Общая информация
Название Complete 2020 Data Science & Machine Learning Bootcamp
Тип
Размер 14.83Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 Course Resources.html 122б
1.1 SpamData.zip.zip 22.32Мб
1.2 Course Resources.html 122б
1.2 SpamData.zip.zip 22.83Мб
1. Defining the Problem.mp4 39.92Мб
1. Defining the Problem.vtt 5.45Кб
1. How to Translate a Business Problem into a Machine Learning Problem.mp4 42.26Мб
1. How to Translate a Business Problem into a Machine Learning Problem.vtt 8.16Кб
1. Introduction to Linear Regression & Specifying the Problem.mp4 30.33Мб
1. Introduction to Linear Regression & Specifying the Problem.vtt 7.28Кб
1. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 72.50Мб
1. Setting up the Notebook and Understanding Delimiters in a Dataset.vtt 9.79Кб
1. Set up the Testing Notebook.mp4 26.45Мб
1. Set up the Testing Notebook.vtt 3.32Кб
1. Solving a Business Problem with Image Classification.mp4 30.52Мб
1. Solving a Business Problem with Image Classification.vtt 4.39Кб
1. The Human Brain and the Inspiration for Artificial Neural Networks.mp4 51.81Мб
1. The Human Brain and the Inspiration for Artificial Neural Networks.vtt 9.60Кб
1. What's coming up.mp4 7.10Мб
1. What's Coming Up.mp4 20.93Мб
1. What's coming up.vtt 2.21Кб
1. What's Coming Up.vtt 3.24Кб
1. What is Machine Learning.mp4 45.29Мб
1. What is Machine Learning.vtt 5.79Кб
1. Where next.html 3.93Кб
1. Windows Users - Install Anaconda.mp4 49.60Мб
1. Windows Users - Install Anaconda.vtt 7.46Кб
10. [Python] - Module Imports.mp4 232.08Мб
10. [Python] - Module Imports.vtt 30.42Кб
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 111.44Мб
10. Calculating Correlations and the Problem posed by Multicollinearity.vtt 15.25Кб
10. Extracting the Text in the Email Body.mp4 47.43Мб
10. Extracting the Text in the Email Body.vtt 5.14Кб
10. The F-score or F1 Metric.mp4 24.72Мб
10. The F-score or F1 Metric.vtt 4.03Кб
10. Understanding the Learning Rate.mp4 236.60Мб
10. Understanding the Learning Rate.vtt 31.31Кб
10. Understanding the Tensorflow Graph Nodes and Edges.mp4 115.74Мб
10. Understanding the Tensorflow Graph Nodes and Edges.vtt 18.56Кб
10. Use the Model to Make Predictions.mp4 218.26Мб
10. Use the Model to Make Predictions.vtt 28.87Кб
11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4 41.61Мб
11. [Python] - Functions - Part 1 Defining and Calling Functions.vtt 8.86Кб
11. [Python] - Generator Functions & the yield Keyword.mp4 133.16Мб
11. [Python] - Generator Functions & the yield Keyword.vtt 19.35Кб
11. A Naive Bayes Implementation using SciKit Learn.mp4 195.10Мб
11. A Naive Bayes Implementation using SciKit Learn.vtt 29.17Кб
11. How to Create 3-Dimensional Charts.mp4 193.48Мб
11. How to Create 3-Dimensional Charts.vtt 22.83Кб
11. Model Evaluation and the Confusion Matrix.mp4 62.76Мб
11. Model Evaluation and the Confusion Matrix.vtt 9.41Кб
11. Name Scoping and Image Visualisation in Tensorboard.mp4 155.37Мб
11. Name Scoping and Image Visualisation in Tensorboard.vtt 22.98Кб
11. Visualising Correlations with a Heatmap.mp4 168.65Мб
11. Visualising Correlations with a Heatmap.vtt 20.68Кб
12.1 08 Naive Bayes with scikit-learn.ipynb.zip.zip 13.26Кб
12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip.zip 243.05Кб
12. Create a Pandas DataFrame of Email Bodies.mp4 48.67Мб
12. Create a Pandas DataFrame of Email Bodies.vtt 6.24Кб
12. Different Model Architectures Experimenting with Dropout.mp4 213.68Мб
12. Different Model Architectures Experimenting with Dropout.vtt 26.32Кб
12. Download the Complete Notebook Here.html 242б
12. Model Evaluation and the Confusion Matrix.mp4 251.84Мб
