Общая информация
Название [FreeTutorials.Us] Udemy - Feature Engineering for Machine Learning
Тип
Размер 3.76Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
0. (1Hack.Us) Premium Tutorials-Guides-Articles & Community based Forum.url 377б
1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328б
1. BONUS Discounts on my other courses!.html 1.02Кб
1. Categorical encoding Introduction.mp4 34.03Мб
1. Categorical encoding Introduction.srt 7.93Кб
1. Categorical encoding Introduction.vtt 7.11Кб
1. Classification pipeline.mp4 135.99Мб
1. Classification pipeline.srt 15.57Кб
1. Classification pipeline.vtt 13.87Кб
1. Discretisation Introduction.mp4 15.45Мб
1. Discretisation Introduction.srt 3.41Кб
1. Discretisation Introduction.vtt 3.04Кб
1. Engineering datetime variables.mp4 23.19Мб
1. Engineering datetime variables.srt 5.48Кб
1. Engineering datetime variables.vtt 4.87Кб
1. Engineering mixed variables.mp4 15.27Мб
1. Engineering mixed variables.srt 3.98Кб
1. Engineering mixed variables.vtt 3.55Кб
1. Feature scaling Introduction.mp4 20.60Мб
1. Feature scaling Introduction.srt 4.55Кб
1. Feature scaling Introduction.vtt 4.07Кб
1. Introduction.mp4 32.86Мб
1. Introduction.srt 6.81Кб
1. Introduction.vtt 6.06Кб
1. Introduction to missing data imputation.mp4 29.37Мб
1. Introduction to missing data imputation.srt 5.24Кб
1. Introduction to missing data imputation.vtt 4.66Кб
1. Multivariate Imputation - COMING IN 2020.html 105б
1. Outlier Engineering Intro.mp4 41.97Мб
1. Outlier Engineering Intro.srt 7.70Кб
1. Outlier Engineering Intro.vtt 6.87Кб
1. Variable characteristics.mp4 20.84Мб
1. Variable characteristics.srt 3.58Кб
1. Variable characteristics.vtt 3.19Кб
1. Variables Intro.mp4 15.30Мб
1. Variables Intro.srt 3.53Кб
1. Variables Intro.vtt 3.14Кб
1. Variable Transformation Introduction.mp4 18.66Мб
1. Variable Transformation Introduction.srt 5.48Кб
1. Variable Transformation Introduction.vtt 4.93Кб
10. Bonus Additional reading resources.html 4.68Кб
10. Discretisation with classification trees.mp4 26.58Мб
10. Discretisation with classification trees.srt 5.46Кб
10. Discretisation with classification trees.vtt 4.89Кб
10. Mean or median imputation with Scikit-learn.mp4 88.12Мб
10. Mean or median imputation with Scikit-learn.srt 12.86Кб
10. Mean or median imputation with Scikit-learn.vtt 11.35Кб
10. Scaling to median and quantiles.mp4 13.01Мб
10. Scaling to median and quantiles.srt 3.15Кб
10. Scaling to median and quantiles.vtt 2.82Кб
10. Target guided ordinal encoding.mp4 12.87Мб
10. Target guided ordinal encoding.srt 3.43Кб
10. Target guided ordinal encoding.vtt 3.05Кб
11. Arbitrary value imputation with Scikit-learn.mp4 52.16Мб
11. Arbitrary value imputation with Scikit-learn.srt 6.55Кб
11. Arbitrary value imputation with Scikit-learn.vtt 5.80Кб
11. Discretisation with decision trees using Scikit-learn.mp4 80.16Мб
11. Discretisation with decision trees using Scikit-learn.srt 13.08Кб
11. Discretisation with decision trees using Scikit-learn.vtt 11.62Кб
11. FAQ How can I learn more about machine learning.html 824б
11. Robust Scaling Demo.mp4 16.55Мб
11. Robust Scaling Demo.srt 2.43Кб
11. Robust Scaling Demo.vtt 2.17Кб
