
1. Practical ResNet Part 1-en_US.srt |
15.96Кб |
1. Practical VAE Part 1.mp4 |
101.17Мб |
1. Practical VAE Part 1-en_US.srt |
25.48Кб |
1. Prerequisite Filters.mp4 |
36.41Мб |
1. Prerequisite Filters-en_US.srt |
6.30Кб |
1. Running your models on Google Colab.mp4 |
33.18Мб |
1. Running your models on Google Colab-en_US.srt |
10.41Кб |
1. Saving and Loading Part 1.mp4 |
130.61Мб |
1. Saving and Loading Part 1-en_US.srt |
19.27Кб |
1. Sequence Modeling.mp4 |
81.57Мб |
1. Sequence Modeling-en_US.srt |
17.25Кб |
1. The Dataset and Hyperparameters.mp4 |
70.53Мб |
1. The Dataset and Hyperparameters-en_US.srt |
15.60Кб |
1. Universal Transformers.mp4 |
21.83Мб |
1. Universal Transformers-en_US.srt |
9.28Кб |
1. Vision Transformer Part 1.mp4 |
85.28Мб |
1. Vision Transformer Part 1-en_US.srt |
16.97Кб |
1. Visualize Learning Part 1.mp4 |
24.38Мб |
1. Visualize Learning Part 1-en_US.srt |
12.01Кб |
1. What are Word Embeddings.mp4 |
72.71Мб |
1. What are Word Embeddings-en_US.srt |
12.19Кб |
1. What Can Deep Learning Do.mp4 |
156.25Мб |
1. What Can Deep Learning Do-en_US.srt |
18.21Кб |
1. What is BERT and its structure.mp4 |
34.67Мб |
1. What is BERT and its structure-en_US.srt |
11.23Кб |
1. Why do we need RNNs.mp4 |
18.62Мб |
1. Why do we need RNNs-en_US.srt |
6.66Кб |
1. Why we need activation functions.mp4 |
22.45Мб |
1. Why we need activation functions-en_US.srt |
5.08Кб |
1. YOLO Theory Part 1.mp4 |
133.82Мб |
1. YOLO Theory Part 1-en_US.srt |
6.75Кб |
10. Classifying your own Handwritten images.mp4 |
55.66Мб |
10. Classifying your own Handwritten images-en_US.srt |
15.29Кб |
10. CNN-LSTM.mp4 |
21.45Мб |
10. CNN-LSTM-en_US.srt |
6.36Кб |
10. Important formulas.mp4 |
13.38Мб |
10. Important formulas-en_US.srt |
6.83Кб |
10. Masked MultiHead Attention.mp4 |
26.69Мб |
10. Masked MultiHead Attention-en_US.srt |
8.69Кб |
10. MultiHead Attention Implementation Part 3.mp4 |
123.48Мб |
10. MultiHead Attention Implementation Part 3-en_US.srt |
16.09Кб |
10. SWATS - Switching from Adam to SGD.mp4 |
9.81Мб |
10. SWATS - Switching from Adam to SGD-en_US.srt |
2.09Кб |
10. Train Function.mp4 |
158.91Мб |
10. Train Function-en_US.srt |
20.55Кб |
10. Triplet Ranking Loss.mp4 |
125.70Мб |
10. Triplet Ranking Loss-en_US.srt |
16.43Кб |
10. Weight Initialization in PyTorch.mp4 |
65.88Мб |
10. Weight Initialization in PyTorch-en_US.srt |
16.41Кб |
10. YOLO Theory Part 10.mp4 |
25.29Мб |
10. YOLO Theory Part 10-en_US.srt |
2.86Кб |
11. CNN Characteristics.mp4 |
45.88Мб |
11. CNN Characteristics-en_US.srt |
10.78Кб |
11. Defining Hyperparameters.mp4 |
104.79Мб |
11. Defining Hyperparameters-en_US.srt |
18.59Кб |
11. Feed Forward Implementation.mp4 |
42.91Мб |
11. Feed Forward Implementation-en_US.srt |
4.43Кб |
11. MultiHead Attention in Decoder.mp4 |
11.07Мб |
11. MultiHead Attention in Decoder-en_US.srt |
3.47Кб |
11. Weight Decay.mp4 |
75.65Мб |
11. Weight Decay-en_US.srt |
9.28Кб |
11. YOLO Theory Part 11.mp4 |
52.80Мб |
11. YOLO Theory Part 11-en_US.srt |
7.44Кб |
12. Cross Entropy Loss.mp4 |
32.68Мб |
12. Cross Entropy Loss-en_US.srt |