12. Model Evaluation and the Confusion Matrix.vtt 35.15Кб
12. Python Functions Coding Exercise - Part 1.html 149б
12. Techniques to Style Scatter Plots.mp4 128.53Мб
12. Techniques to Style Scatter Plots.vtt 17.68Кб
12. Understanding Partial Derivatives and How to use SymPy.mp4 132.82Мб
12. Understanding Partial Derivatives and How to use SymPy.vtt 17.38Кб
13. [Python] - Functions - Part 2 Arguments & Parameters.mp4 128.20Мб
13. [Python] - Functions - Part 2 Arguments & Parameters.vtt 17.58Кб
13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip.zip 120.11Кб
13. A Note for the Next Lesson.html 476б
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 121.93Мб
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.vtt 15.32Кб
13. Download the Complete Notebook Here.html 242б
13. Implementing Batch Gradient Descent with SymPy.mp4 86.83Мб
13. Implementing Batch Gradient Descent with SymPy.vtt 11.23Кб
13. Prediction and Model Evaluation.mp4 110.71Мб
13. Prediction and Model Evaluation.vtt 16.52Кб
14. [Python] - Loops and Performance Considerations.mp4 131.08Мб
14. [Python] - Loops and Performance Considerations.vtt 15.52Кб
14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip.zip 6.60Кб
14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4 61.83Мб
14. Cleaning Data (Part 2) Working with a DataFrame Index.vtt 8.12Кб
14. Download the Complete Notebook Here.html 242б
14. Python Functions Coding Exercise - Part 2.html 149б
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 214.40Мб
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.vtt 24.44Кб
15. [Python] - Functions - Part 3 Results & Return Values.mp4 82.64Мб
15. [Python] - Functions - Part 3 Results & Return Values.vtt 14.05Кб
15. Reshaping and Slicing N-Dimensional Arrays.mp4 140.82Мб
15. Reshaping and Slicing N-Dimensional Arrays.vtt 19.39Кб
15. Saving a JSON File with Pandas.mp4 56.35Мб
15. Saving a JSON File with Pandas.vtt 6.02Кб
15. Understanding Multivariable Regression.mp4 48.81Мб
15. Understanding Multivariable Regression.vtt 6.38Кб
16. Concatenating Numpy Arrays.mp4 71.33Мб
16. Concatenating Numpy Arrays.vtt 7.64Кб
16. Data Visualisation (Part 1) Pie Charts.mp4 90.69Мб
16. Data Visualisation (Part 1) Pie Charts.vtt 13.90Кб
16. How to Shuffle and Split Training & Testing Data.mp4 64.35Мб
16. How to Shuffle and Split Training & Testing Data.vtt 10.08Кб
16. Python Functions Coding Exercise - Part 3.html 149б
17. [Python] - Objects - Understanding Attributes and Methods.mp4 156.77Мб
17. [Python] - Objects - Understanding Attributes and Methods.vtt 25.19Кб
17. Data Visualisation (Part 2) Donut Charts.mp4 61.79Мб
17. Data Visualisation (Part 2) Donut Charts.vtt 8.11Кб
17. Introduction to the Mean Squared Error (MSE).mp4 64.57Мб
17. Introduction to the Mean Squared Error (MSE).vtt 10.83Кб
17. Running a Multivariable Regression.mp4 55.57Мб
17. Running a Multivariable Regression.vtt 8.44Кб
18. How to Calculate the Model Fit with R-Squared.mp4 32.40Мб
18. How to Calculate the Model Fit with R-Squared.vtt 3.85Кб
18. How to Make Sense of Python Documentation for Data Visualisation.mp4 171.46Мб
18. How to Make Sense of Python Documentation for Data Visualisation.vtt 22.49Кб
18. Introduction to Natural Language Processing (NLP).mp4 50.81Мб
18. Introduction to Natural Language Processing (NLP).vtt 7.00Кб
18. Transposing and Reshaping Arrays.mp4 86.91Мб
18. Transposing and Reshaping Arrays.vtt 11.81Кб
19. Implementing a MSE Cost Function.mp4 81.12Мб
19. Implementing a MSE Cost Function.vtt 11.65Кб
19. Introduction to Model Evaluation.mp4 15.99Мб
19. Introduction to Model Evaluation.vtt 3.20Кб
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 117.76Мб