11. Target guided ordinal encoding Demo.mp4 68.75Мб
11. Target guided ordinal encoding Demo.srt 9.39Кб
11. Target guided ordinal encoding Demo.vtt 8.36Кб
12. Discretisation with decision trees using Feature-engine.mp4 28.38Мб
12. Discretisation with decision trees using Feature-engine.srt 3.90Кб
12. Discretisation with decision trees using Feature-engine.vtt 3.48Кб
12. Frequent category imputation with Scikit-learn.mp4 34.18Мб
12. Frequent category imputation with Scikit-learn.srt 4.15Кб
12. Frequent category imputation with Scikit-learn.vtt 3.69Кб
12. Mean encoding.mp4 12.84Мб
12. Mean encoding.srt 2.92Кб
12. Mean encoding.vtt 2.61Кб
12. Scaling to vector unit length.mp4 31.94Мб
12. Scaling to vector unit length.srt 6.64Кб
12. Scaling to vector unit length.vtt 5.88Кб
13. Domain knowledge discretisation.mp4 25.67Мб
13. Domain knowledge discretisation.srt 4.08Кб
13. Domain knowledge discretisation.vtt 3.61Кб
13. Mean encoding Demo.mp4 42.05Мб
13. Mean encoding Demo.srt 6.36Кб
13. Mean encoding Demo.vtt 5.67Кб
13. Missing category imputation with Scikit-learn.mp4 24.61Мб
13. Missing category imputation with Scikit-learn.srt 3.01Кб
13. Missing category imputation with Scikit-learn.vtt 2.70Кб
13. Scaling to vector unit length Demo.mp4 46.31Мб
13. Scaling to vector unit length Demo.srt 6.01Кб
13. Scaling to vector unit length Demo.vtt 5.35Кб
14.1 15.5_Bonus_Additional_reading_resources.zip.zip 1.03Кб
14. Adding a missing indicator with Scikit-learn.mp4 35.67Мб
14. Adding a missing indicator with Scikit-learn.srt 4.69Кб
14. Adding a missing indicator with Scikit-learn.vtt 4.15Кб
14. Additional reading resources.html 1.34Кб
14. Bonus Additional reading resources.html 1.41Кб
14. Probability ratio encoding.mp4 45.65Мб
14. Probability ratio encoding.srt 7.15Кб
14. Probability ratio encoding.vtt 6.30Кб
15. Automatic determination of imputation method with Sklearn.mp4 80.35Мб
15. Automatic determination of imputation method with Sklearn.srt 9.03Кб
15. Automatic determination of imputation method with Sklearn.vtt 7.98Кб
15. Weight of evidence (WoE).mp4 20.56Мб
15. Weight of evidence (WoE).srt 5.09Кб
15. Weight of evidence (WoE).vtt 4.53Кб
16. Introduction to Feature-engine.mp4 40.48Мб
16. Introduction to Feature-engine.srt 6.43Кб
16. Introduction to Feature-engine.vtt 5.71Кб
16. Weight of Evidence Demo.mp4 45.11Мб
16. Weight of Evidence Demo.srt 7.97Кб
16. Weight of Evidence Demo.vtt 7.11Кб
17. Comparison of categorical variable encoding.mp4 78.44Мб
17. Comparison of categorical variable encoding.srt 12.37Кб
17. Comparison of categorical variable encoding.vtt 10.93Кб
17. Mean or median imputation with Feature-engine.mp4 38.64Мб
17. Mean or median imputation with Feature-engine.srt 5.09Кб
17. Mean or median imputation with Feature-engine.vtt 4.52Кб
18. Arbitrary value imputation with Feature-engine.mp4 26.75Мб
18. Arbitrary value imputation with Feature-engine.srt 3.26Кб
18. Arbitrary value imputation with Feature-engine.vtt 2.92Кб
18. Rare label encoding.mp4 23.31Мб
18. Rare label encoding.srt 5.16Кб
18. Rare label encoding.vtt 4.59Кб
19. End of distribution imputation with Feature-engine.mp4 38.87Мб
19. End of distribution imputation with Feature-engine.srt 5.26Кб
19. End of distribution imputation with Feature-engine.vtt 4.69Кб
19. Rare label encoding Demo.mp4 69.43Мб
19. Rare label encoding Demo.srt 12.01Кб
19. Rare label encoding Demo.vtt 10.66Кб
2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286б
2. Complete Case Analysis.mp4 46.67Мб
2. Complete Case Analysis.srt 8.53Кб
2. Complete Case Analysis.vtt 7.55Кб
2. Course curriculum overview.mp4 33.37Мб
2. Course curriculum overview.srt 7.24Кб
2. Course curriculum overview.vtt 6.46Кб
2. Engineering dates Demo.mp4 54.01Мб
2. Engineering dates Demo.srt 9.10Кб
2. Engineering dates Demo.vtt 8.05Кб
2. Engineering mixed variables Demo.mp4 45.48Мб
2. Engineering mixed variables Demo.srt 7.24Кб
2. Engineering mixed variables Demo.vtt 6.45Кб
2. Equal-width discretisation.mp4 21.54Мб
2. Equal-width discretisation.srt 4.38Кб
2. Equal-width discretisation.vtt 3.91Кб
2. Missing data.mp4 40.11Мб
2. Missing data.srt 8.97Кб
2. Missing data.vtt 7.92Кб
2. Numerical variables.mp4 26.88Мб
2. Numerical variables.srt 6.69Кб
2. Numerical variables.vtt 5.97Кб
2. One hot encoding.mp4 31.75Мб
2. One hot encoding.srt 6.97Кб
2. One hot encoding.vtt 6.20Кб
2. Outlier trimming.mp4 51.09Мб
2. Outlier trimming.srt 8.33Кб
2. Outlier trimming.vtt 7.39Кб
2. Regression pipeline.mp4 157.57Мб
2. Regression pipeline.srt 16.77Кб
2. Regression pipeline.vtt 14.83Кб
2. Standardisation.mp4 26.51Мб
2. Standardisation.srt 6.57Кб
2. Standardisation.vtt 5.86Кб
2. Variable Transformation with Numpy and SciPy.mp4 49.41Мб
2. Variable Transformation with Numpy and SciPy.srt 8.49Кб
2. Variable Transformation with Numpy and SciPy.vtt 7.56Кб
20. Binary encoding and feature hashing.mp4 30.90Мб
20. Binary encoding and feature hashing.srt 7.55Кб
20. Binary encoding and feature hashing.vtt 6.69Кб
20. Frequent category imputation with Feature-engine.mp4 16.15Мб
20. Frequent category imputation with Feature-engine.srt 2.07Кб
20. Frequent category imputation with Feature-engine.vtt 1.84Кб
21. Bonus Additional reading resources.html 2.42Кб
21. Missing category imputation with Feature-engine.mp4 20.42Мб
21. Missing category imputation with Feature-engine.srt 2.52Кб
21. Missing category imputation with Feature-engine.vtt 2.25Кб
22. Random sample imputation with Feature-engine.mp4 16.09Мб
22. Random sample imputation with Feature-engine.srt 2.30Кб
22. Random sample imputation with Feature-engine.vtt 2.03Кб
23. Adding a missing indicator with Feature-engine.mp4 25.90Мб
23. Adding a missing indicator with Feature-engine.srt 3.91Кб
23. Adding a missing indicator with Feature-engine.vtt 3.47Кб
24.1 NA_methods_Comparison.pdf.pdf 273.81Кб
24. Overview of missing value imputation methods.html 140б
25. Conclusion when to use each missing data imputation method.html 2.66Кб
3. (NulledPremium.com) Download E-Learning, E-Books, Audio-Books, Comics, Articles and more... etc.url 163б
3. Beat the performance by engineering features.html 155б
3. Cardinality - categorical variables.mp4 31.02Мб
3. Cardinality - categorical variables.srt 6.34Кб
3. Cardinality - categorical variables.vtt 5.64Кб
3. Categorical variables.mp4 18.40Мб
3. Categorical variables.srt 4.56Кб