16.15Кб |
12. Decoupling Weight Decay.mp4 |
52.25Мб |
12. Decoupling Weight Decay-en_US.srt |
5.79Кб |
12. Encoder Layer.mp4 |
86.66Мб |
12. Encoder Layer-en_US.srt |
9.84Кб |
12. Evaluation Function.mp4 |
90.60Мб |
12. Evaluation Function-en_US.srt |
21.66Кб |
12. Regularization and Batch Normalization in CNNs.mp4 |
18.19Мб |
12. Regularization and Batch Normalization in CNNs-en_US.srt |
4.73Кб |
12. YOLO Theory Part 12.mp4 |
58.28Мб |
12. YOLO Theory Part 12-en_US.srt |
13.31Кб |
13. AMSGrad.mp4 |
85.64Мб |
13. AMSGrad-en_US.srt |
11.64Кб |
13. Decoder Layer.mp4 |
62.27Мб |
13. Decoder Layer-en_US.srt |
6.78Кб |
13. DropBlock Dropout in CNNs.mp4 |
99.51Мб |
13. DropBlock Dropout in CNNs-en_US.srt |
15.43Кб |
13. KL Divergence Loss.mp4 |
23.59Мб |
13. KL Divergence Loss-en_US.srt |
7.72Кб |
13. Training.mp4 |
12.85Мб |
13. Training-en_US.srt |
3.33Кб |
14. Label Smoothing.mp4 |
13.21Мб |
14. Label Smoothing-en_US.srt |
5.96Кб |
14. Results.mp4 |
33.86Мб |
14. Results-en_US.srt |
3.69Кб |
14. Softmax with Temperature.mp4 |
27.35Мб |
14. Softmax with Temperature-en_US.srt |
12.56Кб |
14. Transformer.mp4 |
117.13Мб |
14. Transformer-en_US.srt |
14.72Кб |
15. AdamWarmup.mp4 |
75.29Мб |
15. AdamWarmup-en_US.srt |
8.75Кб |
15. Dropout.mp4 |
75.25Мб |
15. Dropout-en_US.srt |
11.98Кб |
16. Learning Rate Warmup.mp4 |
29.07Мб |
16. Learning Rate Warmup-en_US.srt |
8.61Кб |
16. Loss with Label Smoothing.mp4 |
214.69Мб |
16. Loss with Label Smoothing-en_US.srt |
24.79Кб |
17. Defining the Model.mp4 |
43.71Мб |
17. Defining the Model-en_US.srt |
8.35Кб |
18. Training Function.mp4 |
100.55Мб |
18. Training Function-en_US.srt |
13.91Кб |
19. Evaluation Function.mp4 |
109.81Мб |
19. Evaluation Function-en_US.srt |
20.63Кб |
2. Computation Graphs and Deep Learning Frameworks.mp4 |
55.23Мб |
2. Computation Graphs and Deep Learning Frameworks-en_US.srt |
17.33Кб |
2. Convolution Operation as Matrix Multiplication.mp4 |
70.98Мб |
2. Convolution Operation as Matrix Multiplication-en_US.srt |
11.18Кб |
2. Dataset Preprocessing Part 2.mp4 |
134.64Мб |
2. Dataset Preprocessing Part 2-en_US.srt |
19.87Кб |
2. Denoising Autoencoders.mp4 |
30.00Мб |
2. Denoising Autoencoders-en_US.srt |
9.27Кб |
2. External URLs.txt |
70б |
2. GPT Part 2.mp4 |
45.39Мб |
2. GPT Part 2-en_US.srt |
12.18Кб |
2. Gradient Accumulation.mp4 |
56.83Мб |
2. Gradient Accumulation-en_US.srt |
20.70Кб |
2. Image Captioning.mp4 |
34.74Мб |
2. Image Captioning-en_US.srt |
6.66Кб |
2. Importing and Defining Parameters.mp4 |
142.18Мб |
2. Importing and Defining Parameters-en_US.srt |
15.92Кб |
2. Input Embeddings.mp4 |
65.76Мб |
2. Input Embeddings-en_US.srt |
8.51Кб |
2. Introduction to Convolutional Networks and the need for them.mp4 |
25.12Мб |
2. Introduction to Convolutional Networks and the need for them-en_US.srt |
9.22Кб |
2. L1 and L2 Regularization.mp4 |
33.50Мб |
2. L1 and L2 Regularization-en_US.srt |
11.81Кб |
2. L1 Loss (MAE).mp4 |
77.21Мб |
2. L1 Loss (MAE)-en_US.srt |
10.96Кб |
2. Loading the Dataset.mp4 |
177.38Мб |
2. Loading the Dataset-en_US.srt |
14.10Кб |
2. Masked Language Modelling.mp4 |
23.09Мб |
2. Masked Language Modelling-en_US.srt |
7.12Кб |
2. NST Practical Part 2.mp4 |
127.87Мб |
2. NST Practical Part 2-en_US.srt |
12.48Кб |
2. NST Theory Part 2.mp4 |
35.19Мб |
2. NST Theory Part 2-en_US.srt |
7.90Кб |
2. Part 2 Data Normalization.mp4 |
55.43Мб |
2. Part 2 Data Normalization-en_US.srt |
10.21Кб |
2. Practical ResNet Part 2.mp4 |
85.73Мб |
2. Practical ResNet Part 2-en_US.srt |
16.04Кб |
2. Practical Universal Transformers Modifying the Transformers code.mp4 |
161.10Мб |
2. Practical Universal Transformers Modifying the Transformers code-en_US.srt |
17.27Кб |
2. Practical VAE Part 2.mp4 |
103.79Мб |
2. Practical VAE Part 2-en_US.srt |
14.70Кб |
2. Processing the Model.mp4 |
142.48Мб |
2. Processing the Model-en_US.srt |
17.53Кб |
2. Processing the Text.mp4 |
108.66Мб |
2. Processing the Text-en_US.srt |
13.42Кб |
2. Residual Networks Part 1.mp4 |
122.27Мб |
2. Residual Networks Part 1-en_US.srt |
14.13Кб |
2. Saving and Loading Part 2.mp4 |
96.57Мб |
2. Saving and Loading Part 2-en_US.srt |
10.03Кб |
2. Sigmoid Activation.mp4 |
20.16Мб |
2. Sigmoid Activation-en_US.srt |
8.23Кб |
2. Step Learning Rate Decay.mp4 |
62.86Мб |
2. Step Learning Rate Decay-en_US.srt |
16.36Кб |
2. Stochastic Gradient Descent.mp4 |
18.11Мб |
2. Stochastic Gradient Descent-en_US.srt |
6.51Кб |
2. The Rise of Deep Learning.mp4 |
41.80Мб |
2. The Rise of Deep Learning-en_US.srt |
8.13Кб |
2. Understanding the Encoder.mp4 |
92.74Мб |
2. Understanding the Encoder-en_US.srt |
7.73Кб |
2. Understanding the Implementation.mp4 |
23.40Мб |
2. Understanding the Implementation-en_US.srt |
10.90Кб |
2. Utility Functions.mp4 |
41.36Мб |
2. Utility Functions-en_US.srt |
18.16Кб |
2. Vanilla RNNs.mp4 |
51.57Мб |
2. Vanilla RNNs-en_US.srt |
10.83Кб |
2. Vision Transformer Part 2.mp4 |
35.31Мб |
2. Vision Transformer Part 2-en_US.srt |
11.86Кб |
2. Visualize Learning Part 2.mp4 |
12.21Мб |
2. Visualize Learning Part 2-en_US.srt |
2.49Кб |
2. Visualizing and Loading the Dataset.mp4 |
60.74Мб |
2. Visualizing and Loading the Dataset-en_US.srt |
12.37Кб |
2. Visualizing Word Embeddings.mp4 |
12.19Мб |
2. Visualizing Word Embeddings-en_US.srt |
4.30Кб |
2. What happens when all weights are initialized to the same value.mp4 |
59.96Мб |
2. What happens when all weights are initialized to the same value-en_US.srt |
12.74Кб |
2. YOLO Theory Part 2.mp4 |
80.65Мб |
2. YOLO Theory Part 2-en_US.srt |
16.11Кб |
20. Main Function and User Evaluation.mp4 |
93.28Мб |
20. Main Function and User Evaluation-en_US.srt |
12.47Кб |
21. Action.mp4 |
32.24Мб |
21. Action-en_US.srt |
3.95Кб |
3. Accuracy Calculation.mp4 |
74.06Мб |
3. Accuracy Calculation-en_US.srt |
13.71Кб |
3. Attention Mechanisms.mp4 |
16.49Мб |
3. Attention Mechanisms-en_US.srt |
7.00Кб |
3. Building the CNN.mp4 |
251.43Мб |
3. Building the CNN-en_US.srt |
31.83Кб |
3. Cyclic Learning Rate.mp4 |
69.37Мб |
3. Cyclic Learning Rate-en_US.srt |
12.97Кб |
3. Dataset Preprocessing Part 3.mp4 |
80.05Мб |
3. Dataset Preprocessing Part 3-en_US.srt |
13.91Кб |
3. Defining and Visualizing the Parameters.mp4 |
69.54Мб |
3. Defining and Visualizing the Parameters-en_US.srt |
9.53Кб |
3. Defining the Encoder.mp4 |
404.31Мб |
3. Defining the Encoder-en_US.srt |
30.95Кб |
3. Defining the Network Class.mp4 |
85.95Мб |
3. Defining the Network Class-en_US.srt |
12.03Кб |
3. Dropout.mp4 |
75.22Мб |
3. Dropout-en_US.srt |
11.98Кб |
3. Filters and Features.mp4 |
51.93Мб |
3. Filters and Features-en_US.srt |
12.21Кб |
3. Forward Propagation.mp4 |
85.20Мб |
3. Forward Propagation-en_US.srt |
15.30Кб |
3. Huber Loss.mp4 |
28.65Мб |
3. Huber Loss-en_US.srt |
8.22Кб |
3. Installing PyTorch and an Introduction.mp4 |
99.25Мб |
3. Installing PyTorch and an Introduction-en_US.srt |
14.25Кб |
3. Measuring Word Embeddings.mp4 |
5.53Мб |
3. Measuring Word Embeddings-en_US.srt |
2.57Кб |
3. Mini-Batch Gradient Descent.mp4 |
6.94Мб |
3. Mini-Batch Gradient Descent-en_US.srt |
3.44Кб |
3. Modifying the Network.mp4 |
96.99Мб |
3. Modifying the Network-en_US.srt |
10.79Кб |
3. Next Sentence Prediction.mp4 |
42.59Мб |
3. Next Sentence Prediction-en_US.srt |
11.52Кб |
3. NST Practical Part 3.mp4 |
105.89Мб |
3. NST Practical Part 3-en_US.srt |
14.56Кб |
3. NST Theory Part 3.mp4 |
69.11Мб |
3. NST Theory Part 3-en_US.srt |
13.50Кб |
3. Part 3 Creating and Loading the Dataset.mp4 |
66.20Мб |
3. Part 3 Creating and Loading the Dataset-en_US.srt |
9.46Кб |
3. Positional Encoding.mp4 |
95.97Мб |
3. Positional Encoding-en_US.srt |
18.06Кб |
3. Practical ResNet Part 3.mp4 |
103.17Мб |
3. Practical ResNet Part 3-en_US.srt |
15.57Кб |
3. Practical VAE Part 3.mp4 |
93.22Мб |
3. Practical VAE Part 3-en_US.srt |
15.32Кб |
3. Quiz Solution Discussion.mp4 |
15.38Мб |
3. Quiz Solution Discussion-en_US.srt |
5.12Кб |
3. Residual Networks Part 2.mp4 |
151.37Мб |
3. Residual Networks Part 2-en_US.srt |
23.05Кб |
3. Saving and Loading Part 3.mp4 |
52.79Мб |
3. Saving and Loading Part 3-en_US.srt |
7.53Кб |
3. Tanh Activation.mp4 |
13.87Мб |
3. Tanh Activation-en_US.srt |
4.10Кб |
3. The Essence of Neural Networks.mp4 |
49.99Мб |
3. The Essence of Neural Networks-en_US.srt |
12.75Кб |
3. The Problem in Autoencoders.mp4 |
13.42Мб |
3. The Problem in Autoencoders-en_US.srt |
6.43Кб |
3. Transformers for other tasks.mp4 |
112.79Мб |
3. Transformers for other tasks-en_US.srt |
11.14Кб |
3. Transposed Convolutions.mp4 |
36.09Мб |
3. Transposed Convolutions-en_US.srt |
8.33Кб |
3. Vision Transformer Part 3.mp4 |
106.39Мб |
3. Vision Transformer Part 3-en_US.srt |
15.46Кб |
3. Visualize Learning Part 3.mp4 |
27.37Мб |
3. Visualize Learning Part 3-en_US.srt |
10.34Кб |
3. Visualizing the Feature Maps.mp4 |
133.26Мб |
3. Visualizing the Feature Maps-en_US.srt |
16.38Кб |
3. Xavier Initialization.mp4 |
109.71Мб |
3. Xavier Initialization-en_US.srt |
12.61Кб |
3. YOLO Theory Part 3.mp4 |
123.91Мб |
3. YOLO Theory Part 3-en_US.srt |
12.26Кб |
3. Zero-Shot Predictions with GPT.mp4 |
43.41Мб |
3. Zero-Shot Predictions with GPT-en_US.srt |
10.37Кб |
4. Backpropagation Through Time.mp4 |
61.56Мб |
4. Backpropagation Through Time-en_US.srt |
16.52Кб |
4. Binary Cross Entropy Loss.mp4 |
44.94Мб |
4. Binary Cross Entropy Loss-en_US.srt |
17.16Кб |
4. Byte-Pair Encoding.mp4 |
39.26Мб |
4. Byte-Pair Encoding-en_US.srt |
10.44Кб |
4. CNN Architectures Part 2.mp4 |
13.38Мб |
4. CNN Architectures Part 2-en_US.srt |
4.63Кб |
4. Constructing the Dataset Part 1.mp4 |
136.13Мб |
4. Constructing the Dataset Part 1-en_US.srt |
18.22Кб |
4. Convolution over Volume Animation.mp4 |
21.31Мб |
4. Convolution over Volume Animation-en_US.srt |
4.54Кб |
4. Cosine Annealing with Warm Restarts.mp4 |
35.21Мб |
4. Cosine Annealing with Warm Restarts-en_US.srt |
7.16Кб |
4. Creating the Network.mp4 |
112.10Мб |
4. Creating the network class and the network functions.mp4 |
56.20Мб |
4. Creating the network class and the network functions-en_US.srt |
0б |
4. Creating the Network-en_US.srt |
14.15Кб |
4. Dataset Preprocessing Part 4.mp4 |
20.34Мб |
4. Dataset Preprocessing Part 4-en_US.srt |
5.68Кб |
4. Defining the Model.mp4 |
18.68Мб |
4. Defining the Model-en_US.srt |
5.57Кб |
4. DropConnect.mp4 |
14.18Мб |
4. DropConnect-en_US.srt |
2.23Кб |
4. Exponentially Weighted Average Intuition.mp4 |
22.92Мб |
4. Exponentially Weighted Average Intuition-en_US.srt |
6.87Кб |
4. Fine-tuning BERT.mp4 |
50.66Мб |
4. Fine-tuning BERT-en_US.srt |
9.13Кб |
4. He Norm Initialization.mp4 |
13.32Мб |
4. He Norm Initialization-en_US.srt |
4.95Кб |
4. How Attention Mechanisms Work.mp4 |
40.15Мб |
4. How Attention Mechanisms Work-en_US.srt |
14.68Кб |
4. How PyTorch Works.mp4 |
147.44Мб |
4. How PyTorch Works-en_US.srt |
24.02Кб |
4. Loss Function.mp4 |
68.48Мб |
4. Loss Function-en_US.srt |
21.05Кб |
4. MultiHead Attention Part 1.mp4 |
58.32Мб |
4. MultiHead Attention Part 1-en_US.srt |
13.00Кб |
4. NST Practical Part 4.mp4 |
130.96Мб |
4. NST Practical Part 4-en_US.srt |
18.42Кб |
4. Part 4 Building the Network.mp4 |
170.51Мб |
4. Part 4 Building the Network-en_US.srt |
22.44Кб |
4. Practical ResNet Part 4.mp4 |
143.28Мб |
4. Practical ResNet Part 4-en_US.srt |
16.97Кб |
4. ReLU and PReLU.mp4 |
20.77Мб |
4. ReLU and PReLU-en_US.srt |
9.16Кб |
4. The Perceptron.mp4 |
110.88Мб |
4. The Perceptron-en_US.srt |
21.20Кб |
4. Understanding Pack Padded Sequence.mp4 |
29.21Мб |
4. Understanding Pack Padded Sequence-en_US.srt |
9.76Кб |
4. Understanding the data.mp4 |
101.76Мб |
4. Understanding the data-en_US.srt |
14.59Кб |
4. Variational Autoencoders.mp4 |
70.20Мб |
4. Variational Autoencoders-en_US.srt |
13.86Кб |
4. Visualize Learning Part 4.mp4 |
20.10Мб |
4. Visualize Learning Part 4-en_US.srt |
7.03Кб |
4. Word Embeddings Models.mp4 |
10.65Мб |
4. Word Embeddings Models-en_US.srt |
4.15Кб |
4. YOLO Theory Part 4.mp4 |
25.77Мб |
4. YOLO Theory Part 4-en_US.srt |
8.65Кб |
5. Batch Size vs Learning Rate.mp4 |
24.72Мб |
5. Batch Size vs Learning Rate-en_US.srt |
4.06Кб |
5. Constructing the Dataset Part 2.mp4 |
56.91Мб |
5. Constructing the Dataset Part 2-en_US.srt |
15.57Кб |
5. Cross Entropy Loss.mp4 |
24.66Мб |
5. Cross Entropy Loss-en_US.srt |
10.76Кб |
5. Dataset Preprocessing Part 5.mp4 |
92.39Мб |
5. Dataset Preprocessing Part 5-en_US.srt |
12.55Кб |
5. Densely Connected Networks.mp4 |
95.14Мб |
5. Densely Connected Networks-en_US.srt |
17.86Кб |
5. Designing the Attention Model.mp4 |
260.29Мб |
5. Designing the Attention Model-en_US.srt |
20.40Кб |
5. Exploring Transformers.mp4 |
136.61Мб |
5. Exploring Transformers-en_US.srt |
20.08Кб |
5. Exponentially Linear Units (ELU).mp4 |
10.64Мб |
5. Exponentially Linear Units (ELU)-en_US.srt |
4.86Кб |
5. Exponentially Weighted Average Implementation.mp4 |
43.15Мб |
5. Exponentially Weighted Average Implementation-en_US.srt |
11.38Кб |
5. Fast Neural Style Transfer.mp4 |
44.83Мб |
5. Fast Neural Style Transfer-en_US.srt |
5.13Кб |
5. Finetuning the Network.mp4 |
50.02Мб |
5. Finetuning the Network-en_US.srt |
6.79Кб |
5. Gradient Descent.mp4 |
40.60Мб |
5. Gradient Descent-en_US.srt |
15.19Кб |
5. More on Convolutions.mp4 |
29.98Мб |
5. More on Convolutions-en_US.srt |
8.67Кб |
5. MultiHead Attention Part 2.mp4 |
45.85Мб |
5. MultiHead Attention Part 2-en_US.srt |
10.44Кб |
5. Normalization.mp4 |
13.54Мб |
5. Normalization-en_US.srt |
6.04Кб |
5. Part 5 Training the Network.mp4 |
156.22Мб |
5. Part 5 Training the Network-en_US.srt |
23.16Кб |
5. Prediction.mp4 |
27.71Мб |
5. Prediction-en_US.srt |
6.92Кб |
5. Probability Distributions Recap.mp4 |
259.26Мб |
5. Probability Distributions Recap-en_US.srt |
42.49Кб |
5. Stacked RNNs.mp4 |
7.77Мб |
5. Stacked RNNs-en_US.srt |
3.48Кб |
5. Technical Details of GPT.mp4 |
51.40Мб |
5. Technical Details of GPT-en_US.srt |
9.03Кб |
5. Torch Tensors - Part 1.mp4 |
87.09Мб |
5. Torch Tensors - Part 1-en_US.srt |
15.06Кб |
5. Training the Network.mp4 |
333.24Мб |
5. Training the Network.mp4 |
151.65Мб |
5. Training the Network-en_US.srt |
32.56Кб |
5. Training the Network-en_US.srt |
13.28Кб |
5. Understanding the Propagation.mp4 |
26.19Мб |
5. Understanding the Propagation-en_US.srt |
7.65Кб |
5. Visualize Learning Part 5.mp4 |
71.66Мб |
5. Visualize Learning Part 5-en_US.srt |
14.13Кб |
5. Word Embeddings in PyTorch.mp4 |
53.24Мб |
5. Word Embeddings in PyTorch-en_US.srt |
7.81Кб |
5. YOLO Theory Part 5.mp4 |
104.97Мб |
5. YOLO Theory Part 5-en_US.srt |
10.26Кб |
6. Backpropagation Equations.mp4 |
98.77Мб |
6. Backpropagation Equations-en_US.srt |
15.95Кб |
6. Batch Normalization.mp4 |
100.34Мб |
6. Batch Normalization-en_US.srt |
15.93Кб |
6. Bias Correction in Exponentially Weighted Averages.mp4 |
30.92Мб |
6. Bias Correction in Exponentially Weighted Averages-en_US.srt |
7.91Кб |
6. Concat and Linear.mp4 |
9.77Мб |
6. Concat and Linear-en_US.srt |
4.00Кб |
6. Creating the Encoder.mp4 |
84.85Мб |
6. Creating the Encoder-en_US.srt |
22.87Кб |
6. Data Loading and Masking.mp4 |
75.82Мб |
6. Data Loading and Masking-en_US.srt |
16.83Кб |
6. Designing the Decoder Part 1.mp4 |
139.29Мб |
6. Designing the Decoder Part 1-en_US.srt |
18.08Кб |
6. Gated Linear Units (GLU).mp4 |
26.52Мб |
6. Gated Linear Units (GLU)-en_US.srt |
3.98Кб |
6. Generating Text.mp4 |
177.83Мб |
6. Generating Text-en_US.srt |
16.33Кб |
6. Loss Function Derivation for VAE.mp4 |
319.16Мб |
6. Loss Function Derivation for VAE-en_US.srt |
37.35Кб |
6. Playing with HuggingFace models.mp4 |
30.23Мб |
6. Playing with HuggingFace models-en_US.srt |
9.73Кб |
6. Quiz Solution Discussion.mp4 |
5.87Мб |
6. Quiz Solution Discussion-en_US.srt |
4.50Кб |
6. Softmax Function.mp4 |
44.73Мб |
6. Softmax Function-en_US.srt |
9.84Кб |
6. Squeeze-Excite Networks.mp4 |
39.60Мб |
6. Squeeze-Excite Networks-en_US.srt |
13.19Кб |
6. Testing and Visualizing the results.mp4 |
118.43Мб |
6. Testing and Visualizing the results-en_US.srt |
12.96Кб |
6. Testing the Network.mp4 |
47.10Мб |
6. Testing the Network-en_US.srt |
5.69Кб |
6. The Forward Propagation.mp4 |
52.23Мб |
6. The Forward Propagation-en_US.srt |
13.77Кб |
6. Torch Tensors - Part 2.mp4 |
67.94Мб |
6. Torch Tensors - Part 2-en_US.srt |
13.12Кб |
6. Training the CNN.mp4 |
131.06Мб |
6. Training the CNN-en_US.srt |
20.82Кб |
6. Vanishing and Exploding Gradient Problem.mp4 |
66.86Мб |
6. Vanishing and Exploding Gradient Problem-en_US.srt |
13.59Кб |
6. Visualize Learning Part 6.mp4 |
64.39Мб |
6. Visualize Learning Part 6-en_US.srt |
9.99Кб |
6. YOLO Theory Part 6.mp4 |
123.77Мб |
6. YOLO Theory Part 6-en_US.srt |
12.16Кб |
7. A Tool for Convolution Visualization.mp4 |
27.97Мб |
7. A Tool for Convolution Visualization-en_US.srt |
5.98Кб |
7. Backpropagation.mp4 |
148.09Мб |
7. Backpropagation-en_US.srt |
27.58Кб |
7. Backpropagation Part 1.mp4 |
29.37Мб |
7. Backpropagation Part 1-en_US.srt |
14.16Кб |
7. Creating the Decoder Part 1.mp4 |
118.19Мб |
7. Creating the Decoder Part 1-en_US.srt |
22.46Кб |
7. Deep Fake.mp4 |
85.25Мб |
7. Deep Fake-en_US.srt |
10.07Кб |
7. Designing the Decoder Part 2.mp4 |
176.14Мб |
7. Designing the Decoder Part 2-en_US.srt |
22.56Кб |
7. Embeddings.mp4 |
81.22Мб |
7. Embeddings-en_US.srt |
18.73Кб |
7. KL divergence Loss.mp4 |
25.40Мб |
7. KL divergence Loss-en_US.srt |
9.58Кб |
7. Layer Normalization.mp4 |
45.48Мб |
7. Layer Normalization-en_US.srt |
10.08Кб |
7. LSTMs.mp4 |
111.65Мб |
7. LSTMs-en_US.srt |
28.42Кб |
7. Momentum.mp4 |
27.32Мб |
7. Momentum-en_US.srt |
7.66Кб |
7. Neural Networks Playground.mp4 |
32.52Мб |
7. Neural Networks Playground-en_US.srt |
6.78Кб |
7. Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4 |
75.07Мб |
7. Numpy Bridge, Tensor Concatenation and Adding Dimensions-en_US.srt |
14.80Кб |
7. Residual Learning.mp4 |
28.02Мб |
7. Residual Learning-en_US.srt |
8.38Кб |
7. Seperable Convolutions.mp4 |
60.51Мб |
7. Seperable Convolutions-en_US.srt |
14.85Кб |
7. Swish Activation.mp4 |
12.87Мб |
7. Swish Activation-en_US.srt |
5.14Кб |
7. Testing the CNN.mp4 |
35.82Мб |
7. Testing the CNN-en_US.srt |
8.84Кб |
7. YOLO Theory Part 7.mp4 |
69.72Мб |
7. YOLO Theory Part 7-en_US.srt |
8.82Кб |
8. Activation, Pooling and FC.mp4 |
80.68Мб |
8. Activation, Pooling and FC-en_US.srt |
16.85Кб |
8. Automatic Differentiation.mp4 |
76.40Мб |
8. Automatic Differentiation-en_US.srt |
11.93Кб |
8. Backpropagation Part 2.mp4 |
27.82Мб |
8. Backpropagation Part 2-en_US.srt |
12.01Кб |
8. Bidirectional RNNs.mp4 |
15.03Мб |
8. Bidirectional RNNs-en_US.srt |
5.17Кб |
8. Contrastive Loss.mp4 |
62.66Мб |
8. Contrastive Loss-en_US.srt |
15.96Кб |
8. Creating the Decoder Part 2.mp4 |
97.47Мб |
8. Creating the Decoder Part 2-en_US.srt |
14.70Кб |
8. Group Normalization.mp4 |
26.46Мб |
8. Group Normalization-en_US.srt |
7.83Кб |
8. Initializing the Network.mp4 |
58.90Мб |
8. Initializing the Network-en_US.srt |
8.26Кб |
8. Layer Normalization.mp4 |
21.79Мб |
8. Layer Normalization-en_US.srt |
9.36Кб |
8. Mish Activation.mp4 |
38.14Мб |
8. Mish Activation-en_US.srt |
7.51Кб |
8. MultiHead Attention Implementation Part 1.mp4 |
60.43Мб |
8. MultiHead Attention Implementation Part 1-en_US.srt |
8.73Кб |
8. Plotting and Putting into Action.mp4 |
45.32Мб |
8. Plotting and Putting into Action-en_US.srt |
6.37Кб |
8. RMSProp.mp4 |
38.96Мб |
8. RMSProp-en_US.srt |
15.18Кб |
8. Teacher Forcing.mp4 |
21.72Мб |
8. Teacher Forcing-en_US.srt |
6.47Кб |
8. Transfer Learning.mp4 |
29.24Мб |
8. Transfer Learning-en_US.srt |
11.55Кб |
8. YOLO Theory Part 8.mp4 |
77.19Мб |
8. YOLO Theory Part 8-en_US.srt |
7.06Кб |
9. Adam Optimization.mp4 |
77.77Мб |
9. Adam Optimization-en_US.srt |
9.29Кб |
9. CNN Visualization.mp4 |
15.41Мб |
9. CNN Visualization-en_US.srt |
2.73Кб |
9. Creating the Decoder Part 3.mp4 |
131.05Мб |
9. Creating the Decoder Part 3-en_US.srt |
17.10Кб |
9. Feed Forward.mp4 |
15.53Мб |
9. Feed Forward-en_US.srt |
4.29Кб |
9. GRUs.mp4 |
26.15Мб |
9. GRUs-en_US.srt |
8.90Кб |
9. Hinge Loss.mp4 |
67.43Мб |
9. Hinge Loss-en_US.srt |
16.52Кб |
9. Loss Functions in PyTorch.mp4 |
222.75Мб |
9. Loss Functions in PyTorch-en_US.srt |
36.85Кб |
9. MultiHead Attention Implementation Part 2.mp4 |
51.41Мб |
9. MultiHead Attention Implementation Part 2-en_US.srt |
10.35Кб |
9. Predicting an image.mp4 |
17.46Мб |
9. Predicting an image-en_US.srt |
6.35Кб |
9. Training the Model.mp4 |
47.19Мб |
9. Training the Model-en_US.srt |
5.29Кб |
9. YOLO Theory Part 9.mp4 |
17.69Мб |
9. YOLO Theory Part 9-en_US.srt |
5.28Кб |
Before Proceeding with the Backpropagation.html |
341б |
BEFORE STARTING...PLEASE READ THIS.html |
630б |
CODE.html |
268б |
Convolution over Volume Animation Resource.html |
321б |
dog.jpg |
93.28Кб |
Download the Dataset.html |
312б |
Download the Dataset.html |
252б |
Download the Dataset.html |
322б |
DropBlock in CNNs.html |
256б |
imagenet-class-index.json |
34.53Кб |
Implementation.html |
87б |
Notebook for the following Lecture.html |
532б |
Note on Residual Networks Implementation.html |
109б |
Note on Weight Decay.html |
354б |
Practical Loss Functions Note.html |
179б |
Practical Weight Initialization Note.html |
186б |
SANITY CHECK ON PREVIOUS SECTIONS.html |
272б |
SANITY CHECK ON PREVIOUS SECTIONS.html |
272б |
SANITY CHECK ON PREVIOUS SECTIONS.html |
272б |
SANITY CHECK ON PREVIOUS SECTIONS.html |
272б |
Softmax with Temperature Controlling your distribution.html |
394б |
The MNIST Dataset.html |
421б |
YOLO Code Note.html |
1.40Кб |