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.vtt 15.99Кб
19. Working with Python Objects to Analyse Data.mp4 169.98Мб
19. Working with Python Objects to Analyse Data.vtt 22.97Кб
2.1 cost_revenue_dirty.csv.csv 374.68Кб
2.1 Course Resources.html 122б
2.1 MNIST.zip.zip 14.77Мб
2.1 SpamData.zip.zip 21.28Мб
2.2 The-Numbers Movie Budgets.html 102б
2. Create a Full Matrix.mp4 132.24Мб
2. Create a Full Matrix.vtt 18.82Кб
2. Gather & Clean the Data.mp4 97.02Мб
2. Gather & Clean the Data.vtt 11.74Кб
2. Gathering Email Data and Working with Archives & Text Editors.mp4 112.05Мб
2. Gathering Email Data and Working with Archives & Text Editors.vtt 11.89Кб
2. Gathering the Boston House Price Data.mp4 56.24Мб
2. Gathering the Boston House Price Data.vtt 7.35Кб
2. Getting the Data and Loading it into Numpy Arrays.mp4 52.82Мб
2. Getting the Data and Loading it into Numpy Arrays.vtt 7.91Кб
2. How a Machine Learns.mp4 22.78Мб
2. How a Machine Learns.vtt 6.08Кб
2. Installing Tensorflow and Keras for Jupyter.mp4 42.10Мб
2. Installing Tensorflow and Keras for Jupyter.vtt 5.72Кб
2. Joint Conditional Probability (Part 1) Dot Product.mp4 66.41Мб
2. Joint Conditional Probability (Part 1) Dot Product.vtt 11.15Кб
2. Layers, Feature Generation and Learning.mp4 146.70Мб
2. Layers, Feature Generation and Learning.vtt 24.25Кб
2. Mac Users - Install Anaconda.mp4 52.41Мб
2. Mac Users - Install Anaconda.vtt 6.83Кб
2. What is Data Science.mp4 42.86Мб
2. What is Data Science.vtt 4.86Кб
2. What Modules Do You Want to See.html 431б
20. [Python] - Tips, Code Style and Naming Conventions.mp4 81.54Мб
20. [Python] - Tips, Code Style and Naming Conventions.vtt 14.12Кб
20. Improving the Model by Transforming the Data.mp4 126.87Мб
20. Improving the Model by Transforming the Data.vtt 18.69Кб
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 73.16Мб
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).vtt 11.95Кб
20. Word Stemming & Removing Punctuation.mp4 71.44Мб
20. Word Stemming & Removing Punctuation.vtt 8.98Кб
21.1 02 Python Intro.ipynb.zip.zip 36.44Кб
21. Download the Complete Notebook Here.html 242б
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4 65.40Мб
21. How to Interpret Coefficients using p-Values and Statistical Significance.vtt 9.46Кб
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 124.88Мб
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).vtt 15.30Кб
21. Removing HTML tags with BeautifulSoup.mp4 95.82Мб
21. Removing HTML tags with BeautifulSoup.vtt 9.51Кб
22. Creating a Function for Text Processing.mp4 53.91Мб
22. Running Gradient Descent with a MSE Cost Function.mp4 111.22Мб
22. Running Gradient Descent with a MSE Cost Function.vtt 19.61Кб
22. Understanding VIF & Testing for Multicollinearity.mp4 143.83Мб
22. Understanding VIF & Testing for Multicollinearity.vtt 22.11Кб
23. A Note for the Next Lesson.html 476б
23. Model Simiplication & Baysian Information Criterion.mp4 150.15Мб
23. Model Simiplication & Baysian Information Criterion.vtt 19.90Кб
23. Visualising the Optimisation on a 3D Surface.mp4 74.82Мб
23. Visualising the Optimisation on a 3D Surface.vtt 9.18Кб
24.1 03 Gradient Descent.ipynb.zip.zip 1.14Мб
24. Advanced Subsetting on DataFrames the apply() Function.mp4 83.40Мб
24. Advanced Subsetting on DataFrames the apply() Function.vtt 11.62Кб
24. Download the Complete Notebook Here.html 242б
24. How to Analyse and Plot Regression Residuals.mp4 64.18Мб
24. How to Analyse and Plot Regression Residuals.vtt 12.41Кб
25. [Python] - Logical Operators to Create Subsets and Indices.mp4 86.41Мб
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 124.42Мб