3. Categorical variables.vtt 4.07Кб
3. Course requirements.mp4 10.64Мб
3. Course requirements.srt 4.10Кб
3. Course requirements.vtt 3.66Кб
3. Engineering time variables and different timezones.mp4 33.48Мб
3. Engineering time variables and different timezones.srt 5.36Кб
3. Engineering time variables and different timezones.vtt 4.73Кб
3. Equal-width discretisation Demo.mp4 79.10Мб
3. Equal-width discretisation Demo.srt 12.52Кб
3. Equal-width discretisation Demo.vtt 11.05Кб
3. Mean or median imputation.mp4 52.15Мб
3. Mean or median imputation.srt 10.29Кб
3. Mean or median imputation.vtt 9.11Кб
3. One-hot-encoding Demo.mp4 91.40Мб
3. One-hot-encoding Demo.srt 17.55Кб
3. One-hot-encoding Demo.vtt 15.48Кб
3. Outlier capping with IQR.mp4 43.57Мб
3. Outlier capping with IQR.srt 6.75Кб
3. Outlier capping with IQR.vtt 6.03Кб
3. Standardisation Demo.mp4 41.62Мб
3. Standardisation Demo.srt 5.51Кб
3. Standardisation Demo.vtt 4.93Кб
3. variable Transformation with Scikit-learn.mp4 47.10Мб
3. variable Transformation with Scikit-learn.srt 7.58Кб
3. variable Transformation with Scikit-learn.vtt 6.80Кб
4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239б
4. Arbitrary value imputation.mp4 40.09Мб
4. Arbitrary value imputation.srt 8.42Кб
4. Arbitrary value imputation.vtt 7.48Кб
4. Date and time variables.mp4 9.80Мб
4. Date and time variables.srt 2.40Кб
4. Date and time variables.vtt 2.14Кб
4. Equal-frequency discretisation.mp4 22.49Мб
4. Equal-frequency discretisation.srt 4.68Кб
4. Equal-frequency discretisation.vtt 4.16Кб
4. How to approach this course.html 1.76Кб
4. Mean normalisation.mp4 19.81Мб
4. Mean normalisation.srt 4.92Кб
4. Mean normalisation.vtt 4.40Кб
4. One hot encoding of top categories.mp4 18.10Мб
4. One hot encoding of top categories.srt 3.34Кб
4. One hot encoding of top categories.vtt 2.98Кб
4. Outlier capping with mean and std.mp4 34.58Мб
4. Outlier capping with mean and std.srt 4.81Кб
4. Outlier capping with mean and std.vtt 4.31Кб
4. Rare Labels - categorical variables.mp4 33.86Мб
4. Rare Labels - categorical variables.srt 6.09Кб
4. Rare Labels - categorical variables.vtt 5.40Кб
4. Variable transformation with Feature-engine.mp4 23.69Мб
4. Variable transformation with Feature-engine.srt 3.99Кб
4. Variable transformation with Feature-engine.vtt 3.59Кб
5.1 sample_s2.csv.csv 9.94Мб
5. End of distribution imputation.mp4 28.11Мб
5. End of distribution imputation.srt 6.02Кб
5. End of distribution imputation.vtt 5.36Кб
5. Equal-frequency discretisation Demo.mp4 47.29Мб
5. Equal-frequency discretisation Demo.srt 7.67Кб
5. Equal-frequency discretisation Demo.vtt 6.85Кб
5. Linear models assumptions.mp4 68.89Мб
5. Linear models assumptions.srt 11.48Кб
5. Linear models assumptions.vtt 10.25Кб
5. Mean normalisation Demo.mp4 45.08Мб
5. Mean normalisation Demo.srt 6.19Кб
5. Mean normalisation Demo.vtt 5.51Кб
5. Mixed variables.mp4 11.25Мб
5. Mixed variables.srt 2.94Кб
5. Mixed variables.vtt 2.60Кб
5. One hot encoding of top categories Demo.mp4 57.26Мб
5. One hot encoding of top categories Demo.srt 9.68Кб
5. One hot encoding of top categories Demo.vtt 8.58Кб
5. Outlier capping with quantiles.mp4 24.44Мб
5. Outlier capping with quantiles.srt 3.50Кб
5. Outlier capping with quantiles.vtt 3.17Кб
5. Setting up your computer.html 3.52Кб
6.1 HandsOnPythonCode.zip.zip 9.24Мб
6. Arbitrary capping.mp4 19.69Мб
6. Arbitrary capping.srt 3.82Кб
6. Arbitrary capping.vtt 3.41Кб
6. Bonus More about the Lending Club dataset.html 826б
6. Download Jupyter notebooks.html 1.26Кб
6. Frequent category imputation.mp4 49.77Мб
6. Frequent category imputation.srt 8.22Кб
6. Frequent category imputation.vtt 7.33Кб
6. K-means discretisation.mp4 18.87Мб
6. K-means discretisation.srt 4.73Кб
6. K-means discretisation.vtt 4.17Кб
6. Ordinal encoding Label encoding.mp4 9.42Мб
6. Ordinal encoding Label encoding.srt 2.08Кб
6. Ordinal encoding Label encoding.vtt 1.85Кб
6. Scaling to minimum and maximum values.mp4 17.08Мб
6. Scaling to minimum and maximum values.srt 3.81Кб
6. Scaling to minimum and maximum values.vtt 3.39Кб
6. Variable distribution.mp4 32.77Мб
6. Variable distribution.srt 6.48Кб
6. Variable distribution.vtt 5.76Кб
7. Additional reading resources.html 387б
7. Download datasets.html 1.97Кб
7. K-means discretisation Demo.mp4 18.83Мб
7. K-means discretisation Demo.srt 3.23Кб
7. K-means discretisation Demo.vtt 2.85Кб
7. MinMaxScaling Demo.mp4 25.89Мб
7. MinMaxScaling Demo.srt 3.47Кб
7. MinMaxScaling Demo.vtt 3.11Кб
7. Missing category imputation.mp4 28.17Мб
7. Missing category imputation.srt 4.82Кб
7. Missing category imputation.vtt 4.31Кб
7. Ordinal encoding Demo.mp4 57.48Мб
7. Ordinal encoding Demo.srt 9.33Кб
7. Ordinal encoding Demo.vtt 8.33Кб
7. Outliers.mp4 48.36Мб
7. Outliers.srt 10.40Кб
7. Outliers.vtt 9.23Кб
7. Quiz about variable types.html 151б
8.1 FeatureEngineeringSlides.zip.zip 29.59Мб
8. Count or frequency encoding.mp4 15.73Мб
8. Count or frequency encoding.srt 3.76Кб
8. Count or frequency encoding.vtt 3.35Кб
8. Discretisation plus categorical encoding.mp4 13.31Мб
8. Discretisation plus categorical encoding.srt 2.76Кб
8. Discretisation plus categorical encoding.vtt 2.48Кб
8. Download course presentations.html 764б
8. Maximum absolute scaling.mp4 14.60Мб
8. Maximum absolute scaling.srt 3.29Кб
8. Maximum absolute scaling.vtt 2.94Кб
8. Random sample imputation.mp4 102.66Мб
8. Random sample imputation.srt 17.65Кб
8. Random sample imputation.vtt 15.59Кб
8. Variable magnitude.mp4 19.96Мб
8. Variable magnitude.srt 3.87Кб
8. Variable magnitude.vtt 3.45Кб
9.1 ML_Comparison.pdf.pdf 297.65Кб
9. Adding a missing indicator.mp4 31.09Мб
9. Adding a missing indicator.srt 6.55Кб
9. Adding a missing indicator.vtt 5.81Кб
9. Bonus Machine learning algorithms overview.html 140б
9. Count encoding Demo.mp4 32.53Мб
9. Count encoding Demo.srt 4.93Кб
9. Count encoding Demo.vtt 4.42Кб
9. Discretisation plus encoding Demo.mp4 36.22Мб
9. Discretisation plus encoding Demo.srt 6.55Кб
9. Discretisation plus encoding Demo.vtt 5.80Кб
9. FAQ Data Science, Python programming, datasets, presentations and more....html 1.64Кб
9. MaxAbsScaling Demo.mp4 31.47Мб
9. MaxAbsScaling Demo.srt 4.56Кб
9. MaxAbsScaling Demo.vtt 4.05Кб
How you can help Team-FTU.txt 237б
Статистика распространения по странам
Россия (RU) 2
США (US) 2
Великобритания (GB) 1
Швеция (SE) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент