Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
1. Install Anaconda package.mp4 |
48.10Мб |
1. Install Anaconda package.srt |
7.29Кб |
1. Introduction to Course.mp4 |
11.97Мб |
1. Introduction to Course.srt |
2.41Кб |
1. Introduction to Deep Learning.mp4 |
36.87Мб |
1. Introduction to Deep Learning.srt |
6.91Кб |
1. Introduction to Supervised Learning Algorithms.mp4 |
6.26Мб |
1. Introduction to Supervised Learning Algorithms.srt |
1.34Кб |
1. Review Unsupervised Learning Algorithms.mp4 |
8.52Мб |
1. Review Unsupervised Learning Algorithms.srt |
1.83Кб |
10. Create K-means Clustering Algorithm Model in Python - 2.mp4 |
32.95Мб |
10. Create K-means Clustering Algorithm Model in Python - 2.srt |
3.73Кб |
10. Machine Leaning Types.html |
165б |
10. P-Value.mp4 |
17.43Мб |
10. P-Value.srt |
4.23Кб |
10. The Newer Version of Keras Python code to Create the Model and Add the Layers.html |
1.26Кб |
11. Association Rules (Market Basket Analysis).mp4 |
52.22Мб |
11. Association Rules (Market Basket Analysis).srt |
11.50Кб |
11. Course Rating.html |
508б |
11. Create Artificial Neural Network Model in Python Part-4.mp4 |
22.00Мб |
11. Create Artificial Neural Network Model in Python Part-4.srt |
2.29Кб |
11. Simple Linear Regression.mp4 |
3.75Мб |
11. Simple Linear Regression.srt |
1007б |
12.1 GroceryStoreDataSet.csv |
543б |
12. Concepts used in Machine Learning (Important).html |
228б |
12. Course Rating.html |
508б |
12. Overview on the business problem data.mp4 |
13.47Мб |
12. Overview on the business problem data.srt |
1.98Кб |
13.1 apyori.py |
14.21Кб |
13.1 Study_Hours.csv |
287б |
13.2 AR.py |
560б |
13. Create Association Rules (Market Basket Analysis) Model in Python - 1.mp4 |
69.41Мб |
13. Create Association Rules (Market Basket Analysis) Model in Python - 1.srt |
10.30Кб |
13. Overview on the dataset.mp4 |
7.89Мб |
13. Overview on the dataset.srt |
1.52Кб |
14.1 SLR.py |
1.24Кб |
14. Create Association Rules (Market Basket Analysis) Model in Python - 2.mp4 |
33.26Мб |
14. Create Association Rules (Market Basket Analysis) Model in Python - 2.srt |
5.08Кб |
14. Create Simple Linear Regression Model in Python-Part 1.mp4 |
30.86Мб |
14. Create Simple Linear Regression Model in Python-Part 1.srt |
5.48Кб |
15. Create Association Rules (Market Basket Analysis) Model in Python - 3.mp4 |
28.61Мб |
15. Create Association Rules (Market Basket Analysis) Model in Python - 3.srt |
2.77Кб |
15. Create Simple Linear Regression Model in Python-Part 2.mp4 |
129.27Мб |
15. Create Simple Linear Regression Model in Python-Part 2.srt |
13.22Кб |
16. Create Simple Linear Regression Model in Python-Part 3.mp4 |
66.15Мб |
16. Create Simple Linear Regression Model in Python-Part 3.srt |
6.36Кб |
17. Create Simple Linear Regression Model in Python-Part 4.mp4 |
70.30Мб |
17. Create Simple Linear Regression Model in Python-Part 4.srt |
6.95Кб |
18. Multiple Linear Regression.mp4 |
14.19Мб |
18. Multiple Linear Regression.srt |
2.93Кб |
19. Dummy Variables.mp4 |
36.36Мб |
19. Dummy Variables.srt |
5.76Кб |
2. Course Contents.mp4 |
10.10Мб |
2. Course Contents.srt |
1.67Кб |
2. Hierarchical Clustering Algorithm.mp4 |
9.87Мб |
2. Hierarchical Clustering Algorithm.srt |
4.07Кб |
2. Types of Variables.mp4 |
10.31Мб |
2. Types of Variables.srt |
2.63Кб |
2. Use Deep Learning in Classification.mp4 |
14.07Мб |
2. Use Deep Learning in Classification.srt |
2.75Кб |
20. Dummy Variables Trap.html |
612б |
21. Step-wise Approach.mp4 |
28.78Мб |
21. Step-wise Approach.srt |
6.96Кб |
22. Assumptions of Multiple Linear Regression.mp4 |
31.31Мб |
22. Assumptions of Multiple Linear Regression.srt |
9.36Кб |
23.1 Companies spends and profits.csv |
3.24Кб |
23. Overview on the business problem data.mp4 |
8.74Мб |
23. Overview on the business problem data.srt |
1.46Кб |
24.1 MLR.py |
2.12Кб |
24. Create Multiple Linear Regression Model in Python-Part 1.mp4 |
172.58Мб |
24. Create Multiple Linear Regression Model in Python-Part 1.srt |
16.94Кб |
25. Create Multiple Linear Regression Model in Python-Part 2.mp4 |
141.28Мб |
25. Create Multiple Linear Regression Model in Python-Part 2.srt |
12.88Кб |
26. Create Multiple Linear Regression Model in Python-Part 3.mp4 |
138.08Мб |
26. Create Multiple Linear Regression Model in Python-Part 3.srt |
11.62Кб |
27. Create Multiple Linear Regression Model in Python-Part 4.mp4 |
82.28Мб |
27. Create Multiple Linear Regression Model in Python-Part 4.srt |
7.99Кб |
28. Polynomial Regression.mp4 |
10.65Мб |
28. Polynomial Regression.srt |
2.29Кб |
29.1 Reward_system.csv |
213б |
29. Overview on the business problem data.mp4 |
7.17Мб |
29. Overview on the business problem data.srt |
1.28Кб |
3. Data Types.html |
165б |
3. Dendrogram Diagram Method.mp4 |
28.60Мб |
3. Dendrogram Diagram Method.srt |
6.87Кб |
3. How Does Deep Learning Work.mp4 |
27.57Мб |
3. How Does Deep Learning Work.srt |
5.71Кб |
3. Introduction to Data Mining.mp4 |
42.80Мб |
3. Introduction to Data Mining.srt |
10.84Кб |
30.1 PR.py |
1.73Кб |
30. Create Polynomial Regression Model in Python-Part 1.mp4 |
79.39Мб |
30. Create Polynomial Regression Model in Python-Part 1.srt |
9.69Кб |
31. Create Polynomial Regression Model in Python-Part 2.mp4 |
124.44Мб |
31. Create Polynomial Regression Model in Python-Part 2.srt |
13.43Кб |
32. Course Rating.html |
508б |
33. Introduction to Classification.mp4 |
19.88Мб |
33. Introduction to Classification.srt |
4.71Кб |
34. Introduction to Logistic Regression.mp4 |
29.10Мб |
34. Introduction to Logistic Regression.srt |
8.87Кб |
35. Confusion Matrix.mp4 |
15.56Мб |
35. Confusion Matrix.srt |
4.48Кб |
36. Standard Scaler.mp4 |
12.16Мб |
36. Standard Scaler.srt |
3.34Кб |
37.1 Bank_Data.csv |
17.25Кб |
37. Overview on the business problem data.mp4 |
10.28Мб |
37. Overview on the business problem data.srt |
1.82Кб |
38.1 LR.py |
1.09Кб |
38. Create Logistic Regression Model in Python-Part 1.mp4 |
112.00Мб |
38. Create Logistic Regression Model in Python-Part 1.srt |
12.85Кб |
39. Create Logistic Regression Model in Python-Part 2.mp4 |
59.59Мб |
39. Create Logistic Regression Model in Python-Part 2.srt |
6.84Кб |
4. Activation Functions.mp4 |
34.80Мб |
4. Activation Functions.srt |
7.30Кб |
4. Data Mining Definition.html |
165б |
4. Introduction to Regression Model.mp4 |
21.26Мб |
4. Introduction to Regression Model.srt |
4.86Кб |
4. Overview on the business problem data.mp4 |
4.18Мб |
4. Overview on the business problem data.srt |
812б |
40. KNN Classification Algorithm.mp4 |
15.32Мб |
40. KNN Classification Algorithm.srt |
4.45Кб |
41.1 K-NN.py |
1.23Кб |
41.2 Bank_Data.csv |
17.25Кб |
41. Create KNN Model in Python.mp4 |
65.22Мб |
41. Create KNN Model in Python.srt |
8.23Кб |
42. Support Vector Machine (SVM) Classification Algorithm.mp4 |
17.82Мб |
42. Support Vector Machine (SVM) Classification Algorithm.srt |
3.98Кб |
43.1 SVM.py |
1.16Кб |
43. Create Support Vector Machine in Python.mp4 |
53.11Мб |
43. Create Support Vector Machine in Python.srt |
7.71Кб |
44. Naive Bayes Algorithm Part 1.mp4 |
19.83Мб |
44. Naive Bayes Algorithm Part 1.srt |
5.21Кб |
45. Naive Bayes Algorithm Part 2.mp4 |
27.92Мб |
45. Naive Bayes Algorithm Part 2.srt |
6.96Кб |
46.1 Naive_Bayes.py |
1.07Кб |
46. Create Naive Bayes Model in Python.mp4 |
28.88Мб |
46. Create Naive Bayes Model in Python.srt |
3.77Кб |
47. Decision Tree Algorithm.mp4 |
34.46Мб |
47. Decision Tree Algorithm.srt |
7.94Кб |
48.1 Bank_Data.csv |
17.25Кб |
48.2 Decision Tree.py |
1.14Кб |
48. Create Decision Tree Model in Python.mp4 |
33.63Мб |
48. Create Decision Tree Model in Python.srt |
3.48Кб |
49. Random Forest Algorithm.mp4 |
6.07Мб |
49. Random Forest Algorithm.srt |
1.41Кб |
5.1 Hierarchical Clustering.py |
1.19Кб |
5.2 Movies.csv |
1.66Кб |
5. Create Hierarchical Clustering Algorithm in Python-1.mp4 |
128.29Мб |
5. Create Hierarchical Clustering Algorithm in Python-1.srt |
13.65Кб |
5. Introduction to Machine Learning.mp4 |
14.31Мб |
5. Introduction to Machine Learning.srt |
3.05Кб |
5. Regression Model.html |
165б |
5. What is Tensorflow.mp4 |
6.97Мб |
5. What is Tensorflow.srt |
2.56Кб |
50.1 Random_Forest.py |
1.19Кб |
50. Create Random Forest Model in Python.mp4 |
69.38Мб |
50. Create Random Forest Model in Python.srt |
6.40Кб |
51. Course Rating.html |
508б |
6. Create Hierarchical Clustering Algorithm in Python-2.mp4 |
72.07Мб |
6. Create Hierarchical Clustering Algorithm in Python-2.srt |
7.28Кб |
6. Introduction to the Deep Learning Problem and Dataset.mp4 |
8.95Мб |
6. Introduction to the Deep Learning Problem and Dataset.srt |
1.13Кб |
6. Machine Leaning Sub-fields..html |
165б |
6. Regression Model Slope.mp4 |
31.15Мб |
6. Regression Model Slope.srt |
7.37Кб |
7.1 M_ANN.py |
1.50Кб |
7.2 Medical_data.csv |
23.45Кб |
7. Create Artificial Neural Network Model in Python Part-1.mp4 |
64.94Мб |
7. Create Artificial Neural Network Model in Python Part-1.srt |
6.97Кб |
7. How Does Machine Learning Work.mp4 |
19.45Мб |
7. How Does Machine Learning Work.srt |
4.46Кб |
7. K-means Clustering Algorithm.mp4 |
16.17Мб |
7. K-means Clustering Algorithm.srt |
3.99Кб |
7. Regression Slope.html |
165б |
8. Create Artificial Neural Network Model in Python Part-2.mp4 |
68.96Мб |
8. Create Artificial Neural Network Model in Python Part-2.srt |
9.88Кб |
8. The Intercept Value.html |
165б |
8. Train and Test Sets..html |
165б |
8. Using Elbow Method to Determine Optimal Number of Clusters.mp4 |
48.80Мб |
8. Using Elbow Method to Determine Optimal Number of Clusters.srt |
11.30Кб |
9.1 kmeans.py |
1.19Кб |
9.1 Link to the Keras documentation website..html |
78б |
9.2 Movies.csv |
1.66Кб |
9. Create Artificial Neural Network Model in Python Part-3.mp4 |
65.64Мб |
9. Create Artificial Neural Network Model in Python Part-3.srt |
6.46Кб |
9. Create K-means Clustering Algorithm Model in Python - 1.mp4 |
78.62Мб |
9. Create K-means Clustering Algorithm Model in Python - 1.srt |
8.64Кб |
9. Machine Learning Algorithms Types.mp4 |
40.80Мб |
9. Machine Learning Algorithms Types.srt |
8.18Кб |
9. R-Squared.mp4 |
29.06Мб |
9. R-Squared.srt |
8.17Кб |
TutsNode.com.txt |
63б |