25. Residual Analysis (Part 1) Predicted vs Actual Values.vtt 15.41Кб
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 153.02Мб
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.vtt 19.00Кб
26. Word Clouds & How to install Additional Python Packages.mp4 79.49Мб
26. Word Clouds & How to install Additional Python Packages.vtt 10.14Кб
27. Creating your First Word Cloud.mp4 98.44Мб
27. Creating your First Word Cloud.vtt 11.87Кб
27. Making Predictions (Part 1) MSE & R-Squared.mp4 152.68Мб
27. Making Predictions (Part 1) MSE & R-Squared.vtt 20.07Кб
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 84.85Мб
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.vtt 12.66Кб
28. Styling the Word Cloud with a Mask.mp4 131.37Мб
28. Styling the Word Cloud with a Mask.vtt 14.23Кб
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 131.31Мб
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.vtt 17.95Кб
29. Solving the Hamlet Challenge.mp4 57.11Мб
29. Solving the Hamlet Challenge.vtt 5.26Кб
3.1 cost_revenue_clean.csv.csv 90.82Кб
3.1 ML Data Science Syllabus.pdf.pdf 103.97Кб
3.2 Try Jupyter in your Browser.html 85б
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 87.14Мб
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.vtt 13.29Кб
3. Costs and Disadvantages of Neural Networks.mp4 91.99Мб
3. Costs and Disadvantages of Neural Networks.vtt 16.81Кб
3. Count the Tokens to Train the Naive Bayes Model.mp4 96.19Мб
3. Count the Tokens to Train the Naive Bayes Model.vtt 16.02Кб
3. Data Exploration and Understanding the Structure of the Input Data.mp4 32.41Мб
3. Data Exploration and Understanding the Structure of the Input Data.vtt 5.74Кб
3. Does LSD Make You Better at Maths.mp4 42.26Мб
3. Does LSD Make You Better at Maths.vtt 6.23Кб
3. Download the Syllabus.html 1.03Кб
3. Explore & Visualise the Data with Python.mp4 148.16Мб
3. Explore & Visualise the Data with Python.vtt 26.38Кб
3. Gathering the CIFAR 10 Dataset.mp4 31.36Мб
3. Gathering the CIFAR 10 Dataset.vtt 5.42Кб
3. How to Add the Lesson Resources to the Project.mp4 28.91Мб
3. How to Add the Lesson Resources to the Project.vtt 4.08Кб
3. Introduction to Cost Functions.mp4 66.20Мб
3. Introduction to Cost Functions.vtt 7.89Кб
3. Joint Conditional Probablity (Part 2) Priors.mp4 63.98Мб
3. Joint Conditional Probablity (Part 2) Priors.vtt 9.34Кб
3. Stay in Touch!.html 1.05Кб
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 134.39Мб
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).vtt 18.50Кб
30. Styling Word Clouds with Custom Fonts.mp4 127.30Мб
30. Styling Word Clouds with Custom Fonts.vtt 12.55Кб
31. Create the Vocabulary for the Spam Classifier.mp4 106.97Мб
31. Create the Vocabulary for the Spam Classifier.vtt 15.37Кб
31. Python Conditional Statement Coding Exercise.html 149б
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 244.16Мб
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.vtt 24.49Кб
32. Coding Challenge Check for Membership in a Collection.mp4 32.35Мб
32. Coding Challenge Check for Membership in a Collection.vtt 5.08Кб
33.1 04 Multivariable Regression.ipynb.zip.zip 3.55Мб
33.2 04 Valuation Tool.ipynb.zip.zip 2.93Кб
33. Coding Challenge Find the Longest Email.mp4 54.47Мб
33. Coding Challenge Find the Longest Email.vtt 6.51Кб
33. Download the Complete Notebook Here.html 242б
34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 87.63Мб
34. Sparse Matrix (Part 1) Split the Training and Testing Data.vtt 13.43Кб
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 137.23Мб
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.vtt 19.80Кб
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 80.50Мб
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.vtt 10.63Кб
37. Coding Challenge Solution Preparing the Test Data.mp4 28.93Мб
37. Coding Challenge Solution Preparing the Test Data.vtt 4.25Кб
38. Checkpoint Understanding the Data.mp4 96.37Мб
38. Checkpoint Understanding the Data.vtt 12.00Кб
39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip.zip 988.02Кб
39. Download the Complete Notebook Here.html 242б
4.1 01 Linear Regression (checkpoint).ipynb.zip.zip 37.64Кб
4.1 12 Rules to Learn to Code.pdf.pdf 2.25Мб
4.1 App Brewery Cornell Notes Template.html 141б
4.1 TF_Keras_Classification_Images.zip.zip 501.10Кб
4. Clean and Explore the Data (Part 2) Find Missing Values.mp4 135.03Мб
4. Clean and Explore the Data (Part 2) Find Missing Values.vtt 15.83Кб
4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 70.18Мб
4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.vtt 11.12Кб
4. Download the 12 Rules to Learn to Code.html 1.13Кб
4. Exploring the CIFAR Data.mp4 110.31Мб
4. Exploring the CIFAR Data.vtt 15.81Кб
4. LaTeX Markdown and Generating Data with Numpy.mp4 90.52Мб
4. LaTeX Markdown and Generating Data with Numpy.vtt 14.71Кб
4. Making Predictions Comparing Joint Probabilities.mp4 52.34Мб
4. Making Predictions Comparing Joint Probabilities.vtt 8.53Кб
4. Preprocessing Image Data and How RGB Works.mp4 93.61Мб
4. Preprocessing Image Data and How RGB Works.vtt 14.12Кб
4. Sum the Tokens across the Spam and Ham Subsets.mp4 46.71Мб
4. Sum the Tokens across the Spam and Ham Subsets.vtt 6.89Кб
4. The Intuition behind the Linear Regression Model.mp4 29.63Мб
4. The Intuition behind the Linear Regression Model.vtt 9.14Кб
4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 33.39Мб
4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.vtt 5.18Кб
4. Top Tips for Succeeding on this Course.html 2.09Кб
5. [Python] - Variables and Types.mp4 71.37Мб
5. [Python] - Variables and Types.vtt 14.20Кб
5. Analyse and Evaluate the Results.mp4 105.17Мб
5. Analyse and Evaluate the Results.vtt 18.88Кб
5. Basic Probability.mp4 28.56Мб
5. Basic Probability.vtt 4.54Кб
5. Calculate the Token Probabilities and Save the Trained Model.mp4 53.46Мб
5. Calculate the Token Probabilities and Save the Trained Model.vtt 8.24Кб
5. Course Resources List.html 1.13Кб
5. Importing Keras Models and the Tensorflow Graph.mp4 65.47Мб
5. Importing Keras Models and the Tensorflow Graph.vtt 10.11Кб
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 93.16Мб
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4.jpg 71.56Кб
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.txt 271б
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.vtt 17.40Кб
5. The Accuracy Metric.mp4 40.54Мб
5. The Accuracy Metric.vtt 6.69Кб
5. Understanding the Power Rule & Creating Charts with Subplots.mp4 90.17Мб
5. Understanding the Power Rule & Creating Charts with Subplots.vtt 15.24Кб
5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 64.56Мб
5. Visualising Data (Part 1) Historams, Distributions & Outliers.vtt 12.06Кб
5. What is a Tensor.mp4 45.39Мб
5. What is a Tensor.vtt 7.94Кб
6. [Python] - Loops and the Gradient Descent Algorithm.mp4 287.45Мб
6. [Python] - Loops and the Gradient Descent Algorithm.vtt 35.86Кб
6.1 01 Linear Regression (complete).ipynb.zip.zip 75.28Кб
6. Coding Challenge Prepare the Test Data.mp4 35.60Мб
6. Coding Challenge Prepare the Test Data.vtt 4.52Кб
6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 103.61Мб
6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.vtt 16.31Кб
6. Creating Tensors and Setting up the Neural Network Architecture.mp4 150.86Мб
6. Creating Tensors and Setting up the Neural Network Architecture.vtt 25.37Кб
6. Download the Complete Notebook Here.html 242б
6. Joint & Conditional Probability.mp4 141.82Мб
6. Joint & Conditional Probability.vtt 16.75Кб
6. Making Predictions using InceptionResNet.mp4 134.58Мб
6. Making Predictions using InceptionResNet.vtt 16.48Кб
6. Python Variable Coding Exercise.html 149б
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 57.32Мб
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.vtt 7.67Кб
6. Visualising the Decision Boundary.mp4 205.31Мб
6. Visualising the Decision Boundary.vtt 29.22Кб
7. [Python] - Lists and Arrays.mp4 53.47Мб
7. [Python] - Lists and Arrays.mp4.jpg 59.00Кб
7. [Python] - Lists and Arrays.txt 235б
7. [Python] - Lists and Arrays.vtt 10.49Кб
7.1 07 Bayes Classifier - Training.ipynb.zip.zip 5.82Кб
7. Bayes Theorem.mp4 83.12Мб
7. Bayes Theorem.vtt 12.80Кб
7. Coding Challenge Solution Using other Keras Models.mp4 103.54Мб
7. Coding Challenge Solution Using other Keras Models.vtt 11.41Кб
7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 75.12Мб
7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.vtt 12.42Кб
7. Download the Complete Notebook Here.html 242б
7. False Positive vs False Negatives.mp4 63.25Мб
7. False Positive vs False Negatives.vtt 11.22Кб
7. Interacting with the Operating System and the Python Try-Catch Block.mp4 133.41Мб
7. Interacting with the Operating System and the Python Try-Catch Block.vtt 20.80Кб
7. Join the Student Community.html 730б
7. Python Loops Coding Exercise.html 149б
7. Working with Index Data, Pandas Series, and Dummy Variables.mp4 140.77Мб
7. Working with Index Data, Pandas Series, and Dummy Variables.vtt 17.62Кб
8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 291.34Мб
8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).vtt 36.40Кб
8.1 09 Neural Nets Pretrained Image Classification.ipynb.zip.zip 571.83Кб
8. Download the Complete Notebook Here.html 264б
8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 100.43Мб
8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.vtt 12.36Кб
8. Python Lists Coding Exercise.html 149б
8. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 60.90Мб
8. Reading Files (Part 1) Absolute Paths and Relative Paths.vtt 10.01Кб
8. TensorFlow Sessions and Batching Data.mp4 100.33Мб
8. TensorFlow Sessions and Batching Data.vtt 17.85Кб
8. The Recall Metric.mp4 28.16Мб
8. The Recall Metric.vtt 5.74Кб
8. Understanding Descriptive Statistics the Mean vs the Median.mp4 62.19Мб
8. Understanding Descriptive Statistics the Mean vs the Median.vtt 10.45Кб
9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 219.02Мб
9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).vtt 28.47Кб
9. [Python & Pandas] - Dataframes and Series.mp4 153.21Мб
9. [Python & Pandas] - Dataframes and Series.vtt 24.01Кб
9.1 lsd_math_score_data.csv.csv 155б
9. Introduction to Correlation Understanding Strength & Direction.mp4 33.09Мб
9. Introduction to Correlation Understanding Strength & Direction.vtt 7.13Кб
9. Reading Files (Part 2) Stream Objects and Email Structure.mp4 104.33Мб
9. Reading Files (Part 2) Stream Objects and Email Structure.vtt 12.37Кб
9. Tensorboard Summaries and the Filewriter.mp4 128.29Мб
9. Tensorboard Summaries and the Filewriter.vtt 20.33Кб
9. The Precision Metric.mp4 53.34Мб
9. The Precision Metric.vtt 8.32Кб
9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.vtt 24.62Кб
Course Downloaded from coursedrive.org.txt 538б
Must Read.txt 540б
ReadMe.txt 538б
ReadMe.txt 538б
Visit Coursedrive.org.url 124б
Visit Coursedrive.org.url 124б
Visit Coursedrive.org.url 124б
Visit Coursedrive.org.url 124б
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент